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Abstract: This paper aims to study the empirical Bayes estimation of the parameter of ЭРланга distribution under a 

weighted squared error loss function. Bayes estimator is firstly to derive based on pivot method. Then empirical Bayes 

estimator of unknown parameter is constructed in a priori unknown circumstances. The asymptotically optimal property of this 

empirical Bayes estimator is also discussed. It is shown that the convergence rates of the proposed empirical Bayes estimator 

can arbitrarily close to O(n)-1) under suitable conditions. 
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1. Introduction 

Empirical Bayes method is firstly proposed by Robbins in 

1956, and since then it becomes a very important statistical 

inference, which be applied to many fields, such as 

reliability, lifetime prediction, medical research, ect. [1-6]. 

Empirical Bayes estimations of various statistical models 

have received great attention. For example, Fan et al. [7] 

constructed a empirical Bayes estimator of the scale 

exponential family in the case of identically distributed and 

positively associated samples under weighted square loss 

function. 

Rousseau and Szabo [8] considered the asymptotic 

behavior of the marginal maximum likelihood empirical 

Bayes posterior distribution in general setting. Wang and Wei 

[9] studied the empirical Bayes estimation problem for the 

scale-exponential family with errors in variables under the 

weighted square loss. Liu and Cao [10] discussed the 

empirical Bayes estimation about location parameter of two-

exponential distribution under a LINEX loss function.in case 

of the negatively associated samples with kernel density 

method to estimate marginal probability density function. 

Zhang and Wei [11] first derived the Bayes estimators of 

variance components for one-way classification random 

effect model under the weighted square loss function, and 

then they constructed the empirical Bayes estimators by the 

kernel estimation method. Seal and Hossain [12] not only 

used EM algorithm to compute empirical Bayes estimates for 

different hyperparameters, but also investigated the 

robustness of empirical Bayes procedure. Steorts and Ghosh 

[13] considered benchmarked empirical Bayes estimators 

under the basic area-level model of Fay and Herriot while 

requiring the standard benchmarking constraint. Jiang [14] 

studied a monotone regularized kernel general empirical 

Bayes method for the estimation of a vector of normal 

means. Park [15] discussed the problem of simultaneous 

Poisson mean vector estimation and studied the performance 

of nonparametric empirical Bayes estimator from the view 

point of risk consistency. 

ЭРланга distribution is an important distribution to model 

the repair time and guarantee the distribution delay time [16]. 

Pan et al. [17] studied the interval estimation and hypothesis 

test problem of ЭРланга distribution in case of small sample. 

Long [18] discussed the estimation of Зрланга distribution 

based on missing data.  

Assume that random variable X  has the ЭРланга 

distribution with the following probability density function 

and cumulative distribution function, respectively: 

2 2( ; ) 4 , 0, 0xf x x e xδδ δ δ−= ≥ >              (1) 

2( ; ) 1 (1 2 ) , 0, 0xF x x e xδδ δ δ−= − + ≥ >         (2) 

Let / 2θ δ= , then the probability density function of 
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ЭРланга distribution is 

2( ; ) , 0, 0xf x x e xθθ θ θ−= ≥ >                 (3) 

Here, θ  is the unknown parameter, { }0x xΩ = > is the 

sample space, and { | 0}θ θΘ = >  is the parameter space.  

This paper will study the empirical Bayes estimation of 

ЭРланга distribution in Eq. (3) under a weighted squared 

error loss function. The asymptotically optimal and its 

convergence rate of constructed empirical Bayes estimator 

will also be derived under certain suitable conditions. The 

remains of this paper are organized as follows: Section 2 will 

derive a Bayes estimator under weighted squared error loss 

function. Then Section 3 will put forward a new construction 

of empirical Bayes estimator using the pivot method. Section 

4 studies the asymptotic optimality property of the proposed 

empirical Bayes estimator. Finally, Section 5 will give the 

conclusion of this paper. 

2. Bayes Estimation 

This section will study the Bayes estimation of ЭРланга 

distribution under the following weighted squared error loss 

function: 

2

2

( )
( , )L

θ δθ δ
θ
−=                          (4) 

The advantage of using the weighted square loss function 

is that it is invariant, and the Bayes expression is more 

concise, and the empirical Bayes estimation function is easy 

to construct. Under this loss function (4), there are also many 

authors discussed the Bayes estimation problem for different 

models[19-24]. 

In the following discussion, we always assume: 

The parameter θ  has the prior distribution function ( )G θ , 

which is unknown and belongs to the below set: 

2 1{ ( ) : ( ) , ( ) , ( ) }F G E E Eθ θ θ θ −= < ∞ < ∞ < ∞        (5) 

Under the weighted squared error loss function (3), the 

Bayes estimator ( )
G

xδ  of the parameter θ  relative to the 

prior ( )G θ  is given by  

1

1

2

2

( )( | )
( )

( )( | )
G

p xE x
x

p xE x

θδ
θ

−

−= =                      (6) 

Where  

1( ) ( )xp x x e dGθθ θ−

Θ
= ∫                      (7) 

2 ( ) ( )xp x xe dGθ θ−

Θ
= ∫                       (8) 

The Bayes risk associated with ( )G xδ  is 

2

( , ) 2

( )
( , ) ( , ) [ ]

G G X
R R G inf R G E θ

δ

θ δδ δ
θ
−= ==     (9) 

Here ( , )[ ]
X

E θ ⋅ denotes the expectation with respect to the 

joint distribution of ( , )X θ . 

Remark 1. Note that, if the prior distribution ( )G θ  is 

known, ( )xδ  equals to ( )
G

xδ , we can get G
R . Unfortunately 

here we assume the prior distribution ( )G θ  is unknown, then 

( )
G

xδ  is unknown too. Then the Bayes estimator ( )
G

xδ  is 

no practical value, therefore, we need to introduce the 

empirical Bayes method, which requires construct the risk 

function can be arbitrary close to G
R .  

3. The Construction of Empirical Bayes 

Estimation 

Suppose that 1 1 2 2
( , ), ( , ),...X Xθ θ , ( , )

n n
X θ and 

1 1
( , ) ( , )

n n
X Xθ θ+ + ≜  are independent identical distribution 

random samples, where 1 2
, ,...,

n
X X X  are the historical 

samples, and X  is the present sample. Here , 1, ,
i

i nθ = ⋯  

and θ have the same prior distribution. , 1, ,
i

X i n= ⋯  and X  

have the same marginal probability density function ( )
G

f x .  

Lemma 1 let 1
, ,

n
X X⋯ be the independent identical 

distribution random samples distributed with ЭРланга 

distribution (1). Define 

( ) ( )
j j

j

x
V x I X x

X
= − ，                  (10) 

3 2 1

3
( ) ( ) ( )x xp x x e dG x e dGθ θθ θ θ θ θ− − − −

Θ Θ
= =∫ ∫ ,  (11) 

1

1

1
( ) ( ),

n

n j

j

p x V x
n =

= ∑                      (12) 

2

1

1
( ) [( ) ( )]

n

n j j

j

p x X x V x
n =

= −∑             (13) 

Then  

(i) 1
( )

n
p x and 2

( )
n

p x are the unbiased estimator of 1
( )p x

and 2
( )p x ,respectively. That is 

1 1 2 2
( ( )) ( ), ( ( )) ( )

n n
E p x p x E p x p x= =  

(ii) 1 1 2 3

1 2
( ( )) ( ), ( ( )) ( )

n n
Var p x p x Var p x p x

n n
≤ ≤  

Proof. (i) By Eq. (3), the marginal probability density 

function ( )
G

f x is  

( ) 2
( ) ( ) ( )

x

G
f x f x dG x e dG

θθ θ θ θ−

Θ Θ

= =∫ ∫          (14) 

By Eq.(10) and Eq.(14), 
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2

( ) ( )

[ ( )]

j G
x

t

x

x
EV x f t dt

t

x
t e dG dt

t

θθ θ

∞

∞ −

Θ

=

=

∫

∫ ∫
 

2

2

[ ( )]

[ ] ( )

t

x

t

x

x e dG dt

e dt x dG

θ

θ

θ θ

θ θ

∞ −

Θ
∞ −

Θ

=

=

∫ ∫

∫ ∫
 

2

1

1
( )

1
( | ) ( )

xx e dG

E x p x

θθ θ
θ

θ

−

Θ
=

= =

∫
 

Note that ( ), 1, ,
j

V x j n= ⋯ is an independent identical 

distribution random sequence. Then 

1 1

1

1
( ( )) [ ( )] ( ) ( )

n

n j j

j

E p x E V x EV x p x
n =

= = =∑  

2

2

( ) ( )

( ) [ ( )]

[( ) ( )]

j j

t

x

t

x

E X x V x

x
t x te dG dt

t

t x x e dG dt

θ

θ

θ θ

θ θ

∞ −

Θ

∞ −

Θ

−

= −

= −

∫ ∫

∫ ∫

  

2

2 2

2

2

2 2

22

[ ] ( )

[ ] ( )

1
( ) ( )

1
( )

1
( | ) ( )

t

x

t

x

x

x

te dt x dG

e dt x dG

x
e x dG

e x dG

E x p x

θ

θ

θ

θ

θ θ

θ θ

θ θ
θ θ

θ θ
θ

θ

∞ −

Θ
∞ −

Θ

−

Θ

−

Θ

=

−

= +

−

= =

∫ ∫

∫ ∫

∫

∫

 

The random sequence ( ) ( ), 1, ,
j j

X x V x j n− = ⋯  is also an 

independent identical distribution random sequence. Then 

2 2

1

1
( ( )) [ ( ) ( )] ( )

n

n j j

j

E p x E X x V x p x
n =

= − =∑  

For the case (ii). 

2 2

2
2 2

12

( ( )) ( ) [ ( )]

( )
[ ( )] ( )

( )

j j j

t

x

Var V x EV x EV x

u x
t e dG dt P x

u t

θθ θ
∞ −

Θ

= −

= −∫ ∫
 

2 2 2

1

2 2

1

1
[ ] ( ) ( )

[ ] ( ) ( )

t

x

t

x

e dt x dG P x
t

e dt x dG P x

θ

θ

θ θ

θ θ

∞ −

Θ

∞ −

Θ

= −

≤ −

∫ ∫

∫ ∫
 

2 2

1

2

1 1 1

1
( ) ( )

( ) ( ) ( )

xe x dG p x

p x p x p x

θ θ θ
θ

−

Θ
= −

= − ≤

∫
 

Because ( ), 1, ,
j

V x j n= ⋯  is an independent identical 

distribution random sequence. Then  

1 1

1
( ( )) ( )

n
Var p x p x

n
≤  

2

2
2 2

2

(( ) ( )) (( ) ( ))

( ) [ ( )]

j j j j

t

x

Var X x V x E X x V x

x
t x t e dG dt

t

θθ θ
∞ −

Θ

− ≤ −

= −∫ ∫
 

2
2 2

2 2

2

33

( )
[ ] ( )

[ ( ) ] ( )

2
( ) 2 ( )

t

x

t

x

x

t x
e dt x dG

t

t x e dt x dG

e x dG p x

θ

θ

θ

θ θ

θ θ

θ θ
θ

∞ −

Θ

∞ −

Θ

−

Θ

−

≤ −

= =

∫ ∫

∫ ∫

∫

 

Similarly, it is easy to verify that  

2 3

2
( ( )) ( )

n
Var p x p x

n
≤ . 

Then the Lemma 1 is proved. 

Definition 1. According to Eq. (6) and utilizing 1
( )

n
p x and 

2
( )

n
p x , this paper constructs an empirical Bayes estimator of 

the parameter θ  of ЭРланга distribution as follows. 

1

2

( )
( )

ˆ ( )

n

n

n

p x
x

p x
δ =                               (15) 

Where  

2 2
ˆ ( ) [ ( )]

n n n
p x p x υ=                         (16) 

and 

,

[ ] , | |

,

c

c u c

u u u c

c u c

− < −
= ≤
 >

. 

4. Asymptotic Optimal Properties of the 

Emprical Bayes Estimator 

This section will study the asymptotic optimality property 

of the proposed empirical Bayes estimator. Under the 

weighted squared error loss, the Bayes risks of the proposed 

empirical Bayes estimator ( )
n

xδ is 

2

2

( )
( , ) [ ]n

n n n
R R G E

θ δδ
θ∗
−

= =                 (17) 

Here [ ]E∗ ⋅ denotes the expectation with respect to the joint 
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distribution of 1
( ,..., , ( , ))

n
X X X θ . In the following 

discussion, we suppose that [ ]E ⋅ denotes the expectation with 

respect to the joint distribution of 1
( ,..., )

n
X X . 

Definition 2. If lim ( ( ), ( ))n G
n

R x G Rδ θ
→∞

= , then it means that 

the random variable sequence { ( )n xδ } is a asymptotic 

optimality empirical Bayes estimators sequence. 

Further, if ( ( ), ( ))nR x Gδ θ - GR = ( ), 0qn q−Ο > , then it is 

to say the convergence rate of the estimators sequence 

{ ( )}
n

xδ  is ( )qn−Ο . 

According to Definition 2, we can use the nonnegative 

difference between ( ( ), ( ))
n

R x Gδ θ  with G
R  as the measure 

to evaluate the performance of the proposed empirical Bayes 

estimator ( )
n

xδ . 

In the following discussion, we always assume 1 2
, , ,...c c c

represent different constants, even they occur in the same 

expression they also may take different values. 

Lemma 2 [25] Assume that δ  is an arbitrary estimator of 

parameter θ , then 

2

2

( )
( , ) [ ]n

G
R G R E

δ δδ
θ∗
−

− = ,               (18) 

Where ( , )R Gδ  represents the Bayesian risk of estimator 

δ . 

Theorem 1 Suppose n
R  and G

R  definite in Eq. (17) and 

Eq. (9) separately, then for ЭРланга distribution, if prior 

distribution ( )G θ  belongs to F  defined in Eq. (5), then 

lim ( ( ), ( ))
n G

n
R x G Rδ θ

→∞
=  

Proof. According to Lemma2, 

2

2

2 2

( , )

( )
( ( ), ( )) [ ]

[ ( ) ]

B n

n G

X n B

R x G R E

E Eθ

δ δδ θ
θ

θ δ δ

∗

−

−
− =

= −
 

By the control convergence theorem, to prove the theorem 

we need only prove the following conclusions.  

(i) For any given x and θ , 
2 2lim ( ) 0n B

n
Eθ δ δ−

→∞
− = . 

(ii) 
2 2( ) ( , )n BE M xθ δ δ θ− − ≤ , for a sufficiently large n  

and ( , )
( , )XE M xθ θ < ∞  

Now we prove these two cases. 

2

21 1

2 2

21 1 1 1

2 2 2

( )

( ) ( )
( )

ˆ ( ) ( )

( ) ( ) ( ) ( )
[ ( )]

ˆ ˆ( ) ( ) ( )

n B

n

n

n

n n

E

p x p x
E

p x p x

p x p x p x p x
E

p x p x p x

δ δ−

= −

−
= − −

 

21 1 2

2 2

2 2 21 1 2

2 2

( ) ( ) ( )
[ (1 )]

ˆ ˆ( ) ( )

( ) ( ) ( )
2 [ ] 2 [1 ]

ˆ ˆ( ) ( )

n

B

n n

n

B

n n

p x p x p x
E

p x p x

p x p x p x
E E

p x p x

δ

δ

−
= − −

−
≤ + −

 

That is  

2( )n BE δ δ− 2

1 22( )BI Iδ≤ +                 (19) 

Where  

1I =
21 1

2

( ) ( )
[ ]

ˆ ( )

n

n

p x p x
E

p x

−
, 

2I =
22

2

( )
[1 ]

ˆ ( )
n

p x
E

p x
− . 

Then by Lemma 1, we have 

2 2

1 1 1

2

1

2

1

[ ( ) ( )]

( ( ))

1
( )

n n

n n

n

I E p x p x

Var p x

p x
n

δ
δ

δ

−

−

−

≤ −

=

≤

                 (20) 

22 2

2 2

2

22 2

2

2

1 2

ˆ ( ) ( )
[ ] ( ( ) )

ˆ ( )

ˆ ( ) ( )
[ ] ( ( ) )

ˆ ( )

n

n

n

n

n

n

p x p x
I E I p x

p x

p x p x
E I p x

p x

J J

δ

δ

−
≤ ≥

−
+ <

= +

 

Here 

22 2

1 2

2

ˆ ( ) ( )
[ ] ( ( ) ),

ˆ ( )

n

n

n

p x p x
J E I p x

p x
δ−

= ≥  

22 2

2 2

2

ˆ ( ) ( )
[ ] ( ( ) )

ˆ ( )

n

n

n

p x p x
J E I p x

p x
δ−

= < . 

Obviously that 

2 2 2

2 2

2 2 2 2

ˆ( ) ( ), ,| ( ) |
ˆ( ) ( )

ˆ( ) ( ) ( ),| ( ) |

n n n

n

n n n n

p x p x p x
p x p x

p x p x p x p x

δ
δ δ

− ≥
− =  − < − <

 

Then 

2 2

1 2 2 2

2 2

2 2

ˆ[ ( ) ( )] ( ( ) )

[ ( ) ( )]

n n n

n n

J E p x p x I p x

E p x p x

δ δ
δ

−

−

≤ − ≥

≤ −
 

2

2

2

3

( ( ))

1
( )

n n

n

Var p x

p x
n

δ

δ

−

−

=

≤
 

If 2
( )

n
p x δ< , then

2

2

( )
| | 1

ˆ ( )
n

p x

p x
≤ ,further  
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2 2
4 ( ( ) )

n n
J I p xδ δ≤ <                    (21) 

By the inequalities (19)-(21), we have 

2 2 2 2 2

1 3

2

2 2
( ) ( ) ( )

8 ( ( ) )

n B n n

n n

E p x p x
n n

I p x

θ δ δ δ θ δ

δ δ

− − − −− ≤ +

+ <
     (22) 

Then for any given x  and θ , 

2 2lim ( ) 0n B
n

Eθ δ δ−

→∞
− =  

Thus the case (i) is true. 

For the case (ii), by inequality (22), 

2 2 2 2

1 3
( ) ( ) ( ) ( , )

n B
E p x p x M xθ δ δ θ θ θ− − −− ≤ + ≜  

Further 

1

1

( ) ( )

( )

( ) ( ( ))

x
p x x e dG

x dG

u x E c

θθ θ

θ θ

θ θ

−

Θ

Θ

−

=

≤

= < ∞

∫

∫ ，

1

3

1

1

( ) ( )

( )

( )

xp x xe dG

x dG

xE

θθ θ

θ θ

θ

− −

Θ

−

Θ

−

=

≤

= < ∞

∫

∫  

Then the case (ii) is true. 

Thus we finish the proof of the theorem. 

5. Conclusions 

For the estimation of the parameter of ЭРланга 

distribution, this paper puts forward an empirical Bayes 

approach to estimate the parameter under a weighted squared 

error loss function when the prior distribution of the 

parameter is unknown.. The asymptotically optimal property 

of the proposed empirical Bayes estimator is also discussed. 

The convergence rates of the proposed empirical Bayes 

estimator can arbitrarily close to 
1( )n−Ο  under suitable 

conditions. The proposed method can be similarly extended 

to the construction of empirical Bayesian estimator of other 

distributions, such as Rayleigh distribution, Lomax 

distribution, etc. 
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