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Abstract: In this paper, a five compartmental model has been considered and investigated the transmission dynamics of 

measles disease in the human populations. The only one infected compartment in the standard model has been split into two: 

Infected catarrh, and infected eruption. Measles is a deadly disease that is very common and contagious in the world. However, 

if enough care is taken one can survive easily against Measles disease. The Measles disease has no specific treatment but 

vaccination is available. It has been shown that the model has a positive solution and is bounded. The basic reproduction 

number is derived using the next generation matrix method. The disease free equilibrium point is found and endemic 

equilibrium state is identified. It is shown that the disease free equilibrium point is locally and globally asymptotically stable if 

the reproduction number takes a value less than one unit and unstable if it is more than one unit. Numerical simulation study is 

conducted using ode 45 of MATLAB. The results and interpretations are elaborated and included in the text. Description of the 

model, Mathematical analysis, stability analysis, and simulation studies are conducted and the results are included. The 

standard model and the proposed models have been compared and the observations are presented in a tabular form. 
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1. Introduction 

Measles is one of the communicable diseases still causing 

preventable mortality and morbidity in the country. It is also 

one of the most contagious but vaccine preventable diseases 

which is caused by the paramyxovirus family from the 

morbilli virus genus. Even thought an effective vaccine is 

available and widely used measles continuous to occur even 

in developed countries. It is a child hood disease that rarely 

occurs in adults. Measles is respiratory disease caused by 

virus. Paramyxovirus is normally growth in the cells that line 

the back of the throat and lungs. Measles is an infectious 

diseases highly contagious through person-to-person 

transmission mode, with more than 90% secondary attack 

rates among susceptible persons. It resides in the mucus in 

the nose and throat of an infected person, so transmission 

typically occurs through coughing and sneezing [1 – 3]. 

Measles is a disease of all climates and races, and 

susceptibility is universal. It must have been common in the 

ancient world, but no accurate account occurs in history until 

the classical description by Rhazes in AD. Sever measles are 

more likely among poorly nourished young children, 

especially those with insufficient vitamin A or who immune 

systems have been weakened by HIV/AIDS or other 

diseases. Measles is a disease of humans; measles virus is not 

spread by any other animal species. Measles is both an 

epidemic and endemic disease, it is difficult to accurate 

estimate its incidence on the global level, particularly in the 

absence of reliable surveillance systems. Although many 

counties reported the number of incidence cases directly to 

WHO, the heterogeneity of these systems with differential 

under reporting under reporting does not permit an accurate 

assessment of the global measles incidence [4 – 5]. 

Infectious diseases pose a great challenge to both humans 

and animals world-wide. Control and prevention are 

therefore important tasks both from a human and economic 

point of views. Efficient intervention hinges on complete 

understanding of disease transmission and persistence [6 – 

7]. 
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Pathogenesis: Measles is a systemic infection. The primary 

site of infection is the respiratory epithelium of the 

nasopharynx. Two to three days after invasion and replication 

in the respiratory epithelium and regional lymph nodes, a 

primary viremia occurs with subsequent infection of the 

reticuloendothelial system. Following further viral replication 

in regional and distal reticuloendothelial sites, there is a 

second viremia, which occurs 5 to 7 days after infection. 

During this viremia, there may be infection of the respiratory 

tract and other organs. Measles virus is shed from the 

nasopharynx beginning with the prodromal until 3 to 4 days 

after rash onset. 

Symptoms and signs of Measles: Prodromal or catarrh, and 

general symptoms of measles infection presents with a two to 

four day prodromal of fever, malaise, cough, and runny nose 

or coryza prior to rash onset. Conjunctivitis and bronchitis 

are commonly present. Although there is no rash at disease 

onset, the patient is shedding virus and is highly contagious. 

A harsh, non-productive cough is present throughout the 

febrile period, persists for one to two weeks in uncomplicated 

cases, and is often the last symptom to disappear. 

Generalized lymphadenopathy commonly occurs in young 

children. Older children may complain of photophobia and, 

occasionally, of arthralgia. Measles confer lifelong immunity 

from further attacks [3]. 

Catarrh or Prodromal Stage: A fever of about 38 degree 

centigrade and catarrhal symptoms such as nasal discharge, 

sneezing, eye discharge and cough persist for three to four 

days. The respiratory secretions, lacrimal fluid and saliva at 

this stage are at their most infectious. On the last one to two 

days of the catarrhal symptoms, punctate white macules 

called Koplik's spots appear on the buccal mucosa. 

Eruption Stage: After the fever subsides, it recurs biphasic 

fever, accompanied by eruptions and aggravation of the 

catarrhal symptoms. It persists for three or four days. 

Eruptions first appear behind the ears and cheeks, spreading 

to the trunk and extremities. Small erythematic coalesces and 

enlarges, forming irregular shapes with a reticular pattern. By 

this time Koplik's spots have already disappeared. The 

measles virus is not found at the lesion; the mechanism is 

thought to be allergic reaction. Dehydration and various 

complications often occur from the persistent high fever. 

Recovery Stage: The fever subsides in several days. 

Healing is with exfoliation of eruptions and pigmentation. 

Treatment: The treatment of measles embraces the 

preventive measure to be adopted in the cause of an outbreak 

by the isolation of the sick at as early a period as possible. 

Epidemics have often specially in limited localities, been 

curtailed by such a precaution. There is no specific treatment 

for measles. People with measles need bed rest, fluids, and 

control of fever. Patients with complications may need 

treatment specific to their problem. Measles vaccination is 

one of the most cost-effective interventions available. 

Here some important terminology that is frequently used in 

this work is now introduced. Compartmentalize a group of 

persons with similar status or with respect to the same 

disease. A person is said to be susceptible if that has not yet 

infected by the disease but likely to get the disease in future. 

A person is said to be exposed to a disease when the virus 

enters into the person's body. At this stage the effects of the 

disease cannot be identified with the person, because the 

effects are in sleeping state. A person is said to be infected if 

it has the disease in its body and is able to transfer the disease 

to other susceptible persons [8 – 10]. 

Incubation period is approximately ten to twelve days from 

exposure to the onset of fever and other nonspecific 

symptoms and fourteen days, with a range of seven to 

eighteen days, from exposure to the onset of rash. Measles 

can be transmitted from four days before rash onset i.e., one 

to two days before fever onset, to four days after rash onset. 

Infectivity is greatest three days before rash onset. Measles is 

highly contagious. Secondary attack rates among susceptible 

household contacts have been reported to be 75% to 90%. 

Due to the high transmission efficiency of measles, outbreaks 

have been reported in populations where only 3% to 7% of 

the individuals were susceptible. Whereas vaccination can 

result in respiratory excretion of the attenuated measles virus, 

person-to-person transmission has never been shown [11 – 

12]. 

The mathematical modeling of infectious diseases is used 

to study the means by which diseases spread, to forecast the 

future course of an outbreak and to evaluate strategies to 

control an epidemic. Momoh and many researchers 

developed a mathematical model for control of measles 

epidemiology. They used model to determine the impact of 

exposed individuals at latent period through the stability 

analysis and numerical simulation. But here in the present 

study, the infectious compartment �	  is replaced with (i) 

Catarrh and (ii) Eruption compartments. Thus, the modified 

model is named as  ������� and is used in the present work 

for further analysis and interpretations [13 – 14]. 

2. Modeling and Formulations of 

Measles Disease 

Here now ����  and SEI�I�R			models are formulated for 

describing the dynamics of Measles. The whole person 

population is categorized into susceptible, exposed, infected 

and removed groups for ����  model and susceptible, 

exposed, infected but in Catarrh or prodromal stage 	�� ; 

infected but Eruption stage 		�� , recover groups for model. 

Susceptible or Individuals who may get the disease, Exposed 

or Latent or Individuals who are exposed to the disease, 

Infectious or Individuals who have the disease and are able to 

transfer it to others, Recovered or Individuals who have 

permanent infection-acquired immunity. 

2.1. Mathematical Modeling Using Compartments 

In this section,	���� epidemic model has been considered 

as it is a base for the ������� model. The letters in the string ����   respectively stand for the Susceptible, Exposed, 

Infected, and Removed compartments. The simple flow 

diagram of ����   model is as follows: 
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Figure 1. Compartmental diagram of the model. 

The mathematical equations describing the ����  model 

can be described by a system of ordinary differential 

equations as: 

		dS dt⁄ 			� �βS	�I N⁄ �	                         (1) 

dE dt⁄ � βS	�I N⁄ � � ��                     (2) 

dI dt⁄ � �� � ��                               (3) 

dR dt⁄ � ��	                                        (4) 

HeredN dt⁄ � 0 and		���� � ���� � ���� � ���� � ����. 
In the ���� compartment model the population is assumed 

to be closed. That is, births, deaths and migrations are 

considered to be negligible and omitted. Thus, the population 

size parameter ���� � ���� � ���� � ���� � ����  is a 

constant. Here ����  represents the number of individuals 

those are susceptible to the disease but not infected at time. 

The parameter ���� denotes the number of individuals those 

are exposed to the virus or infected but not yet tested positive 

of the infection. The parameter ����denotes the number of 

infected individuals who are able to spread the disease to 

other susceptible people, and ����represents the number of 

individuals those have successfully gained immunity from 

the disease die or removed by death. 

After exposed by the virus the individuals from the 

susceptible compartment ����  enters the exposed 

compartment ����		before they become infectious individuals 

and later either recover or die. The parameter �  represents 

the transmission rate of disease from susceptible to exposed, 

� is rate at which an infected individual becomes infectious 

per unit time. Similarly, 	1 �⁄ 	  and  		1 �⁄ 	 are the average 

durations of incubation and infectiousness periods 

respectively. 

2.2. Assumptions of the Model 

In this study ���� , Susceptible, Exposed, Infected, 

Recovered, epidemic model have been considered and 

classified the infected population I  as those first stage or 

catarrh  I�  and second stage or eruption 	I� . A simulation 

study will also be conducted by assigning different valid 

values to the parameters of the model. The present model has 

a compartmental structure and is designed based on the 

assumptions described as follows: 

a. Assume that the susceptible people are recruited from 

the total population at a constant rateΛ. 

b. The population is homogeneously mixing and reflects 

increasing dynamics. 

c. The class is decreased by testing and measles therapy at 

a rate	!. 

d. There is adequate contact of a susceptible individual 

with an Infective individual then transmission may 

occur, thus the susceptible individuals may join the 

exposed class at a rate	� � 	 "#β	c�I� � I��% N⁄ &. 
e. When latent period ends, exposed individuals may 

progress to the infected catarrh class		I�, at rate		�. 

f. The way the individual can leave from the infected 

catarrh class to infected eruption class I�  with the 

rate		'. 

g. After some treatment, infected eruption individuals may 

recover and join the recovery class	R, at rate		η	. 
h. The disease is fatal, infected eruption individuals may 

die due to the disease at the rate ) or die naturally at 

rateµ. 

i. Also assume that both recovered exposed individuals 

and recovered infected eruption individuals become 

permanently immune to the disease. Basically the 

present model is a new model and is a �������			model. 

2.3. Description of Variables and Parameters 

The following tables describe the variables and parameters 

used in this model: 

Table 1. Description of Variables used in the model equations (5) to (9). 

Variable * Description 

� The total population at time t 

� The number of Susceptible individuals at time t 

E The number of Exposed individuals at time t 

��  The number of Infected catarrh individuals at time t 

�� The number of Infected eruption individuals at time t 

R The number of Recovered individuals at time t 

Table 2. Description of parameters used in the model equations (5) to (9). 

Parameter Description 

Λ birth or immigration rate 

� Force of infection, 	� � �	+��� � ���/� 

� Progression rate from latent to infectious 

' Progression rate from infected catarrh to infected eruption 

! testing and measles therapy rate 

- Recovery rate of treated infectious individuals 

) Death due to disease 

� Probability of one infected individual to become infectious 

+ Per Capita contact rate 

. Natural death rate unrelated to the disease 

The flow diagram of ������� model is given in Figure 2 

 

Figure 2. Control and Transmission Dynamics of Measles. 

The mathematical formulation of �������	 model can be 

expressed as systems of differential equation as follows: 

/� /�⁄ 	� Λ � �� � .��                            (5) 

dE dt⁄ � λ	S � �σ � ε � μ�E	                    (6) 

dI� dt⁄ � σE � �ζ � μ�I�	                          (7) 
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dI� dt⁄ = ζI� − (η + δ + μ)I�	                  (8) 

/� /�⁄ = -�� + !� − .�                          (9) 

Here 		� = 	 "#�+(�� + ��)�% �⁄ &. The total population size 

is 	� = � + � + �� + �� + �. 

2.4. Positivity of the Solutions 

Here now it is to be shown that all state variables remain 

non-negative since they represent human population. 		Π ="(�, �, �� , �� , �) ∈ ℜ:; 		�(0) > 0, �(0) > 0, ��		(0) >0, ��(0) > 0, �(0) > 0&. It is to be shown that the solutions 

of, "�(�), �(�), ��(�), ��(�), �(�)& from the system of 

equations (5) – (9), are all non-negative for all		� ≥ 0. 

The equation 		/� /�⁄ 	= Λ − (� + .)� , without loss of 

generality, can be expressed as 		/� /�⁄ 	≥ −(� + .)� . The 

algebraic solution of this inequality is obtained as 	�(�) 	≥	S(0)>?(@AB)C . Further in the limit as � → ∞		it is observed 

that 		S(�) → S(0) . Thus, the size of the susceptible 

population is always non–negative i.e.	S(t) ≥ 0. 

The equation	/� /�⁄ = �	� − (� + ! + .)� , without loss 

of generality, can be expressed as		/� /�⁄ ≥ −(� + ! + .). 
The algebraic solution of this inequality is obtained 

as		�(�) 	≥ 	E(0)>?(FAGAB)C. Further in the limit as 	� → ∞	it 
can be observed that 	�(�) 	→ 	E(0) . Thus, the size of the 

exposed population is always non – negative i.e.	�(�) ≥ 0. 

The equation/�� /�⁄ = �� − (' + .)�� , without loss of 

generality can be expressed as 	/�� /�⁄ ≥ −(' + .)�� . The 

algebraic solution of this inequality is obtained as			��(�) 	≥	I�(0)>?(HAB)C . Further in the limit as � → ∞	  it can be 

observed that��(�) 	→ 	 ��(0) .Thus, the size of the infected 

catarrh population is always non – negative i.e.	��(�) 		≥ 0. 

The equation 	/�� /�⁄ 		= '�� − (- + ) + .)�� , without 

loss of generality can be expressed as	/�� /�⁄ ≥ −(- + ) +.)�� . The algebraic solution of this inequality is obtained 

as 		��(�) 	≥ 	 I�(0)>?(IAJAB)C . Further in the limit as � →∞		it can be observed that		��(�) 	→ 	 I�(0). Thus, the size of 

the infected eruption population is always non-negative 

i.e.			��(�) 		≥ 0. 

The equation /� /�⁄ = -�� + !� − .� , without loss of 

generality can be expressed as	/� /�⁄ ≥ −.�. The algebraic 

solution of this inequality is obtained as�(�) 	≥ 	R(0)>?BC . 
Further in the limit as � → ∞	 it can be observed that�(�) 	→	�(0). Thus, the size of the recovered population is always 

non – negative i.e.	�(�) ≥ 0. 

2.5. Invariant Region 

Since the model (2) monitors human populations, all the 

associated parameters and state variables are non-negative 

for all		�	 ≥ 0. It is easy and straight forward to show that the 

state variables of the model remain non-negative for all non-

negative initial conditions. Consider the biologically feasible 

region Π = "�, �, �� , �� , �& ∈ ℜ: such that� → (Λ .⁄ ). 
Lemma 1: The closed region Π is positively invariant and 

attracting. 

Proof: Adding equations (5) through (9) gives the rate of 

change of the total population /� /�⁄ = Λ − .�. Thus, the 

total human population 	�  is bounded by 	Λ .⁄ , so that 

	dN dt⁄ = 0, whenever �(�) = 	Λ .⁄ . It can be shown 

that �(�) = 	Λ .⁄ + #�L − (	Λ .⁄ )%	>?BC . In particular as �	 → ∞ 

�(�) = 	Λ .⁄                                 (10) 

Hence the region Π		is positively invariant and attracts all 

solution in 		ℜ5. 

3. Stability Analysis of the Model 

This section is mainly aimed to (i) identify the existence of 

equilibrium points viz. disease free equilibrium point, 

endemic equilibrium point (ii) analyze local stability of 

disease free equilibrium point and endemic equilibrium point 

and (iii) construct the formula for reproduction number. 

3.1. Existence of Equilibrium Points 

The equilibrium points are obtained by setting the right 

hand sides of the system of model equation (2) to zero. That 

means /� /�⁄ = /� /�⁄ = /�� /�⁄ = /�� /�⁄ = /� /�⁄ = 0 . 

The fore going set of conditions is a requirement for 

existence of equilibrium points. 

3.2. Disease Free Equilibrium 

Disease free equilibrium point denoted by 	�0 is a steady 

state solution. At this point there will be no measles disease. 

The human populations of exposed, infected – catarrh and 

infected – eruption compartments can be considered as 

measles infected. 

Let  	�0 =	 M�0∗,			�0∗,			��0∗, ��0∗, �0∗O	  represents the 

disease free equilibrium point of the model equation (2). 

Hence, in the absence of infection it takes 			��	 = �� = � =� = 0		and the equilibrium points are obtained by setting the 

right hand sides of the model equations (6) – (9) to zero. 

Then the co-ordinates of the disease free equilibrium point 	�0		will be obtained as 

�0 =	 (	�0∗,			0, 0, 0, 0	)			              (11) 

Here in (11) the notation used is 	�0∗ = Λ .⁄ . 

3.3. Basic Reproduction Number 

In order to assess the local stability of the disease free 

equilibrium point  	�0 which is to be established by the next 

generation method on the system (2), computation of the 

basic reproduction number is essential. The basic 

reproduction number 		�0		 is a threshold parameter defined as 

the average number of secondary infections caused by an 

infectious individual when introduced into a completely 

susceptible population. It is also called basic reproduction 

ratio or basic reproductive rate [10]. 

If more than one secondary infection is produced from one 

primary infection that is		�0 > 1, then an epidemic occurs. 

When 		�0 < 1 then there is no epidemic and it means that 

the disease dies out over a period of time. When 		�0 = 1 

then the disease becomes endemic, meaning the disease 
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remains in the population at a constant rate as one infected 

individual transmits the disease to one susceptible individual 

only in [8]. 

In the model of the present study three of five 

compartments are with infected populations. They are 	�, 	�� 	 
and			�� . Let,			QR 	, S = 1, 2, … ,V be the numbers of infected 

individuals in 		S 	CW		the infected compartment at time�. Let 

the variable Q be defined as a vector of the populations of all 

in infected compartments i.e.	Q	 = #		QX 		QY … 		QZ%. Let [R(Q)	be the rates of appearance of new infections in the 

corresponding infected compartments. Let \R(Q)	 be the 

difference between rates of transfer of individuals for the 		S 	CW		compartment. 

Similarly, \RA(Q)		be the rate of transfer of individuals into 		S	CW		compartment by all other means. Also		\R?(Q), be the 

rate of transfer of individuals out of 		S 	CW compartment by all 

other means. 

Now the rate of change of population size in the 		S	CW		infected compartment can be obtained as	/QR /�⁄ 			=[R(Q) − \R(Q) , where 		\R(Q) = \RA(Q) − \R?(Q) . Thus, the 

equation can also be expressed equivalently as 	/QR /�⁄ =[(Q) − \(Q) . Here the notations used to represent the 

column vectors 

are [(Q) = #[X(Q), [Y(Q), … , [Z(Q)%] and 	\(Q) =#\X(Q), 	\Y(Q), … , 	\Z(Q)%]. 

Now the basic reproduction number is computed using the 

next generation matrix approach by taking the infected 

compartments �, �� 	 and 		�� . The rates of changes of 

populations of these compartments are given by the 

equations, respectively, (6) to (8). 

First the matrices R̂   and \R  are constructed and then the 

corresponding matrices of partial derivatives		[	 and		\. Also 

the inverse matrix 		\?X	 is to be found. Finally the 

reproduction number �L will be computed as the trace of the 

matrix product [\?X . By linearization approach, the 

associated matrix at disease free equilibrium is obtained as 

	 R̂ = _		#�+(�� + ��)�% �⁄ 			00 `,  \R = _	 (� + ! + .)�'�� + .�� − ��-�� + .�� + )�� − '��`  (12) 

Now let us partially differentiate the variables �, 	�� 	and  	�� 

with respect to time and then evaluate them at the disease free 

equilibrium point. On substituting these and after some algebraic 

simplifications, the Jacobean matrices take the form as 

[ = a R̂aQR = _0 (�+ �∗L �⁄ ) (�+ �∗L �⁄ )0 0 00 0 0 ` 
\ = 	 _� + ! + . 0 0−� ' + . 00 −' - + . + )` 

\?X =	
bc
cc
d X(FAGAB) 0 0

FM(FABAG)(HAB)O X(HAB) 0
FHM(FABAG)(HAB)(IAJAB)O HM(IAJAB)(HAB)O X(JAIAB)ef

ff
g
 (13) 

[\?X(�L) = _(��+p ijk⁄ )	 			�+	l jk⁄ 	�+ k⁄0 0 00 0 0 `     (14) 

Here in (14), l = (- + ) + . + '), i = 	 (� + . +!),			k = (- + ) + .)	 and		j = ' + .. 

Now the eigenvalues m	of [\?X(�L) the matrix (14) are to 

be computed. The eigenvalues are found by solving the 

characteristic equation 

|[\?X(�L) − m�| = 0			                  (15) 

The characteristic equation (15) takes the simple form as mo − pmY = 0. Thus, the three eigenvalues are mX = mY = 0 

andmo = p = (��+Λ	p ijk⁄ ). But the reproductive number is 

defined as		�L = qM[\?X(�L)O 	= max	"mX, mY, mo&. Here q is 

the spectral radius of [\?X  at the disease free equilibrium 

point 		�L . Hence it follows that the basic reproduction 

number �L  for the system of model equations (2) with 

control strategies and transmission has been constructed and 

is given by 

	�L = "#��+(- + ) + . + ')%	 		#(� + . + !)(' + .)(- + ) + .)%⁄ &   (16) 

3.4. Local Stability of the Disease Free Equilibrium Point 

The local stability of the disease free equilibrium point is 

of three types and the corresponding names and conditions 

can be stated as follows: (1) the disease free equilibrium 

point 	�L is said to be locally asymptotically stable if the real 

parts of the eigenvalues are all negative and unstable if the 

real parts of the eigenvalues are positive. (2) If 	�L < 1	then 

disease free equilibrium point is locally asymptotically stable 

i.e. no measles epidemic can develop in the population and 

(3) if 	�L > 1	then the disease free equilibrium point 	�L  is 

unstable i.e. measles epidemic can develop in the population. 

Now, the equilibrium point  	�L =	 "�L∗, �L∗, ��L∗, ��L∗,�L∗& can be analyzed by computing the Jacobean matrix of 

the model equations (5) to (9). Now differentiate each 

equation of the system to with respect to �, �, 	�� , �� 	and 	� 

and then evaluating the resultants at the disease free 

equilibrium point, to get 

u(�L) = 

bc
cc
d −.	 0 																�+								 					�+ 																					00000 	−(� + ! + .)�0! 		 �+−(' + .)'0

			 �+0−(- + . + ))-
000−.ef
ff
g
   (17) 

Consider the matrix (18) and let v be the eigenvalues of 

the characteristic equation 

|u(�L) − v�| = 0                                  (18) 

As the first and fifth columns in (18) correspond to the 

total human populations and contain only the diagonal terms, 

these diagonal terms form two similar eigenvalues of the 

Jacobean matrix. Thus, setting #−(. + v)% = 0	   implies that 			vX = v:	 = −. < 0.This is in accordance with condition 1 

stating that �L	is stable. 

The other three eigenvalues  are the roots of the 
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characteristic equation of the matrix formed by excluding the 

first and fifth rows and first and fifth columns of (18), the 

resultant equation is obtained as 

w−(� + ! + . + v) �+ �+� −(' + . + v) 00 			' 	– (- + . + ) + v)w = 0 (19) 

Also, the characteristic equation (19) can be expressed as 

vo + pLvY + pXv + pY	 = 0	                (20) 

In (20), the notations used are 	pL = #- + ' + ! + � + ) +3.%, pX = #(� + z + .)(- + . + )) + (' + .)(- + . + )) +(! + � + .)(' + .) − ��+%, 		pY = #(' + .)	(- + ) +.)(� + ! + .) − �+�(- + ) + . + ')%. 
By Routh-Hurwitz criteria the three roots of (20) are real 

distinct and negatives if 		pL > 0,			pX > 0	and 		pLpX > pY ; 

those lead to the following condition on the parameters: 

"#- + ' + ! + � + ) + 3.%	#(� + z + .)(- + . + )) +(' + .)(- + . + )) + (! + � + .)(' + .) − ��+%& >	#(' + .)	(- + ) + .)(� + ! + .) − �+�(- + ) + . + ')% (21) 

This implies that (1 − �L) > 0  or equivalently 		�L < 1. 

Hence, according Condition 2 the disease free equilibrium 

point is locally stable. Thus, it can be concluded that the 

disease free equilibrium point �L	is locally stable. 

3.5. Global Stability of the Disease Free Equilibrium Point 

In this section, the global properties of the disease free 

equilibrium point are studied. The global property of the 

disease free equilibrium point is provide in the form of a 

theorem as stated in the following: 

Theorem 1: If the reproduction number satisfies the 

condition then the disease free equilibrium point �L = (Λ .⁄ ,0, 0, 0, 0)is globally asymptotically stable in the region	Π. 

Further, if �L > 1		then �L	 is unstable. 

Proof: By the comparison theorem the rate of change of 

the variables representing the infected components of model 

system (2) can be rewritten as 

{/� /�⁄/�� /�⁄/�� /�⁄ | ≤ #[ − \% _�����`	                        (22) 

Here in (22),	#[ − \% represents a matrix as #[ − \% 	=	 
{−(� + ! + .) �+(�� + ��)� �⁄ 			 �+(�� + ��)� �⁄� −(' + .) 00 ' −(- + ) + .) | (23) 

It has been seen that the eigenvalues of the matrix #[ − \%  
given in (23) are located on its main diagonal and are real 

and negative that is 		−(� + z + .), −(' + .)			 and 		−(- +) + .) . It follows that the system of linear differential 

inequalities (22) is stable whenever		�L < 1. Also it can be 

observed that		� → 0, �� → 0	p~/	�� → 0	pm	�	 → ∞. Further 

evaluation of the system of equations (5) − (9)	  at � = �� =�� = � = 0	  and when 	�L < 1  results in obtaining 			� =

Λ .⁄ . Therefore, the disease free equilibrium point �L  is 

globally asymptotically stable in the region	Π. 

3.6. Endemic Equilibrium Point 

Endemic equilibrium point 		�X∗	is a steady state solution, 

where the disease persists in the population. The existence 

and uniqueness of endemic equilibrium point 	�X∗  should 

satisfy the conditions: �X∗ = 	"�∗(�), �∗(�), ��∗(�), ��∗(�),�∗(�)&	  and 	�X∗ =	 "�∗(�), �∗(�), ��∗(�), ��∗(�), �∗(�)& >0. It is now needed to find the endemic equilibrium points of 

the system (5) – (9). Setting the right hand sides of the 

system to zero gives 

Λ −			�+(��∗ + ��∗)�∗ �⁄ − . = 0			           (24) 

�+(��∗ + ��∗)�∗ �⁄ – (� + ! + .)�∗ = 0        (25) 

��∗ − (' + .)��∗ = 0	                    (26) 

'��∗ − (- + ) + .)��∗ = 0                   (27) 

							-��∗ + !�∗ − .�∗=0                       (28) 

On solving (24) – (28), the solutions are obtained as 

�∗ = (Λ .⁄ )		(1 �L⁄ ) 
�∗ 	= 	 (Λ � + ! + .⁄ ) 		− 	#Λ(' + .)(- + ) + .) �+�(- + ) + ' + .)%⁄ 	 
��∗ =		 #	Λσ (' + .)(� + ! + .)%	#1 − (1 �L⁄ )%⁄  

��∗ = #Λσ' (' + .)(� + ! + .)(- + ) + .)⁄ %	#1 − (1 �L⁄ )%    
�∗ = 

�#FHIAG(HAB)(IAJAB)%#B(HAB)(FAGAB)(IAJAB)% 	 #1 − (1 �L⁄ )% 
3.7. Local Stability of Endemic Equilibrium Point 

Measles is a kind of endemic disease that constantly 

presents with a greater or lesser degree among the people of 

certain class or among the people living in a particular 

location. If �L > 1 the the system has an endemic infection 

because of the introduction of secondary infection. To show 

local stability of endemic equilibrium points of system (5) – 

(9), Routh-Hurwitz criteria can be used. 

Theorem 2: The positive endemic equilibrium point   �X∗	 
of the system of equations (5) – (9) is locally asymptotically 

stable if		�L > 1. 

Proof: Since �L > 1  the parameters �∗, �∗, 	��∗, 	��∗		and 		�∗ all are non negative terms. The Jacobian matrix of the 

system at the endemic equilibrium point takes the form 

u(�X∗) 						=
		
bc
cc
d−l − . 0 		−�+�∗ �⁄ 					−�+�∗ �⁄ 			0l00

−��0
�+�∗ �⁄−j' 							−�+�∗ �⁄0−k 										0000 ! 							0 														 					-											 − . ef

ff
g		 (29) 

Here in (29), the notations used are including 	l	 =#�+(��∗ + ��∗) �⁄ %,			� = (� + ! + .), k = (- + ) + .)	  
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and 		j = ' + . . Also from equation (10) it can be had 

that 		�(�) = Λ .⁄ . The characteristic equation 	|u(�X∗� �
v�| � 0	of the Jacobean matrix (29)   at 	�X∗ takes the form 

as	 

	

b
c
c
c
d�l � . � v 0 		��+�∗ �⁄ 	 										��+�∗ �⁄ 	0

l
0
0

�� � v
�
0

�+�∗ �⁄
�j � v

'
												

�+�∗ �⁄
0

�k � v
				
0
0
0

0 ! 							0 														 		-											 � . � ve
f
f
f
g
	� 0 (30) 

Here in (30), k is the eigenvalues and �  is the identity 

matrix of class		5 � 5. The characteristic polynomial of (30) 

is of the form as  

��v� � v: � �X�� � �Yvo � �ovY � ��v � �:         (31) 

Here in �31�, the notations used are 

	�X � �2. � l � k � j � �� 

	�Y � 2.� � l� � lj � lk � 2.k � 2.j � .l � .Y � j�
� k� � jk � .��+�∗ Λ⁄  

�o � l�j � .�j � lk� � 2.k� � .l� � .Y� � lkj
� 2.kj � .lj � .Yj � .lk � .Yk
� kj� � �.�+l�∗ Λ⁄ 			
� #.��+�∗�2. � l � k � '� Λ⁄ %		 

�� � l�jk � 2.�jk � .l�j � .Y�j � .lk� � .Y�k
� .lk� � .Ykj � �.�+l�∗#�μ � v� Λ⁄ %
� �.�+�∗#�.l � .Y � 2. � k � lk� Λ⁄ %
� 	�'.�+�∗	#�2. � l� Λ⁄ % 

�: � .ljk� � .Yjk� �	.Y��+k�∗		#�.k � '�l � .�� Λ⁄ %. 

Due to the complexity in determining the signs of the 

eigenvalues of (31), now the Routh-Hurwitz conditions for 

stability are employed. By Routh-Hurwitz criteria the 

determinant becomes positive if the following conditions 

hold true	�X < 0, �Y < 0, �o < 0, �� < 0, �: < 0, �o�� <
�Y�:, �X�Y�: < �o   and		�: < �X��.   It is required to assign 

values to the parameters so that all these requirements will 

hold true in our model. 

Therefore all the roots of the characterize polynomial of 

equation	�31� are negative. Thus, it can be concluded that the 

system �2� is locally asymptotically stable. 

4. Numerical Simulations 

Numerical simulation of the model equations (5) to (9) 

were carried out using MATLAB inbuilt function ode 45. The 

main objective of this study is to assess the response of 

model parameters on the transmission dynamics of the 

disease. Also investigated the impact of exposed individual at 

latent period and conducted simulation study. The parameter 

is considered and assigned different values, few of which are 

less and the other is greater than one unit, and conduct 

simulation study. 

Since, most of the parametric values are not readily 

available it is needed to assign some arbitrary values. 

However, some are available [11 – 12]. Thus, the remaining 

is set as follows: and. Further, the initial conditions have 

been considered as and at initial time. Also the final time is 

considered as. The results of the simulation study are 

presented in the following figures: 

 

Figure 3. Population dynamics of five compartment model. 

In Figure 3, simulation study shows the result of the 

impact of testing and therapy of exposed individual at latent 

period with the rate and the reproduction number and the 

other parameter value are taken as mentioned above. The 

population dynamics of epidemic compartmental model is 

considered. The susceptible and the number of exposed latent 

individuals decrease steadily. Also the number of infective 

with early symptom or infected catarrh compartment 

individuals decrease to zero. The number of infected with 

later symptom or infected eruption compartment individuals 

are decreasing. Recover compartment increases steadily and 

approaches to 412. Finally the epidemic seems dies out. 

 

Figure 4. Population dynamics of five compartment model. 

In Figure 4, simulation study shows the result of the 

impact of testing and therapy of exposed individual at Latent 

period with the rate and the reproduction number and the 

other parameter values are as mentioned above. The 

population dynamics of epidemic compartmental model are 

considered. The susceptible decreases to 487 whereas 

exposed latent individuals also decrease to 52. The infectives 
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with early symptom or infected catarrh increase initially and 

then decrease during later times. The infectives with later 

symptom or infected eruption decrease steadily. Recover 

compartment increases steadily and approaches 484 during 

initial times and then starts decreasing to 430 during the later 

times. Finally the epidemic seems dies out. 

 

Figure 5. Population dynamics of five compartment model. 

In figure 5, simulation study shows the result of the impact 

of testing and therapy of exposed individual at Latent period 

at the rate and the reproduction number and the other 

parameter value are as stated above. The population 

dynamics of epidemic compartmental model is considered. 

The number of exposed latent individual increases to 384 

during initial times and then starts decreases steadily to 190. 

Also the number of infective with early symptom or infected 

catarrh compartment individuals increase to 98. The number 

of infected with later symptom or infected eruption 

compartment individuals are increasing to 67. Recover 

compartment increases to 480. Finally the epidemic seems 

exist. This means that one infected person can transmit 

disease for more than one person and the spread of measles 

disease continuous in the society. 

 

Figure 6. Population dynamics of five compartment model. 

In figure 6, simulation study shows the result of the impact 

of testing and therapy of exposed individual at Latent period 

with the rate and the reproduction number and the other 

parameter values are as mentioned above. The population 

dynamics of epidemic compartmental model are considered. 

The exposed latent individuals increase to 382 initially and 

then decrease to zero. Also the infectives with early symptom 

or infected catarrh increase to 82 initially but during later 

times decrease to zero. The infected with later symptom or 

infected eruption individuals increase to 68. Recover 

compartment increases to 591. Finally the epidemic seems 

exist. This means that one infected person transmits disease 

for more than one person and measles disease spread 

continuous in the society. 

In Figure 7, simulation study shows the result of the 

impact of testing and therapy of exposed individual at Latent 

period with the rate and the reproduction number and the 

other parameter values are taken as mentioned above. The 

population dynamics of epidemic compartmental model are 

considered. The exposed latent individuals increase slightly 

to 386 initially and then decrease to 203. Also the infectives 

with early symptom or infected catarrh increase to 89. The 

infectives with later symptom or infected eruption increase to 

63. Recovered persons increase to 490. Finally, the disease 

remains in the population at a consistent level, as one 

infected eruption individual transmits the disease to one 

susceptible. 

 

Figure 7. Population dynamics of five compartment model. 

Table 3. Comparisons of the results of ���� and 	�������	 models. 

S. No. ���	� model 	������� model 

1 
The human population is 

divided into four compartments 

The human population is 

divided into five 

compartments 

2 The model has  ���	� structure 
The model has 	�������  

structure 

3 
Births and deaths are negligible 

and omitted 

Birth, deaths and deaths due 

to disease are considered 

4 The population is closed The population is not closed 

5 
Measles therapy test is not 

considered 

Measles therapy test is 

considered 

6 Only three parameters are used Nine parameters are used 
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S. No. ���	� model 	������� model 

7 
Only disease free equilibrium 

point is analyzed 

Disease free equilibrium and 

endemic equilibrium points 

are analyzed 

8 
Reproduction ratio is 

formulated 

Reproduction ratio is 

formulated 

9 
Mathematical analysis is less 

difficult 

Mathematical analysis is 

more difficult 

10 Treatment is not considered Treatment is not considered 

11 Vaccination is not used Measles therapy test is used 

5. Conclusions 

This study is to formulate and analyze the deterministic 

compartmental model for the transmission dynamics of 

measles disease in the human populations. The testing of 

measles therapy is one of the main control strategies of 

measles in addition to vaccination. The basic reproduction 

number has been computed using next generation matrix 

method. From the result of the stability analysis, it has been 

shown that the diseases free equilibrium point is locally 

asymptotically stable and globally asymptotically stable. 

Also disease endemic equilibrium points are derived and 

shown following Routh- Hurwitz criteria that the endemic 

equilibrium point is locally stable. From simulation study it 

can be summarized that in the present model large number of 

exposed individuals are transferred to recovered 

compartment due to Measles therapy test, and thus the 

propagation of the infection is controlled considerably. The 

simulation results in figures 3 to 7 indicate that testing, 

diagnosis and latent period therapy on exposed individuals 

will have a greater impact on the disease control. Further if 

the rate of exposed latent individuals increases due to 

Measles therapy test then the population size of exposed 

individuals decrease but that of the recovered individual 

increases steadily. 

The standard ����  model and the proposed ��	�� 	��� 

models have been compared and the observations are 

presented in a tabular form showing clearly that the present 

model is more advantageous. 
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