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Abstract: We consider a one-dimensional inverse problem for a partial differential equation of hyperbolic type with sources - 

the Dirac delta-function and the Heaviside theta-function. The generalized inverse problem is reduced to the inverse problem 

with data on the characteristics using the method of characteristics and the method of isolation of singularities. At the beginning, 

the inverse problem of the wave process with data on the characteristics with additional information for the inverse problem 

without small perturbations is solved by the finite-difference method. Then, for the inverse problem of the wave process with 

data on the characteristics with additional information with small perturbations, that is, with small changes is used by the 

finite-difference regularized method, which developed by one of the authors of this article. The convergence of the 

finite-difference regularized solution to the exact solution of the one-dimensional inverse problem of the wave process on the 

characteristics is shown, and the theorem on the convergence of the approximate solution to the exact solution is proved. An 

estimate is obtained for the convergence of the numerical regularized solution to the exact solution, which depends on the grid 

step, on the perturbations parameter, and on the norm of known functions. From the equivalence of the problems, the 

one-dimensional inverse problem of the wave process with sources - the Dirac delta-function and the Heaviside theta-function 

and the one-dimensional inverse problem of the wave process with data on the characteristics, it follows that the solution of the 

last problem will be the solution of the posed initial problem. An algorithm for solving a finite-difference regularized solution 

of a generalized one-dimensional inverse problem is constructed. 

Keywords: One-dimensional Inverse Problem, Wave Process, Dirac Delta-Function, Heaviside Theta-Function,  

Method of Characteristic, Method of Isolation of Singularities, Finite-Difference Regularized Solution 

 

1. Introduction 

Inverse problems are the so-called ill-posed problems, the 

foundations of which were laid by Academicians of the 

Russian Academy of Sciences Andrei N. Tikhonov [1], 

Mikhail M. Lavrentiev [2], Corresponding Member of the 

Russian Academy of Sciences Valentin K. Ivanov [3]. 

The inverse problems of wave processes were considered in 

theoretical terms by the Corresponding members of the 

Russian Academy of Sciences Vladimir G. Romanov [4], 

Sergey I. Kabanikhin [5], professor Valery G. Yakhno [6], and 

they constructed solutions to the posed inverse problems. 
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The regularization method for inverse problems was 

developed by Andrei N. Tikhonov [7], the method of small 

parameters was constructed by Mikhail M. Lavrentiev [8] and 

the quasi-solution method — by Valentin K. Ivanov [9]. The 

projection-difference method for multidimensional inverse 

problems was developed by Sergey I. Kabanikhin [10], the 

finite-difference regularization for Volterra integral equation 

of the first kind was investigated by Abdugany Dzh. Satybaev 

[11] and a regularization estimate is obtained. 

Aliyma T. Mamatkasymova and Abdugany Dzh. Satybaev 

[12] constructed a finite-difference regularized solution and 

obtained a convergence estimate for the inverse problem 

arising in electromagnetic processes. 

The purpose of this work is to numerically solve a 

one-dimensional inverse problem of the wave process 

proposed by the authors by a finite-difference regularized 

method, which allows us to construct a numerical algorithm 

for solving the problem. 

2. Research Overview 

Most of the scientific and technical aspects of the inverse 

problems of wave propagation in the medium and the 

mathematical connections between waves and scatterers are 

determined and presented in work G. Ghavent, G. C. 

Papanicolaou, P. Sacks, W. Symes [13]. 

The book, edited by G. Chavent and P. C. Sabatier [14], 

describes the current state of modeling and the numerical 

solution of wave propagation and diffraction, their 

applications, and features of inverse scattering problems on 

classical and distributed media. 

The article set forth by F. Natterer [15] three major methods 

for solving inverse problems: the method of ray tomography, 

the method of single-particle emission tomography and the 

method of positron-emission tomography and described 

transfer equations transitions near the infrared region to 

elliptic equations in the diffusion approximation. 

In the article by F. Natterer, A. Wiibbeling [16], a numerical 

calculation of the potential in the Helmholtz equation was laid 

out and a method was developed which possesses the stability 

of the solution and the convergence of the solution was shown 

in the order O (h
4
). 

Modern mathematical modeling of various wave processes 

(computed tomography, ultrasonic flaw detection, etc.) in the theory 

of inverse problems and their examples, main features, perspectives 

are presented in the work of Alexander O. Vatulyan [17]. 

In the Andrey V. Bayev’s dissertation work [18] developed 

stable methods for solving inverse problems, determined the 

characteristics of real inhomogeneous layered media, and 

according to experimental information, clarified the time 

parameters of the source of disturbances, and also presented 

practical solutions to a number of actual inverse problems in 

borehole exploration geophysics. 

Dynamic inverse problems, definitions of one or several 

coefficients of hyperbolic equations or systems, methods for 

solving one-dimensional inverse problems, scalar inverse 

problems of wave propagation in layered media, inverse 

problems for the theory of elasticity and acoustic equations are 

given in the monograph of Alexander S. Blagoveshchenskii [19]. 

Alexander V. Avdeev, Vyacheslav I. Priimenko, E. V. 

Gorbunov, D. V. Zvyagin [20] considered the inverse problem 

of electromagneto elasticity with electrodynamics of vibrating 

elastic media. 

In the monograph of Sergey I. Kabanikhin [21] outlines 

methods for studying and solving inverse and ill-posed 

problems of linear algebra, integral and operator equations, 

integral geometry, spectral inverse problems and inverse 

scattering problems; linear ill-posed problems and coefficient 

inverse problems for hyperbolic, parabolic and elliptic 

equations were considered; given extensive reference material. 

A new globally convergent numerical method is developed 

for a multidimensional coefficient inverse problem for a 

hyperbolic PDE with applications in acoustics and 

electromagnetics. On each iterative step the Dirichlet 

boundary value problem for a second-order elliptic equation is 

solved. The global convergence is rigorously established, and 

numerical experiments are presented in works Larisa Beilina, 

Michael V. Klibanov [22]. 

In the book by V. A. Burov and O. D. Rumyantseva [23], 

inverse wave problems and their applied aspects related to linear 

and nonlinear acoustic tomography, as well as acoustic 

thermotomography, are considered. Part I briefly discusses the 

inverse coherent radiation problems, which are characterized by 

incorrectness and a strong degree of non-uniqueness. Various 

approaches to solving inverse wave problems of radiation and 

incoherent problems of active-passive acoustic thermotomography 

are described. It is shown that the active-passive mode allows you 

to determine the set of acoustic and thermal characteristics of the 

medium within the framework of the general tomographic scheme. 

3. Formulation of the Problem 

Wave processes of natural phenomena (earthquakes and 

natural explosions, landslides and lavas), electrodynamics and 

geophysics, etc., are characterized by fields described by 

second-order partial differential equations: 

2( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ), ( , )tt t xx xa x x t b x x t c x x t d x x t e x x t x t Rϑ ϑ ϑ ϑ ϑ ++ = + + ∈          (1) 

where )(),(),(),(),( xexdxcxbxa are the coefficients of the equation (physical parameters of the equation), ),( txϑ is the 

function describing the process. 

For (1) we consider the initial and boundary conditions of the form: 

0 00 0
( , ) 0, ( , ) ( ) ( ),

xt x
x t x t h t r t t Rϑ ϑ δ θ +< =

≡ = + ∈                     (2) 
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here 00,rh  are positive constant numbers, )(tδ is the 

Dirac delta-function, )(tθ is the Heaviside theta-function. 

Let a time-like form be given with respect to the solution of 

the direct problem (1)–(2) 

0
( , ) ( ), [0, ]

x
x t f t t Tϑ

=
= ∈         (3) 

Condition (2) means that the process has been at rest up to 

the time 0=t  and since the time 0=t , in connection with 

the assignment to the boundary 0=x  of sources with forces 

0h  and 0r , the physical wave process is starting. 

Usually, when considering inverse problems, the 

correctness (existence, uniqueness, stability) of a solution is 

established; we established it in the works [24], [25]. 

A. When coefficients are not equal to zero, the direct 

problem (1)–(2) is a problem of hyperbolic type (problems: 

wave equation, acoustics, seismic, electrodynamics, etc.). 

B. When the coefficient 0)( =xa , we have a problem of 

parabolic type (the problems of: diffusion, thermometry, the 

distribution of quasi-stationary electromagnetic fields, etc.). 

C. When coefficients 0)()( == xbxa we have a 

problem of elliptic type (the problems of: gravimetry, 

geoelectrics of stationary fields, etc.). 

The problem (1)–(2) with the following coefficients is 

transformed: 

Problem I. When coefficients 0)()()( === xexdxb

—to the wave equation problem, when 0)( =xb — to the 

oscillations problem; 

Problem II. When )(,0)()(,1)( xcxexbxa === is the 

wave propagation velocity, )(xd is the density of the 

medium—to the acoustics problem; 

Problem III. When )(,0)()( xcxexb == is the wave 

propagation velocity, )()( xxa ρ= is the density of the 

medium, )(xd is the Lame coefficient — to the seismic 

problem; 

Problem IV. When )(,0)()(,1)( xbxdxexa === is 

the electrical conductivity of the medium — to the geoelectric 

problem; 

Problem V. When )(,0)()(,1)( xbxdxexa === is 

the electric permeability — to the telegraph equation problem. 

Problems I, II were investigated by A. Dzh. Satybaev, 

Problem III — by A. A. Alimkanov, IV — by Yu. V. 

Anishchenko, V — by A. Zh. Kokozova. 

The main problem in solving the inverse problems (1)–(3) 

is, firstly, the presence of the Dirac delta-function in the 

boundary condition and secondly, the problem is reduced to a 

system of nonlinear integral equations [10]. 

Let in relation to the coefficients of equation a condition is 

executed 

0( ( ), ( ), ( ), ( ), ( ))a x b x c x d x e x ∈Λ        (4) 

{
}.)(,)(0

,0)(),()(:)(

3)(21

6

0

2 MxaMxaM

OaRCxaxa

RC
≤≤≤<

=+′∈=Λ

+

+
 

In condition (4), the smoothness of the function is given an 

increased one to apply the finite-difference method. Equation 

(1) is a hyperbolic equation, and from the principle of 

dependence on the specification of data, the solution to 

problem (1)–(3) can be considered in the region )(T∆  [10]: 

{ }( ) ( , ) : (0, ), 2T x t x T x t T x∆ = ∈ < < −    (5) 

If condition (4) is met, the additional information is

),0()(
4

TCtf ∈ , and the solution to the problem is

))((),( Ttx ∆∈ϑ . 

The inverse problem consists in determining one of the 

coefficients of the equation (it would be good if all the 

coefficients of the equation are determined simultaneously, 

but for these additional conditions must be specified). 

4. The Inverse Problem 

The inverse problem is to determine the function )(xс

from problem (1) - (2) when specifying the remaining 

coefficients of the equation and when specifying additional 

information about solving the direct problem at the boundary 

0=x , that is, when specifying the function )(tf . 

The direct problem is to determine the function ),( txϑ
when defining the functions )(),(),(),(),( xexdxcxbxa  

satisfying condition (3). 

4.1. Methods for Solving the Differential Problem 

4.1.1. The Method of Characteristic 

We will enter the new variable of 

0

( )
( )

( )

x
a x

z x dx
b x

= ∫               (6) 

and we will enter the new functions of 

).,()),((

),(/)())((),(/)())((

),(/)())((),(/)())((

txtxzV

xaxexzeaxaxcxzca

xaxdxzdaxaxbxzba

ϑ=
==
==

. 

We make some calculations: 

).()),(()()),((),(

),()),((),(

),),((),(),),((),(

2

'

xztxzVxztxzVtx

xztxzVtx

txzVtxtxzVtx

xxzxzzxx

xzx

tttttt

⋅+⋅=

⋅=

==

ϑ
ϑ

ϑϑ
 

Substituting the last calculations into equation (1), we 

obtain 
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),()(),(
)(

)(

)(

)(

2

1
),(

),()(),()(),()(),(),()(),(

tzVzeatzV
zca

zda

zca

zac
tzV

tzVzeatzVzzdatzVzzcatzVtzVzbatzV

z
z

zz

zxzxxzzttt

+











+

′
−+=

+++=+

              (7) 

4.1.2. The Method of Isolation of Singularities 

We single out the singular and regular parts of the solution of the problem by the method of V. G. Romanov [4], 

representing the solution of the problem in the form: 

|)|()(|)|()(),(
~

),( 1 ztzRztzStzVtzV −+−+= θθ                          (8) 

where ),(
~

tzV is a smooth function, )()(1 ttt θθ ⋅= . 

We make some calculations: 

1

( , ) ( , ) ( ) ( | |) ( ) ( | |),

( , ) ( , ) ( ) ( | |) ( ) ( | |),

( , ) ( , ) ( ) ( | |) ( ) ( | |) ( ) ( | |) ( ) ( | |),

( , ) ( , ) ( ) ( | |) 2

t z

tt zz

z z z z

zz zz zz

V z t V z t S z t z R z t z

V z t V z t S z t z R z t z

V z t V z t S z t z S z t z R z t z R z t z

V z t V z t S z t z

δ θ
δ δ
θ δ θ θ

θ

′ = + − + −
′= + − + −

′= + − − − + − − −
′′= + − −

ɶ

ɶ

ɶ

ɶ

1

( ) ( | |) ( ) ( | |)

( ) ( | |) 2 ( ) ( | |) ( ) ( | |).

z

zz z

S z t z S z t z

R z t z R z t z R z t z

δ δ
θ θ δ

′− + − +
′′+ − − − + −

 

Substituting the last calculations into the obtained equation, we obtain 

1

( , ) ( ) ( | |) ( ) ( | |) ( ) ( , ) ( ) ( | |) ( ) ( | |)

( , ) ( ) ( | |) 2 ( ) ( | |) ( ) ( | |) ( ) ( | |)

2 ( ) ( | |) ( ) ( | |) ( ) ( , ) ( )

tt t

zz zz z zz

z z

V z t S z t z R z t z ba z V z t S z t z R z t z

V z t S z t z S z t z S z t z R z t z

R z t z R z t z ga z V z t ga z S

δ δ δ θ

θ δ δ θ
θ δ

 ′+ − + − + + − + − 

′= + − − − + − + − −

− − + − + +

ɶ ɶ

ɶ

ɶ

1 1

( ) ( | |) ( ) ( ) ( | |)

( ) ( ) ( | |) ( ) ( | |) ( ) ( , ) ( ) ( | |) ( ) ( | |)

z

z

z t z ga z S z t z

ga z R z t z gaR z t z ea z V z t S z t z R z t z

θ δ

θ θ θ θ

− − − +

 + − − − + + − + − 
ɶ

      (9) 

Here 

( )1 ( )
( )

2 ( ) ( )

zca z da z
ga z

ca z ca z

′
= − +                                      (10) 

We collect terms with the same factors |)|(|),|(|),|( 1 ztztzt −−− θθδ and equate them to zero: 

[ ]
[ ]

1

: 2 ( ) ( ) ( ) ( ) 0,

: 2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0,

: ( ) ( ) ( ) ( ) ( ) 0.

z

z zz z

zz z

S z ba z ga z S z

R z ba z ga z R z S z ga z S z ea z S z

R z ga z R z ea z R z

δ
θ
θ

′ + + =

′ ′′ ′+ + − − − =
′′ ′+ + =

 

From the boundary condition (2), we obtain 

' ' '

0 00 0 0

(0)
( , ) ( ) ( ) ( , ) (0, ) (0) ( ) (0) ( ) .

(0)
x z x zx z x

a
x t h t r t V z t z V t S t R t

c
ϑ δ θ δ θ

= = =
   = + = ⋅ = + + ⋅  

ɶ  

Here 0),0(
~ ' =tVz

is even function. Equating terms at )(),( tt θδ , we obtain 

.)0(
)0(

)0(
)0(

,)0(
)0(

)0(
)0(

00

00

rcar
a

c
R

hcah
a

c
S

==

==
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From the last obtained expressions, we obtain integral equations of the second kind with respect to )(),( zRzS : 

[ ]0

0

1
( ) (0) ( ) ( ) ( ) , (0, )

2

z

S z ca h ba ga S d z Tλ λ λ λ= − + ∈∫                      (11) 

[ ] '' '

0

0 0

1 1
( ) (0) ( ) ( ) ( ) ( ) ( ) ( ) ( ) , (0, )

2 2

z z

R z ca r ba ga R d S ga S ea S d z Tλλ λλ λ λ λ λ λ λ λ λ = − + + + + ∈ ∫ ∫   (12) 

Taking into account that 0),(
0

≡
<t

tzV , and also from the higher got calculations, we will get a next inverse problem with 

data on the characteristics: 

' ( )
( , ) ( , ) 2 ( ) ( , ) ( ) ( , ) ( ) ( , ), ( , ) ( )

( )

z
tt zz z z

S z
V z t V z t ba z V z t ba z V z t ea z V z t z t T

S z

 
= − + ⋅ − + ∈ ∆ 

 
       (13) 

| |
( , ) ( ), [0, ]

t z
V z t S z z T

=
= ∈                                   (14) 

0
( , ) ( ), [0,2 ]

z
V z t f t t T

=
= ∈                                   (15) 

Here the inverse problem is to determine the functions )(),,( zStzV when known coefficients )(),( zeazba  (they 

depend on known functions )(),(),( zezazb ), and with additional information about solving a direct problem (15). If we 

define the function )(zS from the problem (13)–(15), then by the formula 

( )
( ) 2 ( ), [0, ]

( )

S z
ga z ba z z T

S z

′
= − − ∈                                (16) 

we define the unknown function )(zga . Using the d’Alembert formula for the direct problem (13) – (14), we obtain a 

solution of this problem 

[ ] }
'

0

( )1
( , ) ( ) ( ) / 2 2 ( ) ( , ) ( ) ( , ) ( ) ( , )

2 ( )

t zt

t z

S
V z t f t z f t z ba V ba V ea V d d

S

ξ
ξ

ξ τ
ξ

ξ
ξ ξ τ ξ ξ τ ξ ξ τ τ ξ

ξ

+ −

− +

  = + + − + − + ⋅ − +  
  

∫ ∫  (1

7) 

When zt = , we obtain: 

[ ] }
2 '

0

( )1
( , ) ( ) (2 ) (0) / 2 2 ( ) ( , ) ( ) ( , ) ( ) ( , )

2 ( )

zt

t z

S
V z z S z f z f ba V ba V ea V d d

S

ξ
ξ

ξ τ
ξ

ξ
ξ ξ τ ξ ξ τ ξ ξ τ τ ξ

ξ

−

=

  = = + + − + ⋅ − +  
  

∫ ∫  (18) 

4.2. Methods for Solving the Difference Problem 

4.2.1. Finite-difference Solution 

To solve problem (13) – (15), we enter the grid region 

}( ) 0 .
2

h i k

T
T z ih,t kh,h ,i ,N ; ih kh T ih

N

∆ = = = = = ≤ ≤ −


 

where h is the grid step in tz, . 

The difference analogue of the differential equation (13): 

1 1 1

1 1

2 2

2 2
,( , ) ( )

k k k k k k k k
ki i i i i i i i

i i i

V V V V V V V V
Sba eaV ih kh h T

h h h

+ − −
+ −− + − + −= − + ∈ ∆        (19) 
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where 

1( , ), 2 , ( ), ( )k i i
i i i i i

i

S S
V V ih kh Sba ba ba ba ih ea ea ih

hS

−−= = + = =              (20) 

From (19) we obtain 

1 1 1 2

1 1 1 , 1, 1, ,k k k k k k k k k

i i i i i i i i i i i iV V V V Sba h V V ba h V V ea h V i N k i N i+ − −
+ − −   = + − + ⋅ − + + − − = − = −       (21) 

From the last formula (21) we obtain recurrence formulas: 

1 2 1 2 1 1 2 2

1 1 2 1 1 2 1 1 1 1 1( ) ( ) ,

2, 2; 1, 1

k k k k k k k k k

i i i i i i i i i i i iV V V V hSba V V hba V V ea h V

i N k i N i

+ + + + + + +
− − − − − − − − − − −= + − + − + − −

= − = − − −
 

1 2 1 1 1 1 2 2 1

1 1 1 1 1 2 1 1 1 1 1( ) ( ) ,

2, 2; 2, 2

k k k k k k k k k

i i i i i i i i i i i iV V V V hSba V V hba V V ea h V

i N k i N i

− − − − − − − −
− − − − − − − − − − −= + − + − + − −

= − = − − −
 

Substituting the last recurrence formulas into the right-hand side of formula (21), and then again writing down the 

recurrence formulas for the next term on the right-hand side and supplying again to the right-hand side of (21), etc. continuing 

the process, we obtain the difference analogue of the d’Alembert integral formula (17) (that is, the solution of the problem (13) 

– (14) in the difference form): 

(

) ( )

11 1 2

1

1 1

2 2 2 1 2 2

1

1 1 1 1

( ) / 2 2

,

1, 1; ,

pi
k k i k i k i p

i

p

p pi i
k i p k i p k i p k i p

p p

S S
V f f h ba V

hS

V h ba V V h ea V

i N k i N i

µ µ µ
µ µ

µ µ

µ µ µ µ
µ µ µ µ µ µ

µ µ

−+ + − − − − +
+

= =

− − + − − + − − + − − − +
−

= = = =

 −
= + − + ⋅ −  

 

− + − −

= − = −

∑∑

∑∑ ∑∑
                 (22) 

In the last formula (22), setting 1+= ik , we obtain the difference analogue of formula (18) 

(

) ( )

12 2 0 2 1

1

1 1

2 1 2 1 2 2 2 1

1

1 1 1 1

( ) / 2 2

, 1, 1

pi
i p

i

p

p pi i
p p p p

p p

S S
S f f h ba V

hS

V h ba V V h ea V i N

µ µ µ
µ µ

µ µ

µ µ µ µ
µ µ µ µ µ µ

µ µ

−+ − + +
+

= =

− + + − + + − + − + +
−

= = = =

 −
= + − + ⋅ −  

 

− + − − = −

∑∑

∑∑ ∑∑
            (23) 

Formulas (22) and (23) constitute a system of difference non-linear equations of the second kind. 

The difference equations (22) and (23) are written without small values of )(hO , then for an exact solution with a small 

value of )(hO  it is possible to obtain the same equations (22), (23) by a small quantity )(hO . Let us denote the solution of 

equations with small quantity )(hO by 
11

~
,

~
++ i

k

i SV . 

Then for the difference of the exact approximate solution of the inverse problem ),
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,
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we obtain the following expressions: 
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To estimate (24), (25), we enter the notation 
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We estimate the expressions (24), (25) 
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Here

p

p
p

S

S
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1,0
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Ni
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Using the discrete analogue of the Gronwall – Bellman lemma from the last estimate, we obtain 
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1 ( ) exp 4 16O h
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Theorem 4.1. The conditions (4) and (6), (solution ))((),(
4

TCtzV ∆∈ ) are fulfilled, then the finite-difference solution 

(
i

k

i SV , ) of the inverse problem (13)–(15) constructed converges to the exact solution (
i

k

i SV
~

,
~

) of the inverse problem with a 

speed of order )(hO and has the estimate (30). 

4.2.2. Finite-difference Regularized Solution 

Let the additional information for the inverse problem be given with an error ofε , that is satisfied: 

| ( ) ( ) | ,   is a small numberf t f t
ε ε ε− <                        (31) 



71 Abdugany Dzhunusovich Satybaev et al.:  Development of a Finite-difference Regularized Solution of the  

One-Dimensional Inverse Problem of the Wave Process 

Then for a finite-difference regularized solution of the inverse problem (we denote it by 
εε
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,

1
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formulas of the form (22) and (23): 
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Taking now from formulas (22), (23) of formulas (32), (33), we obtain 
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Taking into account the introduced notation (26), we estimate the last equations: 
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 then from the last expressions we get: 
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Using the Gronwall – Bellman inequality, we obtain 
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[ ]1 exp 4 16z

iZ T BA NS hT BAδ+ = ⋅ ⋅ + + ⋅                                (39) 

Then the estimate of a finite-difference regularized solution of the inverse problem has the form: 

, ( )

1 ( ( )) exp(4 16 )z O h

iZ O h T BA NS hT EAε δ+ = + ⋅ + + ⋅                          (40) 

Theorem 4.2. Suppose that conditions (4), (6) and (31) are satisfied, then the constructed finite-difference regularized solution 

converges to the exact solution of the inverse problem with a speed of order 
)(hO

and has the estimate (40). 

4.2.3. The Algorithm for Obtaining a Finite-Difference Regularized Solution of the Generalized One-Dimensional Inverse 

Problem (1)–(3) 

Thus, the finite-difference regularized solution of the inverse problem (13) – (15) is
)(,,)(, hOi
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i VS εε = , then by formula (16) 

we have: 
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We note that it is possible to obtain from the formula 
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we integrate 
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Using the quadrature formulas for the integral, we obtain the solution of the inverse problem (7), (14), (15): 
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Having determined 
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icaε
we can get: 

, ( ) , ( ) , 0,O h O h
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)(, hO

icε
is a finite-difference regularized solution of the 

equivalent inverse problem (1) – (3). 

Comment. Other coefficients of equation (1) can also be 

recovered by the same method and obtain their 

finite-difference regularized solutions. 

5. Conclusion 

This article investigates the inverse problem of the wave 

process with boundary data of the Dirac delta-function and 

the Heaviside theta-function. The problem is reduced to a 

problem with data on characteristics using the method of 

characteristics and the method of isolation of singularities. 

To the last problem with the data on the characteristics is 

applied the finite-difference method, and to relatively small 

changes with additional information is applied the 

finite-difference regularized method, which developed by A. 

Dzh. Satybaev. For numerical implementation constructed an 

algorithm for solving the problem. 
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