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Abstract: In this paper we used the method of lines (MOL) as a solution procedure for solving partial differential equation 

(PDE). The range of applications of the MOL has increased dramatically in the last few years; nevertheless, there is no 

introductory to initiate a beginner to the method. This Paper illustrates the application of the MOL using Crank-Nicholson 

method (CNM) for numerical solution of PDE together with initial condition and Dirichlet’s Boundary Condition. The 

implementation of this solutions is done using Microsoft office excel worksheet or spreadsheet, Matlab programming 

language. Finally, here we analysis the particular solution and numerical solution of Laplace equation obtained by MOL along 

with CNM. 
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1. Introduction 

Method of lines (MOL) is an alternative computational 

procedure which involves making an approximation to the 

space derivatives and reducing the problem to a system of 

ordinary differential equations (ODEs) in the variable time 

and then a proper initial value problem solver can be used to 

solve this system of ordinary differential equations. Usually 

the method is used on equations involving a time variable � 
and one or more space variables ��,��, ……… . , ��. They are 

solved by converting them to a system of ODEs. The part of 

the equations involving the space variables is discredited, 

giving us a system of ODEs approximating the PDE. This 

system can then be integrated directly with a standard ODE 

code. It might be more efficient to solve a PDE by a method 

specially constructed to suit the problem, but the MOL 

usually enables us to solve quite general and complicated 

PDEs relatively easily and with acceptable efficiency. The 

MOL is also attractive since we can use the theoretical 

knowledge from ODEs to solve PDEs, and powerful ODE 

solvers are readily available; see for instance [1-11].  

The connection between partial and ordinary differential 

equation was already known to Lagrange in 1759 [12]. There 

he obtained a system of ordinary differential equations 

y�

 � K�
�2y� � y��	y�

 � K�
y� � 2y� � y��⋮y�

 � K�
y��� � 2y�� ��
�

                       (1) 

Lagrange observed that by modeling D’Alembert’s 

equation 

∂�u
∂t� � a�

∂�u
∂x� 

with a finite number of mass points attached to a light string, 

the same equations as like (1) are found. It is also noted that 

Fourier in 1807 [12] motivated by the problem of heat 

conduction and he obtained the following equation 

	y�
 � K�
y��� � 2y� � y� ��, � 1,2, … , N          (2) 
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By taking # larger and larger in (2) he obtained the heat 

equation 

$%
$� � &�

$�%
$�� 

using the inverse of the MOL. But the MOL as a numerical 

method was first applied by Rothe in 1930 [12]. He used the 

method on the parabolic equation 

	u'' 	= R
x, t�u) 	+ S
x, t, u�                     (3) 

With R	 > 0,0 ≤ � ≤ 1,0 ≤ � ≤ .. He discretised the time 

variables in 
3�  and approximated the equation by the 

scheme 

u� �

 = R
x, t� �� 0123�014 + S
x, t� �, u��, t� = nh.	 (4) 

The equation (4) is the integration of the ODEs along lines 

parallel to the x-axis, and this is called a transversal scheme. 

That is, longitudinal schemes lead to initial value problems, 

while transversal schemes lead to boundary value problems. 

In this paper we established a solution procedure of PDE by 

the help of MOL along with CNM and finally studied the 

particular and numerical solution of Laplace equation by that 

solution procedure obtained by MOL along with CNM.  

2. Conversion of PDE to the System of 

ODE 

The basic idea of the MOL is to replace the spatial 

(boundary value) derivatives in the PDE with algebraic 

approximations. Once this is done, the spatial derivatives are 

no longer stated explicitly in terms of the spatial independent 

variables. Thus, in effect only the initial value variable, 

typically time in a physical problem, remains, we have a 

system of ODEs that approximate the original PDE. The 

challenge, then, is to formulate the approximating system of 

ODEs. Once this is done, we can apply any integration 

algorithm for initial value ODEs to compute an approximate 

numerical solution to the PDE. Thus, one of the salient 

features of the MOL is the use of existing, and generally well 

established,  numerical methods for ODEs. 

To illustrate this procedure, we consider the MOL solution 

of  

u) + vu' = 0                                   (5) 

First we need to replace the spatial derivative u x  with an 

algebraic approximation. In this case we will use a finite 

difference (FD) such as 

u' ≈ 09�09:3∆'                                     (6) 

Then the MOL approximation of equation (5) is  

<09<) = −v 09�09:3∆' , 1 ≤ i ≤ M                      (7) 

Note that the equation (7) represents a system of ODEs. 

This transformation of a PDE equation (5) to a system of 

ODEs equation (7) is so that the solution of a system of 

ODEs approximates the solution of the original PDE. Since 

equation (5) is first order, it requires one IC and one BC.  

These will be as follows, which are collected from [21]: 

u
x, t = 0� = f
x�                                (8) 

u
x = 0, t� = g
x�                                (9) 

Since equation (7) constitute M initial value ODEs, M 

initial conditions are required and from equation (8), these 

are 

( , 0) ( ) 1
i i

u x t f x i M= = ≤ ≤                       (10) 

Also, application of BC (9) gives for grid point i=1 

u
x�, t� = g
t�, t ≥ 0                             (11) 

The solution of this ODE system is as follows which are 

collected from [16]: 

u�
t�, u�
t�, u�
t�, … , uB��
t�, uB
t�        (12) 

That is, an approximation to u (x, t) at the grid points i =1, 

2,…, M
 

Before we go on to consider the numerical integration of 

the approximating ODEs, in this case equation (7), we briefly 

consider further the FD approximation of equation (12), 

which can be written as 

u' ≈ 09�09:3∆' + 0
∆x�                        (13) 

where, 0
∆�� denotes of order ∆�. 

3. Laplace Equation [13-16] and Problem 

Definition 

Consider the PDE of the following form 

0∆ =u                                     (14) 

where the Laplacian ∆  is defend in Cartesian coordinates by 

2

21

2 2
 ........

2 2
n

n
u

x xx

∂ ∂ ∂∆ = + + +
∂ ∂∂

 

This is known as Laplace's equation. It is also called a 

harmonic function. Equation (14) is Eclliptic second order 

linear PDE. The initial condition is 

x
x, o� = f
x�	a < x < b	                     (15) 

And the Dirichlet Boundary conditions are 

u
a, t� = c�,u
b, t� = c�,	0 ≤ t ≤ d	              (16) 

Equation (14), (15) and (16) are called initial boundary 
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condition. To compute the numerical solution of equation 

(14) together equation (15), (16). we divide the interval into n 

equal parts with step lenth 	H = ∆� � I
J �.  we consider a 

plane region defined K � L
�, M�:	0 - � - 0.5	and	0 - M -P. 5  we will also impose the Dirichlet boundary condition %
P, M� � 0, %
�, P� � 0; %
�, 0.5� � 200�, %
0.5, M� �200M 

Consider a two-dimensional solution shown in Figure 1 [4] 

 
Figure 1. Illustration of discretization in the �-direction. 

The first step is discretization of the �-variable. The region 

is divided into strips by # dividing straight lines (hence the 

name method of lines) parallel to the M-axis. Since we are 

discretizing along	�, we replace the second derivative with 

respect to � with its finite difference equivalent. We apply the 

three-point central difference scheme, 

RSTURVS � TU:3��TU TU23WS 	                            (17) 

Where H is the spacing between discretised lines, that is, 

	H � ∆� � I
J �	                                     (18) 

Replacing the derivative with respect to �  by its finite 

difference equivalent equation (14) becomes  

	RSTURXS � �
WS YZ[��
M� � 2Z[
M� � Z[ �
M�\ � 0	       (19) 

Thus the potential Z in equation (14) can be replaced by a 

vector of size # namely 

YZ\ � YZ�, Z�, ……… ,ZJ\] 
Where, 

U�
y� � U
x�, y�, i � 1,2, … . . , N	 

and �[ � _∆�. 

Substituting equations (18) and (19) into (14) yield 

	RSTY
X�\RXS � �
WS YΡ\YZ
M�\ � 0	                     (20) 

where [P] is an # a #  tridiagonal matrix representing the 

discretised form ofthe second derivative with respect to�. 

YΡ\ �
bc
cc
cc
d ef 	� 1	0	 … 	0�1	2	 � 1	0	 …… 	0	⋱	⋱	⋱	0	 …	� 1	2	 � 1	0	 … 	0	 � 1	eh 			 ij

jj
jj
k
	 

Since all the elements of matrix [P] are zeros except the 

tridiagonal terms; the elements of the first and the last row of 

[P] depends on the boundary conditions at � � 0	and � � &. ef � 2 for the Dirichlet boundary condition and ef � 1 for 

the Neumann boundary condition. The same is true of eh . 

The next step is to solve the resulting equations analytically 

along the M coordinate. To solve equation (20) analytically, 

we need to obtain a system of uncoupled ordinary differential 

equations from the coupled equations (20). To achieve this, 

we define the transformed potential [Zl ] by letting 

	Y	Z\ � YΤ\YZl\                                     (21) 

And requiring that 

YP\YΤ\ � Yo�\	                                   (22) 

where, [o�] is a diagonal matrix and YΤ\] is the transpose of 

[Τ]. [o� ] and [Τ] are eigenvalue and eigenvector matrices 

belonging to [P]. The transformation matrix [Τ ] and the 

eigenvalue matrix [ o� ] depend on the boundary 

conditionsand are given in Table 1 for various combinations 

of boundaries. It should be noted that the eigenvector matrix 

[Τ] has the following property: 

	YΤ\�� �	 YΤ\]                                    (23) 

And 

YΤ\YΤ\] � YΤ\]YΤ\ � YΙ\	                            (24) 

Where, YΙ\ is an identity matrix. Substituting equation (21) 

into equation (20) gives 

	qSYr\Ysl\qtS � �
4S YΡ\YΤ\YUl\ � 0	                     (25) 

Multiplying through by YΤ\�� �	 YΤ\] yields 

	u qSqtS � �
4S Yλ�\w YUl\ � 0	                     (26) 
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Table 1. Elements of Transformation matrix [T] and Eigen values [19-20]. 

Left boundary Right boundary xyz {y 
Dirichlet Dirichlet | 2# + 1 sin _~�# + 1 , YT��\ 2 sin _�2
# + 1� 
Dirichlet Neumann | 2# + 0.5 sin _
~ − 0.5��# + 0.5 , YT�J\ 2 sin 
_ − 0.5��2# + 1  

Neumann Dirichlet | 2# + 0.5 cos 
_ − 0.5�
~ − 0.5��# + 0.5 , YTJ�\ 2 sin 
_ − 0.5��2# + 1  

Neumann Neumann 

| 2# + 0.5 cos 
_ − 0.5�
~ − 1��# + 0.5 , 
~ > 1, YTJJ\|1# , ~ = 1 

2 sin 
_ − 1��2#  

Note: where i, j = 1, 2, N and subscripts D and N are for Dirichlet and Neumann conditions respectively. This is an ordinary differential equation with solution. 

	Zl[ = �[ cosh�[M + �[ sinh �[ M	                                                                         (27) 

where,	�[ = o[/H. 

4. A Particular Solution of Laplace 2-D Equation  

In this section we obtained a particular solution of Laplace 2-D equation by applying MOL.  

Example 1. 

For the rectangular region in Figure 1, let 

Z
0, M� = Z
&, M� = Z
�, 0� = 0, Z
�, �� = 100 

and & = � = 1. 
Find the potential at 


0.0625,0.9375�, 
0.125,0.875�, 
0.1875,0.8125�, 
0.25,0.75�, 
0.3125,0.6875�, 
0.375,0.625�, 

0.4375,0.5625�, 
0.5,0.5�, 
0.5625,0.4375�, 
0.625,0.375�, 
0.6875,0.3125�, 
0.75,0.25�, 


0.8125,0.1875�, 
0.875,0.125�, 
0.9375,0.625�. 
Solution of Example 1. 

In this case, we have Dirichlet boundaries at � = 0 and � = 1, which are already indirectly taken care of in the solution in 

(27). Hence, from Table 1, 

	λ� = 2 sin ���
� ��                                                                                              (28) 

and 

	T��	 = � �� � sin ���� �                                                                                            (29) 

Let #=15 So then H = ∆� =	1/16 and 

� = 0.0625, 0.125, 0.1875,0.25,0.3125,0.375,0.4375,0.5,0.5625, 
0.625,0.6875,0.75,0.8125,0.875,0.9375	will correspond to _ = 1, 2,3,4,5,6,7,8,9,10,11, 12,13,14,15	respectively. 
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Figure 2. Graphical Representation of the particular solutions of Laplace 2-

D Equation by the MOL for Example 4.1. 

5. Crank-Nicholson Algorithm [17-18] 

This note provides a brief introduction to finite difference 

methods for solving partial differential equations. We focus 

on the case of a PDE in one state variable plus time. Suppose 

one wishes to find the function u (x, t) satisfying the PDE 

 

au'' + bu' + cu − u) = 0                      (30) 

subject to the initial condition u (x, 0) = f (x) and other 

possible boundary conditions. Explaining the negative ut 

term in (30), focusing on an arbitrary internal grid point in 

one could approximate the partial derivatives at that point by 

the following: 

2

,

, 1 ,

1, 1,

2

22 1, , 1,

2

u u i n

u uu i n i n

t k

u u
u i n i n

x h

u u u
u i n i n i n

x h

=

−∂ +=
∂

−∂ + −=
∂

− +∂ + −=
∂

             (31) 

The differences in the x, direction have been centered on 

the point in to give ‘second order’ accuracy to the 

approximation. These expressions could then be substituted 

into the PDE Solving the resulting equation for ui,n+1 gives 

the explicit solution 

2
( ) (1 ) ( ), 1 1, , 1,2 2 22 2

k k k k k
u a b u kc a u a b ui n i n i n i nh hh h h

= + + + − + −+ + −                              (32) 

The result of the equation (32) is called an explicit finite 

difference solution for u. Unfortunately the numerical 

solution is unstable unless the ratio k/h2 is sufficiently small. 

The recommended method for most problems in the Crank-

Nicholson algorithm, Thus the expressions for u,	%V and xxu  

are averages of what we had in (31) for times n and n+1  

2

2

, , 1

2

, 1 ,

1, 1, 1, 1 1, 1

4

2 2
1, , 1, 1, 1 , 1 1, 1

22

u u
i n i n

u

u uu i n i n

t k

u u u u
u i n i n i n i n

x h

u u u u u u
u i n i n i n i n i n i n

x h

+ +
=

−∂ +=
∂

− + −∂ + − + + − +=
∂

− + + − −∂ + − + + + − +=
∂

  (33) 

6. A Numerical Solution of Laplace 2-D 

Equation 

In this section we obtained a numerical solution of Laplace 

2-D equation by applying MOL  

Example 2. 

Solve the Laplace equation 
RS�RVS + RS�RXS = 0 with boundary 

condition,  

( , )/0 0.5 ,0 0.5R x y x y and= < < < <  

( 0 , ) 0 ; ( , 0 ) 0

( ,0.5 ) 200 ( 0.5, ) 200

u y u x

u x x and u y y

= =

= =

 
using CNM and MOL.

 
Solution of Example 2. 

Given that,

 2 2
 0

2 2

u u

x y

∂ ∂+ =
∂ ∂

                             (34) 

Now we applying the CNM 

2 1
[ 2 2 ]1, , 1, 1, 1 , 1 1, 12 22

u
u u u u u ui j i j i j i j i j i j

x h

∂
= − + + − ++ − + + + − +∂

 

Where, h is the spacing between discredited lines [4] 

1

a
h x

N
= ∆ = +  

Equation (34) becomes, 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

50

x 

y
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2
1( , )

[ 2 2 ] 01, , 1, 1, 1 , 1 1, 12 22

u
i j

u u u u u ui j i j i j i j i j i j
y h

∂
+ − + + − + =+ − + + + − +∂  

2
1( , )

[ 2 2 ]
1, , 1, 1, 1 , 1 1, 12 22

u
i j

u u u u u u
i j i j i j i j i j i j

y h

∂
= − + − − + −+ − + + + − +∂                                            (35) 

Now using the Figure 3 which domain is divided into 

squares of 0.125 unit size as illustrated below, 

 

Figure 3. Domain dividation into squares of 0.125 unit size 

The boundary condition implies that, 

01,0 2,0 3,0 0,1 0,2 0,3u u u u u u= = = = = =  

1,4 4,1 2,4 4,2 3,4 4,3
25 , 50 75u u u u and u u= = = = = =  

for each i, j=1, 2, 3 … and so on. 

Now we use the boundary condition and finite difference 

method to convert PDE to ODE and then apply the ODE 

solver to solve the system of ODE. Then we use Matlab code 

to find the value of ODE and to find the numerical solution 

of the PDE by applying the CNM. 

Again, we have from CNM 

2

, 1 , , 1 1, 1 1, 1, 12 2

1
[ 2 2 ]

2
i j i j i j i j i j i j

u
u u u u u u

y h
+ − + + + + −

∂ = − + + − +
∂

 

Similarly, ]22[
2

1
1,11,1,1,1,,122

2

+−+++−+ +−++−=
∂
∂

jijijijijiji uuuuuu
hx

u
 

Then the CNM for the Laplace equation is as follows 

 

1, , 1, 1, 1 , 1 1, 1 , 1 ,2

, 1 1, 1 1, 1, 1

1
[ 2 2 2

2

2 ] 0

i j i j i j i j i j i j i j i j

i j i j i j i j

u u u u u u u u
h

u u u u

+ − + + + − + +

− + + + + −

− + + − + + −

+ + − + =
 

0]24[ 1,11,1,11,1,1,1,,1 =+++−++−−∴ −+−+−+++−+ jijijijijijijiji uuuuuuuu  

Again for i, j=1, 2, 3… and use Matlab code for solving the numerical solution of Laplace equation using CNM.  

 

Figure 4. Graphical Representation of the numerical solution of Laplace Equation by the MOL for Example 2. 
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7. Results and Discussion 

Here we give a simple introduction on MOL and on CNM 

with illustrative examples. The graph of Example 1 presented 

in Figure 2 represents the particular solution of Laplace 

equation and the graph of Example 2 presented in Figure 4 

represents the numerical solution of Laplace equation.  

8. Conclusion  

The MOL is generally recognized as a comprehensive and 

powerful approach to approximate the numerical solution of 

PDEs. Here we used this method in two separate steps. First 

we discretized the PDE using crank-Nicholson method to 

obtain a system of ordinary differential equations (ODEs). 

Then we solved the system of ODEs using ODE solvers. The 

success of this method is explained by the availability of 

high-quality numerical algorithms for the solution of stiff 

systems of ODEs. Here we investigated MOL approach for 

solving the two dimensional Elliptic equation with boundary 

condition. The computational results confirmed the 

efficiency, reliability and accuracy of this procedure and this 

superior performance is achieved with very little increased 

computational effort. Thus, we conclude that the use of CNM 

in the MOL solution for the Laplace equation and for other 

partial differential equations is very effective and appropriate 

procedure.  
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