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Abstract: Permutation entropy is an effective index which can be used to describe the dynamic complexity of a time series, 
and it can effectively enlarge the small changes of a sequence. In this paper, the moving cut data-permutation entropy, a new 
method detecting abrupt change is raised by combining the permutation entropy method with the moving cut data technology. 
Different moving window scales are selected to analyze the mutational detection of linear and nonlinear time series via the new 
method respectively. The effect of peak noise and white Gaussian noise on this new method in nonlinear time series 
constructed by Lorenz equation and random sequence was studied. The results show that the moving cut data-permutation 
entropy method has strong anti-noise ability, which is able to precisely identify the mutational point of both the linear and 
nonlinear time series, and almost independent the scale of window and the length of sequence.  
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1. Introduction 

With the development of nonlinear science, sequence 
mutational detection technology has been developed rapidly. 
However, the traditional sequence mutational detection 
methods, such as Mann-Kendall, Yamamoto, Gramer method 
and sliding t-test, are highly dependent on the length of time 
series [1-3]. He in paper [4] given an example that the 
Mann-Kendall analysis of different length data of the same 
time series is completely different when using Mann-Kendall 
method to detect the nonlinear series. Due to the influence of 
the external force and the measurement error of the instrument, 
the nonlinear time series collected by the experiment is 
inevitably disturbed by all kinds of noise signals. Although the 
original data can be filtered the noise, it is impossible to 
eliminate the noise completely. Therefore, it is necessary to 
find a new method for detection that almost does not rely on 
sequence length and has a strong anti-noise ability.  

Entropy is a measure of system complexity, developed 
rapidly after the establishment of information theory, which 

can be used for the detection of time series dynamic mutation. 
The approximate entropy (ApEn) proposed from the 
perspective of measuring the complexity of time series by 
Pincus in 1991, is widely used in the field of physiological 
sequence analysis, identification of mineral intensity and 
runoff mutation analysis because of its short amount of data in 
signal analysis and good anti-noise ability [2-8]. In view of the 
disadvantages of approximate entropy, that is heavily 
depending on the record length and lacking relative 
consistency, Richman proposed a new family statistics, 
sample entropy (SampEn), that does not count self-matches 
[9-11]. Sample entropy represents the magnitude of the 
probability to generate a new pattern for the nonlinear 
dynamic system. Furthermore, compared with the complexity 
parameters such as sample entropy, fractal dimension and 
Lyapunov exponent, permutation entropy (PE) proposed by 
Christoph Bandt has the characteristics of simple algorithm, 
strong operability and anti-noise ability [12]. Permutation 
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entropy is a dynamic mutation detection method, which can 
accurately locate the time of mutation of the system, and it is 
proposed for the spatial uniqueness of the time series itself. 
Permutation entropy can enlarge the small change of a 
sequence effectively, and is widely used in signal mutational 
detection and random signal analysis, which has achieved 
good application results in mechanical fault diagnosis, 
hydrogeological system and medicine [13-26].  

In this paper, the moving cut data-permutation entropy 
(MC-PE), a new method of dynamic structural mutational 
detection is raised by combining the permutation entropy 
method with the moving cut data technology, and the 
effectiveness and stability of the MC-PE method are verified 
by linear and nonlinear time series. 

2. Methods 

2.1. Permutation Entropy 

Permutation entropy is an average entropy parameter to 
measure the complexity of one-dimensional time series put 
forward by Christoph Bandt. It is similar to Lyapunov 
exponent in terms of performance of time series complexity, 
but has the characteristics of simple operation and strong 
anti-noise ability. Permutation entropy is used to 
quantitatively characterize the complexity of a dynamic 
system which is more complex with the higher entropy and 
more regular with the lower entropy. 

The basic principle of permutation entropy algorithm is as 
follows. 

(i) Given a time series X = { x (n), n = 1, 2,⋯ , N}, 
reconstructed the phase space of X and obtained the matrix is 
in the following:  
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, j = 1, 2,⋯ , K. (1) 

K is the number of reconstructed vectors, K = N – (m – 1) τ, 
while m is called embedding dimension and τ is the delay 
time. 

(ii) Each row in the reconstruction matrix rearranges in 
ascending order, defines the index for each element as 
permutation A (i) = ( j1, j2,⋯ , jm ), that fulfills: 

x (i + (j1 – 1) τ) ≤ x (i + (j2 – 1) τ) ≤⋯≤ x (i + (jm – 1) τ)  (2) 

where i = 1, 2,⋯ , N – (m – 1) τ. A simple example may help 
to clarify this concept. Assume a time series X = (3, 2, 5, 1, 4); 
for an embedding dimension of 3 and τ = 1, the first part 
would include the values (3, 2, 5). In order to rank these three 
values, the permutation (1, 0, 2) should be applied since

1 2t t tx x x+ +< < . Similarly, the second part (2, 5, 1) has the 

permutation type (2, 0, 1) with 2 1t t tx x x+ +< < , and the third 

part (5, 1, 4) with (1, 2, 0). 
(iii) Calculating the emergence probability P1, P2,⋯ , Pi,
⋯ , PK of A (i), the permutation entropy is defined as 

PE (m) = –∑ Pi log Pi              (3) 

where log is with base 2. 
(iv) It is clear that m elements are at most m! different 

arrangements. When Pi = 1/(m!), the permutation entropy PE 
(m) gets the maximum value log (m!). As usual, log (m!) is 
used to normalize PE (m), that is 

0 ≤ PE (m) = PE (m) / log (m!) ≤ 1      (4) 

where PE (m) is consistent with the random degree of a time 
series X. Values of PE (m) close to one indicate the time series 
X with a stochastic dynamics, in which the elements in X are 
random. On the other hand, the PE (m) is closer to zero, the 
more fixed is the time series.  

2.2. Moving Cut Data-Permutation Entropy 

Moving cut data-permutation entropy is a mutational 
detection method formed by sliding removal technology on 
the basis of permutation entropy. The calculation process of 
MC-PE is as follows. 

i) Choosing a window scale W of the slide removal data.  
ii) Removing data with length W continuously from time 

series { x (n), n = 1, 2,⋯ , N } and connecting the remaining 
N – W data, then a new subsequence of N – W is obtained.  

iii) Calculating the PE (m) by permutation entropy method. 
iv) Taking the slide step length to W, and moving the 

window gradually by keeping the window scale of data 
removed unchanged. It can get a PE (m) sequence with an int 
(N/W) length by repeating ii), iii) steps. 

v) According the PE (m) sequence obtained from step iv), 
identifying the mutational point or mutational interval based 
on the data complexity is not very different in the same 
dynamic system, and it would be more distinct from different 
dynamic system.  

3. Numerical Example 

3.1. Mutational Detection of MC-PE Method in Linear 

Time Series 

In order to test the effect of MC-PE method on dynamic 
structural mutational detection in linear time series, ideal 
linear time series (IS1) is constructed by the following 
equation [27]: 

2 sin(0.3 ) 1, 1 1000,
( )

1.5sin(0.3 ) 2 cos(0.8 ) 0.1, 1000 2000.

t t
y t  = 

t t t

+ ≤ ≤
 + − < ≤

 (5) 

The evolution curve of IS1 is given in Figure 1. It is clear 
that the dynamic structure of IS1 changes abruptly at t = 1001, 
since it is determined only by sine function to sine and cosine 
multiply. 
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Figure 1. Linear time series IS1. 

In this paper, the selection of permutation entropy 
parameters for all the ideal time series is m = 3, τ = 2. The 
MC-PE results of ideal linear time series IS1 in sliding 
removal window for W = 10, 20, 25, 50 are given in Figure 2, 
which show a similarity that the permutation entropy 
sequence obtained after removal of data are divided into two 
different stages with t = 1000 as the boundary. When t ≤ 1000, 
the values of permutation entropy are obviously greater than 
that at t > 1000 and the differences of the respective two 
evolutionary stages are almost negligible. According to the 
physical meaning of permutation entropy, the larger the 
entropy is, the greater complexity of the sequence. Therefore 
after removing the data, a smaller permutation entropy values 
mean that the data removed are more complex, which shows 
that the sequence complexity of t > 1000 is greater than the 
complexity of t ≤ 1000, fitting perfectly with the structure of 
IS1. 

As shown in Figure 2 (b), a phenomenon similar to 

periodic fluctuations occurred at t > 1000. The reason may be 
that the latter 1000 data of IS1 are determined by the cosine 
function of T = 20.94 (T is the period) and the cosine 
function of T = 7.85 at the same time, and the period of the 
sine function is very close to the slide removal window W = 
20. In terms of the sine function, there are two situations for 
removing the last 1000 data from IS1 with window scale 20. 
The first one is that these 20 data are only affected by one 
period of the sine function and the second is that these 20 
data are affected by the two periods of the sine function. 
Obviously, the first case is less complex than the latter, so the 
obtained entropy is a little bit higher to remove the first case 
than to remove the second one which shows that permutation 
entropy can effectively magnify the small change of time 
series. It can be easily determined that the ideal time series 
IS1 has a mutational point at t = 1001, and MC-PE method is 
suitable for dynamic structural mutational detection of linear 
time series. 

 

(a) W = 10; (b) W = 20; (c) W = 25; (d) W = 50 

Figure 2. The MC-PE detection results of linear time series IS1. 
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3.2. Mutational Detection of MC-PE Method in Nonlinear 

Time Series 

So as to test the dynamic structural mutational detection 
effect of MC-PE method in nonlinear time series, the first 
1000 data of the ideal nonlinear time series (IS2, the length is 
2000) is constructed by the following Lorenz equations 
[28-30]: 

( )x a x y

 y xz cx y

z xy bz

= − −
 = − + −
 = −

ɺ

ɺ

ɺ

            (6) 

For the Lorenz system, taking the coefficient a = 10, b = 8/3, 
c = 28, the initial conditions (x0, y0, z0) = (0, 1, 0), and the step 
length is 0.01 [31]. There are two strange attractors in the 
Figure 3 that means the system generated by Lorenz equations 
is chaotic. In other words, the sequence in Lorenz system is 
nonlinear. Particularly, the time series of variable z, ignoring 
the first 10000 data and choosing the next 1000 data, is 
selected as the research object, which is shown in Figure 4. On 
the other hand, the last 1000 data of IS2 is the random number 
that meets the standard normal distribution. In order to 
eliminate the dimension, standardizing the 1000 data came 
from Lorenz system before connecting two parts data is 
advisable. 

 

Figure 3. Lorenz attractor. 

 

Figure 4. The z-axis part time domain diagram. 

 

(a) W = 10; (b) W = 20; (c) W = 25; (d) W = 50 

Figure 5. The MC-PE detection results of nonlinear time series IS2. 
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(a) W = 10; (b) W = 20 

Figure 6. The MC-PE detection results of part nonlinear time series IS2. 

The MC-PE results of ideal nonlinear time series IS2 in 
sliding removal window for W = 10, 20, 25, 50 are shown in 
Figure 5, which can be seen that the evolution trend of the 
permutation entropy values obtained by different sliding 
removal windows is very similar. The entropy values of the first 
half are higher than the second half, and this difference is very 
significant. The reason accounted for this difference is the 
complexity of the data in the second half of IS2 is significantly 
higher than that in the first half. Therefore, the permutation 
entropy is smaller when the data are removed at the second half 
of IS2 in same length. In other words, removing the data with 
high complexity makes the remaining data less complex, so the 
permutation entropy is smaller at t > 1000. As illustrated from 
Figure 5, the permutation entropy values are obviously distinct 
between t ≤ 1000 and t > 1000 in four different window scales, 

and this distinction gradually increases with the increase of 
sliding removal window. Therefore, it can be judged that the 
mutational point of IS2 is about t = 1001. 

To verify that whether the MC-PE method relies heavily on 
the length of the time series, 500 data is selected from IS2 
between 700 to 1200. The MC-PE results are shown in Figure 
6 revealing the same results as Figure 5, which means the 
detection result of MC-PE method is less dependent on the 
time series length. 

The two common noises in the measured data are the peak 
noise and white Gaussian noise, so the effect of these two noises 
on the MC-PE method is tested. In the ideal time series IS2, the 
peak noise with the length of the original sequence is p = 10%, 
and the peak noise added is 5-6 times higher than the maximum 
value in the nonlinear time series IS2 (Figure 7) [32].  

 

Figure 7. IS2 added p = 10% peak noise. 

The value of peak noise and the position which should be 
added noise are selected randomly by computer. The 
mutational detection results of MC-PE when take p = 10%, W 
= 20, 25 are shown in Figure 8 (a) and (b), which found that 
the evolution of PE (m) values are bounded on two different 
states, and it can be clearly seen that the start time of the 
mutation, and the mutation point is about t = 1001. The PE (m) 
values obtained by MC-PE at t ≤ 1000 is significantly greater 
than that of t > 1000. It means that the dynamic structure 
changes at t = 1001, which is exactly the same as the actual 
dynamic structure of the ideal sequence IS2. In IS2, the first 
1000 data are generated by the deterministic dynamics Lorenz 
equation, whose complexity is less than the latter 1000 
random numbers. The PE (m) value after removing some of 
the more complicated random numbers is smaller, which is 

completely consistent with the dynamic nature of the ideal 
sequence. It is indicated that the mutational detection result 
of MC-PE method is less affected by the peak noise.  

In the ideal time series IS2, the SNR = 19 dB 
(signal-to-noise ratio, SNR) white Gaussian noise which is in 
high noise level, is added [33-38]. It can be seen the MC-PE 
results of IS2, added white Gaussian noise, when W = 20, 25 
in Figure 8 (c) and (d). The results also show that the 
evolution of PE (m) values are the same as adding peak noise, 
bounded on two different states. The change of PE (m) values 
over time from a stable state to another stable state, and it can 
be easily determined the mutation point is about t = 1001. In 
order to verify the reliability of the experimental results, 
different sliding removal windows and different 
signal-to-noise ratios are also used in the numerical 
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experiments, and the mutational detection results of MC-PE 
method are basically consistent, which shows that the 

detection result of MC-PE method is less influenced by white 
Gaussian noise. 

 

(a) added p = 10% peak noise, W = 20; (b) just like (a), but W = 25; (c) added SNR = 19dB white Gaussian noise, W = 20; (d) just like (c), but W = 25 

Figure 8. The MC-PE detection results of IS2 added noise. 

 

(a) SNR = 18dB, W = 20; (b) SNR = 18dB, W = 25; (c) SNR = 25dB, W = 20; (d) SNR = 25dB, W = 20 

Figure 9. The MC-PE detection results of IS2 added white Gaussian noise. 
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Through various numerical experiments, it finds that SNR 
= 18 dB is the SNR threshold which can detect the abrupt 
point. When SNR ≤ 18 dB, the clarity of the mutational point 
detected by the MC-PE method gradually decreased. On 
other hand, it gets the opposite result whose clarity is 
increasing when SNR > 18 dB. Keeping the window scale W 
= 20, 25 unchanged, the result of MC-PE of IS2 added white 
Gaussian noise with SNR = 18, 25 dB is given in Figure 9. 
When SNR = 18 dB, the PE (m) values in the first half are 
not always greater than the second part as SNR = 25 dB. 
Specially, the lowest point in Figure 9 (a) is at t = 660, not in 
the second part, which means the data near t = 660 is the 
most complex that is not consistent with the construction of 
IS2. Some points in the first half are still at a lower level, 
even if the sliding removal window increases to W = 25 in 
Figure 9 (b). But that's not the case when SNR = 25 dB, 

which clearly shows PE (m) values change from a stable state 
to another stable state and the mutational point is at t = 1001. 
Compared Figure 8 and 9, it finds that the detection result of 
the abrupt change point becomes clearer with the increase of 
sliding removal window when signal-to-noise ratio at the 
same level.  

The measured data do not contain only one noise, they 
may contain two or more noises. So it is necessary to detect 
whether the MC-PE method still applicative when the data 
contains two kinds of noise. For the ideal time series IS2, the 
superposition is 10% of the original sequence, and the 
magnitude is 5-6 times of the maximum value in IS2 
sequence and the white Gaussian noise with a signal-to-noise 
ratio of 19. It can see the MC-PE detection results of IS2 
added mixed noise in Figure 10. 

 

(a) SNR = 19dB and p = 10%, W = 20; (b) just like (a), but W = 50 

Figure 10. The MC-PE detection results of IS2 added mixed noise. 

Even if mixed with a high intensity of white Gaussian 
noise and peak noise, the results of MC-PE still show that 
PE (m) values are in two kinds of stable states, and also can 
be seen the two states near the boundary at t = 1000 clearly. 
The boundary becomes obvious as the slide removal 
window from W = 20 to W = 50. In simple terms, the 
detection result of MC-PE method is less influenced by 
white Gaussian noise and peak noise mixed. From what has 
been discussed above, the MC-PE method has a strong 
anti-noise ability. 

4. Conclusion 

Ideal time series analysis shows that the MC-PE method 
identifies the abrupt change point both the linear and nonlinear 
time series effectively. The location of the mutational point is 
detected precisely by MC-PE method and the detection result 
is almost not dependent on the window scale and the length of 
time series. The MC-PE method has strong anti-noise ability 
and its result is less influenced by the peak noise and white 
Gaussian noise even in a high noise level. 

Acknowledgements 

This work was supported by the National Natural Science 
Foundation of China (Grant No. 41172295); Innovation 
Research for the Postgraduate of Guangzhou University 
(2017GDJC-M32). 

 

References 

[1] A. B. Lüttger, and T. Feike. “Development of heat and drought 
related extreme weather events and their effect on winter 
wheat yields in Germany,” Theor. Appl. Climatol, Vol. 132, 
No. 1-2, 2017, pp. 1-15. 

[2] T. Yamamoto, and M. Sano, “Theoretical model of 
chirality-induced helical self-propulsion,” Phys. Rev. E, Vol. 
97, No. 1, 2018, pp. 012607. 

[3] C. J. Da, L. Fang, B. L. Shen, P. C. Yan, S. Jian, and D. S. Ma, 
“Detection of a sudden change of the field time series based 
on the lorenz system,” Plos One, Vol. 12, No. 1, 2017, pp. 
e0170720. 



69 Luo Wenxiang et al.:  A New Method Detecting Abrupt Change Base on Moving Cut Data-Permutation Entropy  
 

[4] W. P. He, T. He, H. Y. Cheng, W. Zhang, and Q. Wu, “A new 
method to detect abrupt change based on approximate entropy,” 
Acta Phys. Sin., Vol. 60, No. 4, 2011, pp. 820-828. 

[5] S. M. Pincus, “Approximate entropy as a measure of system 
complexity,” Proc. Natl. Acad. Sci. USA, Vol. 88, No. 6, 1991, 
pp. 2297-2301. 

[6] S. M. Pincus, and R. R. Viscarello, “Approximate entropy: a 
regularity measure for fetal heart rate analysis,” Obstet. 
Gynecol., Vol. 79, No. 2, 1992, pp. 249-255. 

[7] A. Singh, B. S. Saini, and D. Singh. “An adaptive technique 
for multiscale approximate entropy (MAE bin) threshold (r) 
selection: application to heart rate variability (HRV) and 
systolic blood pressure variability (SBPV) under postural 
stress.” Australas. Phys. Eng. Sci. in med., Vol. 39, No. 2, 
2016, pp. 557-569. 

[8] C. James, S. Azeem, S. Ric, B. Paul, and M. Chris, 
“Measurement of cardiac synchrony using approximate 
entropy applied to nuclear medicine scans,” Biomedical 
Signal Processing & Control, Vol. 5, No. 1, 2010, pp. 32-36. 

[9] S. M. Pincus, I. M. Gladstone, and R. A. Ehrenkranz, “A 
regularity statistic for medical data analysis,” Journal of 
Clinical Monitoring, Vol. 7, No. 4, 1991, pp. 335–345. 

[10] L. Wan, X. Y. Hu, X. C. Deng, “Approximate entrop analysis 
of metallogenic element content sequences and identification 
of mineral intensity: A case study of Dayingezhuang gold 
deposit,” Journal of China University of Mining & 
Technology, Vol. 43, No. 2, 2014, pp. 345-350. 

[11] D. Y. Sun, Q. Huang, Y. M. Wang, Z. Liu, and L Zhang, 
“Application of moving approximate entropy to mutation 
analysis of runoff time series,” Journal of Hydroelectric 
Engineering, Vol. 33, No. 4, 2014, pp. 1-6. 

[12] J. S. Richman, J. R. Moorman. “Physiological time-series 
analysis using approximate entropy and sample entropy,” Am. 
J. Physiol. Heart Circ. Physiol., No. 278, No. 6, 2000, pp. 
2039-2049. 

[13] D. E. Lake, J. S. Richman, M. P. Griffin, and J. R. Moorman, 
“Sample entropy analysis of neonatal heart rate variability,” 
Am. J. Physiol. Regul. Integr. Comp. Physiol. Vol. 283, No. 3, 
2002, pp. R789- R797. 

[14] F. Kaffashi, R. Foglyano, C. G. Wilson, and K. A. Loparo, 
“The effect of time delay on approximate & sample entropy 
calculations,” Physica D Nonlinear Phenomena, Vol. 237, No. 
23, 2008, pp. 3069-3074. 

[15] C. Bandt, and B. Pompe, “Permutation entropy: A natural 
complexity measure for time series,” Physical Review Letters, 
Vol. 88, No. 17, 2002, pp. 174102. 

[16] M. Zanin, L. Zunino, O. A. Rosso, and D. Papo, “Permutation 
entropy and its main biomedical and econophysics 
applications: a review,” Entropy, No. 14, No. 8, 2012, pp. 
1553-1577. 

[17] M. Riedl, A. Müller, and N. Wessel. “Practical considerations 
of permutation entropy,” Eur. Phys. J. Special Topics, Vol. 222, 
No. 2, 2013, pp. 249-262. 

[18] H. Azami, and J. Escudero. “Improved multiscale permutation 
entropy for biomedical signal analysis: Interpretation and 
application to electroencephalogram recordings,” Biomedical 
Signal Processing & Control, Vol. 23, No. 1, 2015, pp. 28-41. 

[19] Y. J. Li, W. H. Zhang, Q. Xiong, D. B. Luo, G. M. Mei, and T. 
Zhang, “A rolling bearing fault diagnosis strategy based on 
improved multiscale permutation entropy and least squares 
SVM,” Journal of Mechanical Science & Technology, Vol. 31, 
No. 6, 2017, pp. 2711-2722. 

[20] C. Bandt, “A new kind of permutation entropy used to classify 
sleep stages from invisible EEG microstructure,” Entropy, Vol. 
19, No. 5, 2017, pp. 197. 

[21] Y. Hou, F. Liu, J. Gao, C. Cheng, and C. Song, 
“Characterizing complexity changes in chinese stock markets 
by permutation entropy,” Entropy, Vol. 19, No. 10, 2017, pp. 
514. 

[22] Y. S. Choi, “Improved multiscale permutation entropy 
measure for analysis of brain waves,” International Journal of 
Fuzzy Logic & Intelligent Systems, Vol. 17, No. 3, 2017, pp. 
194-201. 

[23] O. Dostál, O. Vysata, L. Pazdera, A. Procházka, J. Kopal, J. 
Kuchyňka, and M. Vališ, “Permutation entropy and signal 
energy increase the accuracy of neuropathic change detection 
in needle EMG,” Computational Intelligence & Neuroscience, 
Vol. 2018, No. 6, 2018, pp. 1-5. 

[24] M. Kuai, G. Cheng, Y. Pang, and Y. Li, “Research of planetary 
gear fault diagnosis based on permutation entropy of 
CEEMDAN and ANFIS,” Sensors, Vol. 18, No. 3, 2018, pp. 
782. 

[25] Y. Gao, F. Villecco, M. Li, and W. Song, “Multi-scale 
permutation entropy based on improved LMD and HMM for 
rolling bearing diagnosis,” Entropy, Vol. 19, No. 4, 2017, pp. 
176. 

[26] K. Keller, T. Mangold, I. Stolz, and J. Werner, “Permutation 
entropy: New ideas and challenges,” Entropy, Vol. 19, No. 3, 
2017, pp. 134. 

[27] Q. G. Wang, Z. P. Zhang, “The research of detecting abrupt 
climate change with approximate entropy,” Acta Phys. Sin., 
Vol. 57, No. 3, 2008, pp. 1976-1983. 

[28] J. Guckenheimer, and R. F. Williams. “Structural stability of 
Lorenz attractors.” Publications Mathématiques De Linstitut 
Des Hautes Études Scientifiques, Vol. 50, No. 1, 1979, pp. 
59-72. 

[29] I. Grigorenko, and E. Grigorenko, “Chaotic dynamics of the 
fractional Lorenz system,” Physical Review Letters, Vol. 91, 
No. 3, 2003, pp. 034101. 

[30] N. C. Kakwani, “Applications of Lorenz curves in economic 
analysis,” Econometrica, Vol. 45, No. 3, 1977, pp. 719-727. 

[31] P. G. Baines, “Lorenz, EN 1963: Deterministic nonperiodic 
flow. Journal of the Atmospheric Sciences 20, 130-41,” 
Physical Geography, Vol. 32, No. 4, 2008, pp. 475-480. 

[32] H. M. Jin, W. P. He, W. Zhang, A. X. Feng, and W. Hou, 
“Effect of noises on moving cut data-approximate entropy,” 
Acta Phys. Sin., Vol. 61, No. 12, 2012, pp. 069201-160. 

[33] I. Castillo, and R. Nickl. “Nonparametric Bernstein-von Mises 
theorems in Gaussian white noise,” Annals of Statistics, Vol. 
41, No. 4, 2013, pp. 1999-2028. 

[34] A. Hariri, and M. Babaie-Zadeh, “Compressive detection of 
sparse signals in additive white Gaussian noise without signal 
reconstruction,” Signal Processing, Vol. 131, 2016, pp. 
376-385. 



 American Journal of Applied Mathematics 2018; 6(2): 62-70 70 
 

[35] S. S. Dasgupta, V. Rajamohan, and A. K. Jha, “Dynamic 
characterization of a bistable energy harvester under Gaussian 
white noise for larger time constant,” Arabian Journal for 
Science & Engineering, 2018, pp. 1-10. 

[36] A. Dechant, A. Baule, and S. I. Sasa, “Gaussian white noise as 
a resource for work extraction,” Physical Review E, Vol. 95, 
2017, pp. 032132. 

[37] S. Benkrinah, and M. Benslama “Acquisition of PN sequences 

using multilayer perceptron neural network adaptive processor 
for multiuser detection in spread-spectrum communication 
systems,” International Journal of Numerical Modelling 
Electronic Networks Devices & Fields, Vol. 31, No. 1, 2018, 
pp. e2265. 

[38] S. Stevanovic, and B. Pervan, “A GPS phase-locked loop 
performance metric based on the phase discriminator output,” 
Sensors, Vol. 18, No. 1, 2018, pp. 296. 

 


