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Abstract: The matching preclusion number of a graph is the minimum number of edges whose deletion results in a graph that 

has neither perfect matchings nor almost-perfect matchings. The strong matching preclusion number (or simply, SMP number) 

smp(G) of a graph G is the minimum number of vertices and/or edges whose deletion results in a graph that has neither perfect 

matchings nor almost-perfect matchings. This is an extension of the matching preclusion problem and has been introduced by 

Park and Ihm. Butterfly Networks are interconnection networks which form the back bone of distributed memory parallel 

architecture. One of the current interests of researchers is Butterfly graphs, because they are studied as a topology of parallel 

machine architecture. Butterfly network has many weaknesses. It is non-Hamiltonian, not pancyclic and its toughness is less than 

one. But augmented butterfly network retains most of the favorable properties of the butterfly network. In this paper, we 

determine the strong matching preclusion number of the Augmented Butterfly networks. 
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1. Introduction 

Let G be a connected graph, ( )V G and ( )E G are its vertex 

set and edge set respectively. A perfect matching is a set of 

edges such that every vertex is incident with exactly one edge 

in this set. An almost-perfect matching in a graph is a set of 

edges such that every vertex except one is incident with 

exactly one edge in this set, and the exceptional vertex is 

incident to none. In this paper, we say that such exceptional 

vertex isn't matched under the almost perfect matching. 

All graphs considered in this paper are undirected, finite 

and simple. It is referred to the book [3] for graph theoretical 

notation and terminology not described here. Let X be a set of 

vertices and edges. Let G X− denote the subgraph of G

obtained by removing all the vertices of X  together with the 

edges incident with them from G as well as removing all the 

edges of X from G . If X v=  and X e=  where v is a vertex 

and e  is an edge, simply wrote by G v− and G e− for G v−
and G e− , respectively. The degree of a vertex v in a graph 

G, denoted by ( )Gdeg v , is the number of edges of G  incident 

with v . Let ( )Gδ  be the minimum degree of the vertices of G, 

respectively. A component of a graph is odd or even according 

to whether it has an odd or even number of vertices. 

A set of edges F  is called a matching preclusion se t if 
G F− has no perfect matching, and it is called an optimal 

matching preclusion set if F is one with the smallest size. The 

matching preclusion number of an even graph G , denoted by 

( )mp G , is the minimum number of edges whose deletion 

leaves the resulting graph without a perfect matching. If G  

has no perfect matchings, then ( ) 0mp G = . The concept of 

matching preclusion was introduced by Brigham et al. [2], as a 

measure of robustness in the event of edge failure in 

interconnection networks. An interconnection network with a 

larger MP number may be considered as more robust in the 

event of link failures. 

Proposition 1-1 

Let G  be a graph with an even number of vertices. Then 

( ) ( )mp G Gδ≤ , where ( )Gδ  is the minimum degree of G  

The concept of strong matching preclusion was proposed by 

Park and Ihm [2]. A set F of vertices and edges in a graph G is 

called a strong matching preclusion set SMP set for short if
G F− has neither a perfect matching nor an almost perfect 

matching. The strong matching preclusion number of G , 
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denoted by ( )smp G , is defined to be the minimum size of all 

possible SMP sets of G . Strong matching preclusion that 

additionally permits more destructive vertex faults in a graph 

is a more extensive form of the original matching preclusion 

that assumes only edge faults. According to the definition of 

( )mp G  and ( )smp G , we have that 

( ) ( ) ( )smp G mp G Gδ≤ ≤ . 

Park and Ihm [7] established the SMP number and all 

possible minimum strong matching preclusion sets for 

complete graphs, regular bipartite graphs, restricted 

HL-graphs, and recursive circulant graphs. Park and Ihm [8] 

also studied the problem of strong matching preclusion under 

the condition that no isolated vertex is created as a result of 

faults, and established the conditional strong matching 

preclusion number for the class of restricted hypercube-like 

graphs, which include most non bipartite hypercube-like 

networks found in the literature. SMP numbers of augmented 

cubes, arrangement graphs, alternating group graphs and 

split-star, pancake graphs, 2 -matching composition networks, 

k -ary n cubes, n-dimensional torus networks, k-composition 

networks are also investigated; see [1, 9-14]. 

In this paper, the strong matching preclusion number of the 

Augmented Butterfly networks is investigated. 

2. Augmented Butterfly Networks and 

Some Lemmas 

Butterfly network has many weakness. It is 

non-Hamiltonian, not pancyclic and its toughness is less than 

one. But augmented butterfly network retains most of the 

favorable properties of the butterfly network. 

 

Figure 1. 2AB  and 3AB . 

Let 1n ≥  be an integer. The vertices of the n-dimensional 

augmented butterfly network are the pairs ( , )r x where r is a 

non-negative integer 0 r n≤ ≤ called the level, and 

1 2( )nx x x x= ⋯  is a binary string of length n . In nAB  the 

vertex ( , ),0 1r x r n≤ ≤ − , is adjacent to the vertices ( 1, ),r x+  

1 2 1 2 1 2 1 1( 1, ), ( , )r r r n r r r nr x x x x x x r x x x x x x+ + − ++ ⋯ ⋯ ⋯ ⋯  

and 1 2 1 2( , )r r r nr x x x x x x+ +⋯ ⋯ . In particular, when 0r = , 

the vertex 1 2 3(0, )nx x x x⋯  is adjacent to the vertices 

1 2 3 1 2 3(1, ), (1, )n nx x x x x x x x⋯ ⋯  and 1 2 3(0, )nx x x x⋯ . Also 

when r n= , 1 2 3( , )nn x x x x⋯  is adjacent to the vertices 

1 2 3 1 2 3( , ), ( 1, )n nn x x x x n x x x x−⋯ ⋯  and 1 2 3( 1, )nn x x x x− ⋯ . 

Clearly nAB has ( 1)2nn +  vertices and 3 2
n

n×  edges [4]. 

2AB  and 3AB are shown in Figure 1(1) and Figure 1(2) 

respectively. 

Let {0,1, 2, , }r n∈ … , we define rV  be the set of vertices 

of the form ( , )r x , that is, the vertices in layer r . Let {0,1}i ∈ . 

Define i
nAB  be the subgraph of nAB  induced by vertices of 

the form ( , )r ix′  where1 r n≤ ≤ and x′  is a binary string of 

length 1n − . Note that i
nAB  is isomorphic to 1nAB − . Thus 

for any ( 0,1)i
nAB i = , let {0,1}j ∈ , the subgraph induced by 

the vertices of the form ( , )r ijx′′  where 2 r n≤ ≤  and x′′ is 

a binary string of length 2n − , denoted by ij
nAB , which is 

isomorphic to 2nAB − . 

The edges between ( , )r x  and 

1 2 1 1( , ),0r r r nr x x x x x x r n− + ≤ ≤⋯ ⋯ and between ( , )r x  and 

1 2 1( , ),0r r nr x x x x x r n+ ≤ ≤⋯ ⋯ are called level edges. The 

edges between ( , )r x  and ( 1, )r x+  are called straight edges 

while the edges between ( , )r x and 

1 2 1( 1, )r r nr x x x x x++ ⋯ ⋯ are called cross edges. 

For complete graphs, Park and Ihm [7] derived the 

following results. 

Lemma 2-1 [7]  

For complete graph nK , ( ) 1nsmp K n= − . 

The conditional matching preclusion number of a graph G , 

denoted by 1( )mp G , with n vertices is the minimum number 

of edges whose deletion results in graph without an isolated 

vertex and does not have a perfect matching if n is even, or 

almost-perfect matching if n is odd. The conditional matching 

preclusion number for the Augmented Butterfly Network is 

given in a study [5]. 

Lemma 2-2 

Let G be the Augmented Butterfly Network nAB , then 

1( ) 3mp G = . 

3. Strong Matching Preclusion of 

Augmented Butterfly Network 

Lemma 3-1 

For any two vertices of 2AB , say ,u v , 2 { , }AB u v−  has a 

perfect matching if and only if { , } {(1,00), (1,11)}u v ≠  and 

{(1,01),(1,10)} . 

Proof. We can assume, without loss of generality, that 

{ , } {(1,00), (1,11)}u v = , then 2 { , }AB u v−  has two 

components with odd vertices, clearly 2 { , }AB u v−  has no 

perfect matching. It suffices to prove that 2 { , }AB u v−  has a 

perfect matching if { , } {(1,00), (1,11)}u v ≠  and 

{(1,01),(1,10)} . By the construction of 2AB , we can check 

the result easily, thus we omit the remainder proof here. 
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From Lemma3-1, we know that for any vertex of 2AB , say 

u , and any vertex in layer 0, say v, there is a perfect matching 

of 2 { , }AB u v− , say M , then { }M v∪  is an almost perfect 

matching of 2AB u− . That means there exists an almost 

perfect matching of 2AB u− such that any vertex in layer 0 

can not matched. 

Let V EF F F= ∪ , ( )V nF V AB⊆  and ( )E nF E AB⊆ . 

Theorem 3-1 

2( ) 2smp AB = . 

Proof. From Lemma 3-1, 2 {(1,00), (1,11)}AB −  or 

2 {(1,01), (1,10)}AB −  has no perfect matching, then 

2( ) 2smp AB ≤ . We need to show 2( ) 2smp AB ≥ . It suffices to 

prove that for every F  and | | 1,F = 2AB F−  has a perfect 

matching or an almost perfect matching. If { }F v= , as 2AB  

has a perfect matching, 2AB F−  must have an almost 

perfect matching. If { }F e= , from Lemma 2-1, we know 

2AB F−  must have a perfect matching. Thus 2( ) 2smp AB ≥ , 

as desired. 

Theorem 3-2 

For 3AB , 3( ) 3smp AB = . 

Proof As ( ) 3nABδ = , 3( ) 3smp AB ≤ . We need to show 

3( ) 3smp AB ≥ . It suffices prove that for each F  and | | 2F = , 

3AB F−  has a perfect matching or an almost perfect 

matching. If F  consists of two edges or one vertex and one 

edge, from Lemma 2-2, 3AB F− has a perfect matching or an 

almost perfect matching. So we only need to consider that F 

consists of two vertices, say 1 2{ , }F v v= , and complete the 

proof by distinguishing the following four cases. 

Case 1. Both 1v  and 2v  are in the same 3( 0,1)iAB i = . 

Without loss of generality, suppose 0
1 2 3, ( )v v V AB∈ . From 

Lemma 3-1, we know that if 1 2{ , } {(2,000), (2,011)}v v ≠  and 

1 2{ , } {(2,001), (2,010)}v v ≠ , then 0
3 1 2{ , }AB v v−  has a perfect 

matching, say 0M , and 1
3AB  has a perfect matching, say 1M , 

then 0 1
2 3 2 3(0,0 )(0,1 )M M M x x x x= ∪ ∪ ( 2 3x x  is a binary 

string of length 2) is a perfect matching of 3AB F− . Now 

suppose 1 2{ , } {(2,000), (2,011)}v v = , as well as the proof of

1 2{ , } {(2,001), (2,010)}v v = . From Lemma 3-1, 

3 {(1,100), (1,111)}AB −  has a perfect matching, say 1M . Let 

0 (3,000)(3,001) (3,010)(3,011)M = ∪ , and 2M be the set of 

all level edges in layer 0. Then
0 1 2 (2,011)(1,001) (2,010)(1,010) (1,000)M M M M= ∪ ∪ ∪ ∪ ∪

(1,100) (1,011)(1,111)∪ is a perfect matching of 3AB F− . 

Case 2. 1v and 2v are in different 3( 0,1)iAB i = . 

Without loss of generality, suppose 0
1 3( )v V AB∈  and 

1
2 3( )v V AB∈ . We can choose a vertex u , 1,u V∈  

0
3 1( ),u V AB u v∈ ≠  such that u  is not adjacent to 2v , let u′  

be the neighbor of u  in 1V  and 1
3u AB′∈ . By Lemma 3-1, 

0
3 1{ , }AB v u−  has a perfect matching, say 0M , and 

1
3 2{ , }AB v u′− has a perfect matching, say 1M . All level 

edges of layer 0 induce a perfect matching of 0V , denoted by

2M . Then 0 1 2 ( )M M M M uu′= ∪ ∪ ∪  is a perfect 

matching of 3 1 2{ , }AB v v− . 

Case 3. 1 3( )( 0,1)iv V AB i∈ =  and 2v  is in layer 0, that is 

2 0v V∈ . 

Suppose 0
1 3( ),v V AB∈  2 1 2 3(0, )v x x x= , 1 2 3( )x x x  is a 

binary string of length 3. Without loss of generality, assume 

1 0x = , and the proof can be obtained similarly if 1 1x = . If 

1 1 2 3(1, )v x x x=  or 1 2 3(1, )x x x , this means 1v  is adjacent to 

2v , say 1 1 2 3(1, )v x x x= . All straight edges between layer 2  

and layer 3  induce a perfect matching of 2 3V V∪ , denoted 

by 0M . And 1 1 2 3 1 2 3 1 2{(0, )(1, )} \ ( )M x x x x x x v v= , thus 

0 1M M M= ∪  is a perfect matching of 3 1 2{ , }AB v v− . 

If 1 1 2 3(1, )v x x x≠  and 1 2 3(1, )x x x , this means 1v  is not 

adjacent to 2v . We know that 1 2 3(0, )x x x  is adjacent to 2v  

in layer 0 , and 1 2 3(1, )x x x  is adjacent to both 1 2 3(0, )x x x  

and 2v . From Theorem 3-1, 0
3 1 1 2 3{ ,(1, )}AB v x x x−  has a 

perfect matching, say 0M , and 1
3AB  has a perfect matching, 

say 1M . Let 2M  be a perfect matching of 

0 2 1 2 3{ ,(0, )}V v x x x−  induced by all level edges of layer 0  

except the edge 2 1 2 3( , (0, ))v x x x , thus 

0 1 2
1 2 3 1 2 3((0, )(1, ))M M M M x x x x x x= ∪ ∪ ∪  is a perfect 

matching of 3 1 2{ , }AB v v− . 

Case 4. Both 1v  and 2v  are in layer 0 . 

Let 1 1 2 3(0, )v x x x= , 2 1 2 3(0, )v y y y= , 1 2 3( )x x x  and 

1 2 3( )y y y  is a binary string of length 3 . If 

1 2 3 1 2 3( ) ( )y y y x x x= , implying that 1v  is adjacent to 2v . As 

0
3AB  and 1

3AB  have a perfect matching respectively, say 

0M  and 1M . The level edges of layer 0  except 1 2( )v v  

induce a perfect of 0 1 2{ , }V v v− , denoted by 2M . Then 

0 1 2
1 2( )M M M M v v= ∪ ∪ ∪  is a perfect matching of 

3 1 2{ , }AB v v− . 

If 1 2 3 1 2 3( ) ( )y y y x x x≠ , that is 1v  isn't adjacent to 2v . Let 

1u  and 2u  be the neighbors of 1v  and 2v  in layer 0  

respectively, and 1
1u , 1

2u  be the neighbors of 1u  and 2u  of 

1
3AB  in layer 1  respectively. And from Theorem 3-1, 

1 1 1
3 1 2{ , }AB u u−  has a perfect matching, say 1M , 0

3AB  has a 

perfect matching, say 0M . The level edges of layer 0  

except 1 1 2 2{( ), ( )}v u v u  induce a perfect matching of 
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0 1 2 1 2{ , , , }V v v u u− , denoted by 2M . 

Thus 0 1 2 1 1
1 1 2 2{( ), ( )}M M M M u u u u= ∪ ∪ ∪  is a perfect 

matching of 3 1 2{ , }AB v v− , completing the proof. 

Theorem 3-3 

If 4n ≥ , ( ) 3nsmp AB = . 

Proof. We complete the proof by induction on n . The result 

is true for 3n =  by Theorem 3-2. Assume that the result is 

true for 1nAB − . As ( ) 3nABδ = , ( ) 3nsmp AB ≤ . We need to 

show ( ) 3nsmp AB ≥ . It suffices to prove that for each F  and 

| | 2F = , nAB F−  has a perfect matching or an almost 

perfect matching. If F  contains at least one edge, that is F  

contains two edges or one edge and one vertex, then by 

Lemma 2-2, nAB F−  has a perfect matching or an almost 

perfect matching. Now we only need to consider that F  

consists of two vertices, say 1 2{ , }F v v= , and complete the 

proof by the following cases. 

Case 1. 1v  and 2v  are in different ( 0,1)i
nAB i = . 

Without loss of generality, let 
0

1 ( )nv V AB∈  and 

1
2 ( )nv V AB∈ . We can choose a vertex of 1V , say u , 

0
1( ),nu V AB u v∈ ≠  and u  is not adjacent to 2v , let u' be the 

vertex adjacent to u  in layer 1 . By induction hypothesis, 
0

1 1{ , }nAB v u− −  has a perfect matching, say 0M , and 

1
1 2{ , }nAB v u− ′−  has a perfect matching, say 1M . Denote the 

perfect matching of 0V  induced by all the level edges in layer 

0  by 2M . Then 
0 1 1 2 ( )M M M M M uu′= ∪ ∪ ∪ ∪  is a 

perfect matching of 1 2{ , }nAB v v− . 

Case 2. 1 ( )( 0,1)i
nv V AB i∈ =  and 2v  is in layer 0 . 

Suppose 
0

1 ( )nv V AB∈ , 2 1 2(0, )nv x x x= ⋯ . If 1v  is 

adjacent to 2v . Denote a perfect matching of 
ij
nAB  by 

( , 0,1)ijM i j = , and let 2M  be the perfect matching of 

0 1 1 2{ , }V V v v∪ −  induced by the straight edges between layer 

0  and layer 1  except the edge 1 2( )v v . Then 

00 01 10 11 2M M M M M M= ∪ ∪ ∪ ∪  is a perfect matching 

of 1 2{ , }nAB v v− . 

If 1v  is not adjacent to 2v . There is a vertex in layer 0  

which is adjacent to 2v , say 2v′ , and the vertex of 
0
nAB  in layer 

1  which is adjacent to 2v , denoted by 2v′′ . By induction 

hypothesis, 
0

1 2{ , }nAB v v′′−  has a perfect matching, say 0M . 

Choose a perfect matching of 
1
nAB , say 1M . Let 2M  be the 

perfect matching of 0 2 2{ , }V v v′−  induced by the level edges in 

layer 0  except 2 2( )v v′ . Then 
0 1 2

2 2( )M M M M v v′ ′′= ∪ ∪ ∪  

is a perfect matching of 1 2{ , }nAB v v− . 

Case 3. Both 1v  and 2v  are in layer 0 . 

Suppose 1 1 2(0, )nv x x x= ⋯  and 2 1 2(0, )nv y y y= ⋯ . If 

1 2 1 2( ) ( )n ny y y x x x=⋯ ⋯ , that means 1v  is adjacent to 2v , 

then ( 0,1)i
nAB i =  has a perfect matching, say iM . All level 

edges in layer 0  except 1 2( )v v  induce a perfect matching of 

0 1 2{ , }V v v− , denoted by 2M . Thus 0 1 2M M M M= ∪ ∪  

is a perfect matching of 1 2{ , }nAB v v− . 

If 1 2 1 2( ) ( )n ny y y x x x≠⋯ ⋯ , that means 1v  isn't adjacent 

to 2v . Let 1 1 2(0, )nv x x x′ = ⋯  and 2 1 2(0, )nv y y y′ = ⋯ , and 

( 1,2)iv i′′ =  is the vertex of 
0
nAB  in layer 1  which is 

adjacent to ( 1,2)iv i′ = . From induction hypothesis, 

0
1 2{ , }nAB v v′′ ′′−  has a perfect matching, say 0M , and 

1
nAB  

has a perfect matching, say 1M . Let 2M  be the perfect 

matching of 0 1 2 1 2{ , , , }V v v v v′ ′−  induced by the level edges of 

layer 0  except 1 1( )v v′  and 2 2( )v v′ . Thus 

0 1 2
1 1 2 2( ) ( )M M M M v v v v′ ′′ ′ ′′= ∪ ∪ ∪ ∪  is a perfect matching 

of 1 2{ , }nAB v v− , completing the proof. 

4. Conclusions 

The problem of investigating the strong matching preclusion 

of interconnection networks is very difficult as strong matching 

preclusion that additionally permits more destructive vertex 

faults in a graph is a more extensive form of the original 

matching preclusion that assumes only edge faults. Augmented 

Butterfly networks is an important network, in this paper, the 

strong matching preclusion number for n-dimension Augmented 

Butterfly networks is obtained by induction hypothesis. 

Furthermore, determining the strong matching preclusion 

number for other interconnection networks are under study. 
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