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Abstract: Graphs are excellent mathematical tools applied in many fields such as transportation, communication, informatics, 

economy,…. A network and a flow network is a useful device to solve many problems in many fields in reality. However, most of 

the network applications in traditional graphs have only considered the weights of edges and vertexes independently, in which the 

length of a path is the sum of weights of the edges and the vertexes on the path. However, in many practical problems, weights at 

a vertex are not the same for all paths passing the vertex, but depend on the edges coming to and leaving the vertex. For example, 

the transit time on the transport network depends on the direction of transportation: turn right, turn left or go straight, even some 

directions are forbidden. Furthermore, on a network, there are many types of commodities, each of which are at different costs. 

Types of commodities share the capacity of edges and vertexes. Therefore, it is necessary to study a network with multiple 

commodities at multiple costs. The article builds a model of extended multi-commodity multi-cost network in order to modelise 

practical problems more exactly and effectively. The maximal concurent multi-commodity multi-cost flow limited cost problems, 

that are modelized by implicit linear programming problems. On the basis of duality theory in linear programming, an effective 

polynomial approximation algorithm is developed. 

Keywords: Network, Graph, Multi-cost Multi-commodity Flow, Linear Optimization, Approximation 

 

1. Introduction 

Flows on networks are excelent mathematical means used 

in many applications as communication, transportation, 

economy, informatics, ….. So far, most of the network 

applications in traditional graphs have only considered the 

weights of edges and vertexes independently, in which the 

length of a path is the sum of weights of the edges and the 

vertexes on the path. However, in many practical problems, 

the weight at one node is not the same for all paths passing 

through that node, but also depends on coming and leaving 

edges. For example, the transit time on the transport network 

depends on the direction of transportation: turn right, turn left 

or go straight, even some directions are forbidden. The idea 

of using duality theory of linear programming to solve these 

problems is motivated by the work [1]. Paper [2] proposes 

switching cost only for directed graphs. Therefore, it is 

necessary to build an extended mixed network model in order 

to apply more accurate and effective modeling of practical 

problems. Multi-commodity flow in traditional network 

problems have been studied in the papers [3-11]. 

Multi-commodity singlecost flow problems in extended 

transport networks are studied in the papers [12-22]. The 

papers [23, 24] study maximal multi-commodity multi-cost 

flow problems. The papers [25, 26] study maximal 

multi-commodity multi-cost flow limited cost problems. The 

papers [27] and [28] study maximal concurent flow problems 

on extended multi-commodity multi-cost networks. 

2. Multi-commodity Flows in Extended 

Multi-commodity Multi-cost Network 

Given mixed graph G = (V, E) with node set V and edge set 

E. The edges may be directed or undirected. The symbol Ev is 
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the set of edges incident the node v∈V. There are many types 

of commodities circulating on the network. Commodities 

share the capacities of the edges, but have different costs. The 

undirected edges represent the two-way edge, in which the 

commodities on the same edge, but reverse directions, share 

the capacity of the edge. 

The symbol r is the number of commodity types, qi > 0 is 

the coefficient of conversion of commodity type i, i =1, 2,…, 

r. 

We define the following functions: 

Edge circulating capacity function ce:E→R
*
, where ce(e) is 

the circulating capacity of the edge e∈E. 

Edge service coefficient function ze:E→R
*
, where ze(e) is 

the circulating ratio of the edge e∈E (the real capacity of the 

edge e is ze(e).ce(e)). 

Node circulating capacity function cv:V→R
*
, where cv(u) is 

the circulating capacity of the vertex u∈V. 

Node service coefficient function zv:V→R
*
, where zv(u) is 

the circulating ratio of the vertex v∈V (the real capacity of the 

vertex v is zv(v).cv(v)). 

The tuple (V, E, ce, ze, cv, zv) is called an extended network. 

Edge cost function i, i=1, 2,..., r, bei:E→R
*
, where bei(e) is 

the cost of circulating the edge e∈E a converted unit of 

commodity of type i. Note that with 2-way paths, the cost of 

each direction may be different. 

Node switch cost function i, i=1, 2,..., r, bvi:V×E×E→R
*
, 

where bvi(v,e,e’) is the cost of transferring a converted unit of 

commodity of type i from edge e∈Ev through v∈V to edge 

e’∈Ev. 

The set (V, E, ce, ze, cv, zv,{bei, bvi, qi|i=1..r}) is called an 

extended multi-cost multi-commodity network. 

Note: If bei(e)=∞, commodity of type i is banned from 

passing on path e. If bvi(v,e,e’) = ∞, commodity of type i is 

prohibited from circulating edge e through v to edge e’. 

Let p be the path from vertex u to vertex v through edges ej, 

j=1, 2, …, (h+1), and vertices uj, j=1, 2, …, h as follows 

p = [u, e1, u1, e2, u2, …, eh, uh, eh+1, v] 

The cost of passing a converted unit of commodity of kind i, 

i = 1, 2, …, r, through the path p, is denoted by the symbol 

bi(p), and calculated by the following formula: 

bi(p) =∑
+

=

1

1

)(
h

j

ji ebe +∑
=

+

h

j

jjji eeubv
1

1),,(       (1) 

Given a multi-cost multi-commodity network G=(V, E, ce, 

ze, cv, zv, {bei, bvi, qi|i=1, 2,.., r}). Assume, for each 

commodity type i, i=1, 2, …, r, there are ki source-target pairs 

(si,j, ti,j), j=1, 2, …, ki, each pair assigned a quantity of 

comodity of type i, that is necessary to move from source node 

si,j to target node ti,j. 

Denote Pi,j the set of paths from node si,j to node ti,j in G, 

which commodity of type i can be passed through, i=1, 2, …, r, 

j=1, 2, …, ki. Set 

Pi = ∪
ik

j

jiP
1

,

=
, ∀i=1, …, r                 (2) 

For each path p ∈Pi,j, i=1, 2, …, r, j=1, 2, …, ki, denote xi,j(p) 

the flow of converted commodity of type i from the source 

node si,j to the target node ti,j along the path p. 

Let Pi,e denote the set of paths in Pi passing through the edge 

e, ∀e∈E. 

Let Pi,v denote the set of paths in Pi passing through the 

node v, ∀v∈V. 

A set 

 F = {xi,j(p) | p ∈Pi,j, i=1, 2, …, r, j=1, 2, …, ki}   (3) 

is called a multi-commodity flow on the extended multi-cost 

multi-commodity network, if it satisfies the edge capacity 

constraints: 

( )∑∑ ∑
= = ∈

r

i

k

j Pp

ji

i

ei

px
1 1

,

,

≤ ce(e).ze(e), ∀e∈E   (4) 

and the vertex capacity constraints: 

( )∑∑ ∑
= = ∈

r

i

k

j Pp

ji

i

vi

px
1 1

,

,

≤ cv(v).zv(v), ∀v∈V   (5) 

The expressions 

fvi,j =
( )∑

∈ jiPp

ji px
,

, , i=1, 2, …, r, j=1, 2, …, ki  (6) 

are called the flow value of commodity kind i of the 

source-target pair (si,j,ti,j) of the multi-commodity flow F. 

The expresstions 

fvi = ∑
=

ik

j

jifv
1

, , i=1..r                (7) 

are called the flow value of commodity kind i of the 

multi-commodity flow F. 

The expresstion 

fv = ∑
=

r

i

ifv
1

                   (8) 

is called the flow value of the multi-commodity flow F. 

3. Maximal Concurent Limited Cost 

Multi-commodity Multi-cost Flow 

Problems 

Given an extended linear multi-commodity multi-cost 

network G=(V,E, ce, ze, cv, zv, {bei, bvi, qi|i=1, 2, …, r}). 

Assume, for each commodity type i, i=1, 2, …, r, there are ki 
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source-target pairs (si,j, ti,j), j=1, 2, …, ki, each pair assigned a 

quantity Di,j of commodity of kind i, that is required to 

transferred from source vertex si,j to target vertex ti,j. Given a 

limited cost B. 
The mission of the problem is to find a maximum number λ 

such that there exists a flow converting λ.Di,j unit of 

commodity kind i, i=1, 2, …, r, from source vertex si,j to target 

vertex ti,j, ∀j = 1, 2, …, ki, and the total cost doex not exceed 

the limited cost B. 

Set 

di,j = qi.Di,j, ∀i=1, 2, …, r, ∀j=1, 2,..., ki 

The problem is expressed by an implicit linear 

programming model (P) as follows: 

λ → max 

Satisfies 

( )

( )

( )

( )

,

,

,

,

,

1 1

,

1 1
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1 1
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The dual linear programming problem of (P), called (D), is 

constructed as follows: each edge e∈E is assigned a dual 

variable le(e), each vetex v∈V is assigned a dual variable lv(v), 

each requirement dij is assigned a dual variable zij, ∀i=1, 2, …, 

r, ∀j=1, 2,..., ki, and the cost constraint is assigned a dual 

variable ϕ. The problem (D) states as following: 

, ,

, , ,

1 1

( , ) ( ). ( ). ( ) ( ). ( ). ( ) . min

( ) ( ) , 1,2,..., , 1,2,..., ,
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Now, given p∈P a path from vertex u to vertex v through 

edges ei, i=1, 2, …, (h+1), and vertex ui, i=1, 2, …, h, as 

follows 

p = [u, e1, u1, e2, u2, …, eh, uh, eh+1, v] 

We define the path length of p, denoted by lengthi(p), 

depending on the variables le(e), lv(v) by the following 

formula: 

lengthi(p) = ∑
+

=

1

1

)(
h

j

jele +∑
=

h

j

julv
1

)( + bi(p).ϕ   (9) 

Denote disti,j(le,lv,ϕ) the shortest path length from si,j to ti,j 

calculated by function lengthi(p), ∀i=1, 2, …, r, ∀j=1, 2,..., ki. 

Set 

α(le,lv,ϕ) = ∑∑
= =

r

i

k

j

jiji

i

lvledistd
1 1

,, ),,(. ϕ .  (10) 

Consider the problem (Dα): 

β = 









≥→→ 0,:,:
),,(

),,(
min ** ϕ

ϕα
ϕ

RVlvREle
lvle

lvleD
 

Lemma 3.1. The problem (D) is equivalent to the problem 

(Dα) such that their optimal value are equal and the optimal 

solution of one problem derives the optimal solution of the 

other problem and vice versa. 

Prove 

Denote min(D) and min(Dα), respectively, the optimal 

values of the problem (D) and the problem (Dα). Given 

functions le: E→R
*
, lv:V→R

*
. Set 

le’(e) = le(e) /α(le,lv,ϕ) ∀e∈E, lv’(v) = lv(v) /α(le,lv,ϕ) ∀v∈V, 

ϕ’ = ϕ /α(le,lv,ϕ) and z’i,j = disti,j(le’,lv’,ϕ’)  

= disti,j(le,lv,ϕ) /α(le,lv,ϕ), ∀i=1, 2, …, r, ∀j=1, 2,..., ki. 

We have 
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( )∑
∈pe

ele' + ( )∑
∈pv

vlv'  + bi(p).ϕ’ ≥ z’i,j, 

∀i=1, 2, …, r, ∀j=1, 2,..., ki, ∀p∈Pi,j 
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So (le’,lv’,ϕ’,z’i,j) is an accepted solution of (D) and 

D(le’,lv’,ϕ’) = 
),,(

),,(

ϕα
ϕ

lvle

lvleD
. Hence, 

min(D) ≤ min(Dα)                (11) 

On the contrary, let (le,lv,ϕ, zi,j) be an admitted solution of 

(D). Then, we have: 

zi,j ≤ disti,j(le,lv,ϕ), ∀i=1, 2, …, r, ∀j=1, 2,..., ki 

⇒α(le,lv,ϕ)=∑∑
= =

r

i

k

j

jiji

i

lvledistd
1 1

,, ),,(. ϕ ≥∑∑
= =

r

i

k

j

jiji

i

zd
1 1

,, . ≥ 1 

It follows 
),,(

),,(

ϕα
ϕ

lvle

lvleD
 ≤ D(le,lv,ϕ). Hence, 

min(D) ≥ min(Dα)              (12) 

From (11) and (12) it follows min(D) = min(Dα). 

Next, if (le,lv,ϕ, zi,j) is an optimal solution of the problem 

(Dα), then (le’,lv’,ϕ’,z’i,j) where 

le’(e) = le(e) /α(le,lv,ϕ) ∀e∈E, 

lv’(v) = lv(v) /α(le,lv,ϕ) ∀v∈V, 

ϕ’ = ϕ /α(le,lv,ϕ) and z’i,j = disti,j(le’,lv’,ϕ’)  

 = disti,j(le,lv,ϕ) /α(le,lv,ϕ), ∀i=1, 2, …, r, ∀j=1, 2,..., ki, 

is an optimal solution of problem (D). 

Conversely, if (le,lv,ϕ, zi,j) is an optimal solution of the 

problem (D), then (le,lv,ϕ, zi,j) is an optimal solution of the 

problem (Dα). 

4. Algorithm 

Ideas 

Algorithm is implemented through several phases. Each 

phase consists of k loops, k=k1+k2+ … +kr. At the loop [i,j], 

∀i=1, 2, …, r, ∀j=1, 2,..., ki, of a phase t we move di,j 

converted units of commodity of kind i from source vertex si,j 

to target vertex ti,j. This move is implemented in several steps. 

Algorithm 

◊ Input: Extended multi-cost multi-commodity network 

G=(V,E, ce, ze, cv, zv, {bei, bvi, qi|i=1, 2, …, r}). Assume, for 

each commodity of kind i, i=1, 2, …, r, there are ki 

source-target pairs (si,j, ti,j), j=1, 2, …, ki, each pair assigned a 

quantity of commodity Dij of kind i, that is necessary to move 

from source vertex si,j to target vertex ti,j. Given a limited cost 

B and an approximation ratio ω. Let denote n=|V|, m=|E|. 

◊ Output: 

Maximal concurent multi-commodity flow F represents a 

set of converted commodity flows at edges 

F = {fi,j(e) | e E, i=1, 2, …, r, j=1, 2, …, ki} 

Maximal concurent multi-commodity flow rF represents a 

set of real commodity flows at edges 

rF = {rfi,j(e) | e E, i=1, 2, …, r, j=1, 2, …, ki} 

Total cost Bf ≤ B, maximal concurent coefficient λ. 

◊ Procedure 

//Initialization: Calculate ε and δ 

ε = 1 − 3

1

1

ω+
; δ = 

ε

ε

1

1

1
−










−
++ nm ; 

di,j = Di,j.qi, ∀i=1, 2, …, r, j=1, 2, …, ki; 

le(e) = δ /(ce(e)ze(e)), ∀e E; 

lv(v) = δ /(cv(v)zv(v)); ∀v∈V; 

xi,j(e) = 0, ∀i=1, 2, …, r, j=1, 2, …, ki, ∀e E; 

ϕ = δ /B; 

( ) ( ) ( ) ( )∑∑
∈∈

+
VvEe

vlvvzvvcveleezeecelvleD ).(.).(.=),,( ϕ

+ B.ϕ = (m+n+1)δ; 

t = 0; // phase counts in iteration……while (D(t) < 1) 

//Denote let, lvt, D(t), α(t) the corresponding quantities after 

phase t. 

D(0) =(m+n+1)δ; le0(e) = le(e); ∀e∈E, lv0(v) = lv(v); ∀v∈ V, 

ϕ0 = ϕ; 

do // phases 

{ 

for (i=1; i<=r; i++) 

for (j=1; j<=ki; j++) // loops 

{ 

d’i,j = di,j; 

do // steps 

{ 

Find the shortest path p from si,j to ti,j calculated by function 

lengthi(.). Note that the path p must be valid for commodity of 

type i, i.e., not containing the edge with edge cost ∞ or the 

node with the switch cost ∞, disti,j(le,lv,ϕ) is the shortest path 

p from si,j to ti,j calculated by function lengthi(p), bei(p) is the 

cost of a converted unit of commodity type i on the path p. Set 

c =min{min{ce(e).ze(e)|e∈p},min{cv(v).zv(v)|v∈p}, d’i,j}. 

B’ = c.bi(p); 

f (B’>B) 

∈

∈

∈

∈
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{ 

c = c.B / B’; B’ = B; 

} 

//Flow adjustments: 

∀e∈p, xi,j(e) = xi,j(e) + c; 

le(e) = le(e).(1+ε.c/(ce(e).ze(e))); 

∀v∈p, lv(v)= lv(v).(1+ε.c/(cv(v).zv(v))); 

ϕ = ϕ.(1+ε.B’/B); 

Bf = Bf + B’; 

d’i,j = d’i,j − c; 

D(le,lv,ϕ) = D(le,lv,ϕ) + ε.c.disti,j(le,lv,ϕ); 

} while (d’i,j > 0); 

}// for … for … 

t = t + 1; 

D(t) = D(le,lv,ϕ); 

let(e) = le(e), ∀e∈E; 

lvt(v) = lv(v), ∀v∈V; 

if (D(t)< 1) 

for (i=1; i <= r; i++) 

for (j=1; j <= ki; j++) 

for (e∈E) 

fi,j(e) = xi,j(e);// fi,j(e) denote optimal flow 

} while (D(t) < 1) 

//Modifying the resulting flows F 

Bf = Bf / ; 

for (i=1; i <= r; i++) 

for (j=1; j <= ki; j++) 

for (e∈E) 

fi,j(e) = fi,j(e) / ; 

//Modifying flows on scalar edge 

for (i=1; i<=r;i++) 

for (j=1; j<=ki;j++) 

for e∈E, e scalar 

if fi,j(e)>=fi,j(e’)// e’ is the opposite of the direction e 

{ 

Bf = Bf − fi,j(e’)(bei(e)+bei(e’)); 

fi,j(e)=fi,j(e) − fi,j(e’); 

fi,j(e’)=0; 

} 

else 

{ 

Bf = Bf − fi,j(e)(bei(e)+bei(e’)); 

fi,j(e’)=fi,j(e’) − fi,j(e); fi,j(e)=0; 

} 

//Convert the flow fi,j(e) to the actual flow rfi,j(e) by dividing 

the conversion flow by the conversion coefficient 

rfi,j(e) = fi,j(e)/qi, ∀e∈E, ∀i=1, 2, …, r, j=1, 2, …, ki 

// Maximum approximation coefficient 

λ = (t−1) /
δε
1

log1+ ; 

//The End. 

Proof of algorithm 

◊ Remarks: In (t−1) phases of implementation of the above 

algorithm, ∀i=1, 2, …, r, j=1, 2, …, ki, we have transferred 

(t−1).di,j units of converting commodity type i from si,j to ti,j. 

However, the transferred flow may exceed the throughout 

capacity of the edges. 

The following lemma resolves the above problem 

Lemma 4.1. λ > 

δε
1

log

1

1+

−t

.        (13) 

Proof. Consider any edge e. Initiationly, 

le(e)=δ /(ce(e)ze(e)), ∀e∈E, lv(v)=δ /(cv(v)zv(v)), ∀v∈V,  

  ϕ = δ /B. 

After (t−1) phases implemented, we have D(t−1) < 1, it 

means 

( ) ( ) ( ) ( )∑ ∑
∈

−
∈

−− <++
Ee

t

Vv

tt Bvlvvzvvcveleezeece ,1.).(.).(. 111 ϕ

 

that follows 

let−1(e) < 1/(c(e).ze(e)), ∀e∈E, lvt−1(v)< 1/(cv(v)zv(v)), ∀v∈V. 

Let fe(e) be the sum of the converted units of commodities 

passing e∈E and fv(v) is the sum of the converted units of 

commodities passing v∈V in (t−1) phases. 

Consider e∈E. Suppose in the process of constructing fe(e) 

there is ce(e)ze(e) units of the flow passing e through q steps, 

each step transfers gs converted units of commodity, i.e. 

= ce(e)ze(e). 

Through each step, le(e) is increased by the factor 

(1+ε.gs/(ce(e)ze(e))). So, through q steps, le(e) is increased by 

the factor  

( ) )1()))()(/(.1()()(/(.1 εεε +=+>+ ∑∏ ezeecegezeeceg
s

s

s

s

 We see, for every edge e∈E, for each transfer of ce(e)ze(e) 

converted units of commodities through e, le(e) increases by at 

least one factor (1+ε). 

Similarly, for every node v∈V, for every cv(v)zv(v) 

converted units of commodity passed v, lv(v) increases by at 

least one factor (1+ε). 

On the other hand, the number of times to send ce(e).ze(e) 

converted unit of commodity over each edge e∈E is at least 

fe(e)/(ce(e).ze(e)) and the number of times to send cv(v)zv(v) 

converted unit of commodity through each node v∈V is at 

least fv(v)/(cv(v)zv(v)). 

At this point, the edge and node functions will satisfy the 

following inequality: 

let−1(e) ≥ le0(e).(1+ )fe(e)/(ce(e).ze(e)), ∀e ∈ E 

and 

lvt−1(v) ≥ lv0(v).(1+ )fv(v)/(ve(v).zv(v)), ∀v ∈ V 

δε
1

log1+

δε
1

log1+
∑

s

sg

ε

ε
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Hence inferred 

fe(e) ≤ ce(e).ze(e). 
)(

)(
log

0

1
1

ele

elet−
+ε  < 

ce(e).ze(e). 
))().(/(

))().(/(1
log1

ezeece

ezeece

δε+ = 

ce(e).ze(e). 
δε
1

log1+ , ∀e ∈ E 

and 

fv(v) ≤ cv(v).zv(v). 
)(

)(
log

0

1
1

vlv

vlvt −
+ε  < 

cv(v).zv(v). 
))().(/(

))().(/(1
log1

vzvvcv

vzvvcv

δε+ = 

cv(v).zv(v). 
δε
1

log1+ , ∀v ∈V. 

Thus, divide fe(e) by 
δε
1

log1+ , ∀e ∈ E, that follows fv(v) 

is divided by
δε
1

log1+ , we receive accepted flows. 

The above analysis shows that after (t−1) of phases, ∀i=1, 

2, …, r, j=1, 2, …, ki, we have moved (t−1).di,j converted units 

from si,j to ti,j. However, in order for the flow to be accepted, 

we must divide the flow by 
δε
1

log1+ . So, ∀i=1, 2, …, r, j=1, 

2, …, ki, we move 

δε
1

log

1

1+

−t

. di,j converted units of 

commodities from si,j to ti,j. Then, flow through edge e is no 

greater than ce(e).ze(e), ∀e ∈ E, and flow through v is not 

greater than cv(v).zv(v), ∀v∈V. So, we have 

λ >

δε
1

log

1

1+

−t

.                 (14) 

Lemma 4.2 

Assume β ≥ 1. The algorithm's found flow, after being 

divided by 
δε
1

log1+ , is the concurent maximal flow, where 

δε
1

log

1

1+

−t

 is the maximal coefficient with the approximation 

ratio (1+ω). 

Proof 

Since le and lv functions are incremental after each update, 

D(q) ≤ D(q−1) + ε.α(q),∀q = 1, 2,...,t.      (15) 

Next, we have 

)(

)(

q

qD

α  ≥ β ⇒ α(q) ≤ β
)(qD

, ∀q = 1, 2,..., t.    (16) 

From (15) and (16) we receive: 

D(q) ≤ D(q−1)+ε.D(q)/β, ∀q = 1, 2,..., t, 

⇒ D(q) ≤ βε /1

)1(

−
−qD

 ≤ 2
)/1(

)2(

βε−
−qD

 ≤.... ≤ q

D

)/1(

)0(

βε−
 = 

( )q

nm

βε
δ

/1

).1(

−
++

, ∀q = 1, 2,..., t. 

For β ≥ 1, we have 

D(q)≤ ( )βε
δ

/1

).1(

−
++ nm

1

1

−










−
+

q

εβ
ε

( )βε
δ

/1

).1(

−
++ nm

εβ
ε

−
− )1(q

e
 

≤ ( )ε
δ

−
++

1

).1( nm
εβ

ε
−
− )1(q

e
, ∀q = 1, 2,..., t. 

With regard to stop condition of algorithm D(t) ≥ 1, we have 

1 ≤ D(t) ≤ ( )ε
δ

−
++

1

).1( nm
 

Hence 

1−t

β
 ≤ ( )

δ
εε

ε

)1(

1
ln1

++
−−
nm

          (17) 

Set γ =
1−t

β
 

δε
1

log1+  and entail 
1−t

β
 from (17), we have 

γ <

δ
εε

δ
ε ε

).1(

1
ln)1(

1
log. 1

++
−−

+

nm

= 
)1ln()1( εε

ε
+−

δ
ε

δ

).1(

1
ln

1
ln

++
−
nm

 

For δ = 
ε

ε

1

1

1
−










−
++ nm , we have 

δ
ε

δ

).1(

1
ln

1
ln

++
−
nm

 = (1−ε)−1, 

and so 

γ < 
)1ln()1( 2 εε

ε
+−

 ≤ 
)2/()1( 22 εεε

ε
−−

 ≤ (1−ε)−3 

On the other hand, by duality, we have γ ≥ 1. 

For ε = 1− 3

1

1

ω+
, we have γ<(1+ω). Then, the value λ= 

δε
1

log

1

1+

−t

 is the maximal concurent coefficient with the 

aproximation ratio (1+ω). 

εβ
ε

−
− )1(t

e
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Lemma 4.3 

Assume β <1. Let l >1 such that l.β > 1. Apply the algorithm 

to the requirements 

d’i,j = di,j, ∀i=1, 2, …, r, j=1, 2, …, ki. 

The algorithm's found flow, after divide 

δε
1

log

1

1+

−t

, is the 

maximal concurent flow of the original problem, where the 

maximal coefficient is 

δε
1

log

1
.

1

1+

−t

l  with the approximation 

ratio (1+ω). 

Proof 

According to Lemma 4.2, the algorithm's found flow, after 

dividing by , is the maximal concurent flow of the 

problem to the requirement d’i,j = di,j, ∀i=1..r, j=1..ki. and λ 

= 

δε
1

log

1

1+

−t

 is the maximal coefficient with the aproximation 

ratio (1+ω). 

Hence, λ = 

δε
1

log

1

1+

−t

 is the maximal coefficient with 

the approximation ratio (1+ω) of the original problem. 

Lemma 4.4. The total cost after (t−1) phases does not 

exceed B.
δε
1

log1+ . That means, that after dividing the flows 

by 
δε
1

log1+ , the total cost after does not exceed B. 

Proof 

We have ϕ0 = δ /B. After (t−1) phases we get D(t−1) < 1, t.e. 

( ) ( ) ( ) ( ) .1.).(.).(. 111 <++ −
∈

−
∈

− ∑∑ t

Vv

t

Ee

t Bvlvvzvvcveleezeece ϕ  

It follows ϕt−1 < 1/B. Furthermore, for each transfer of flow 

such that the total cost is augmented by an amount B, ϕ 

increases by at least one factor (1+ε). 

Therefore, denoting x the times of incresing the total cost by 

B, after (t−1) phases, we have ϕ0.(1+ε)x ≤ ϕt−1 ≤ 1/B, suy ra x ≤ 

δε
1

log1+ . 

So, the total cost is B.
δε
1

log1+ . Hence, after dividing the 

flows by 
δε
1

log1+ , the total cost after does not exceed B. 

5. Algorithm Complexity 

Theorem 5.1. 

The algorithm’s complexity is 

O(ω−2.(cemax/dmax).(χ+k).m.n3.log2(m+n+1)), 

 where m is the number of edges, n is the number of vertices 

of the network, k = k1+…+kr, cemax = max{ce(e).ze(e) | e∈E }, 

dmax = max{di,j | i=1,.., r, j=1,..., ki}, and χ =∑∑
= =

r

i

k

j

ji

i

d
1 1

, /cmin,  

with cmin=min{cemin, cvmin}, cemin=min{ce(e).ze(e)| e∈E} 

and cvmin=min{cv(v).zv(v) | v∈V }. 

Proof 

First, we find the number of phases the algorithm has taken. 

According to the proof of lemma 4.2 above and for β = λ, we 

have 

1 ≤ γ =
1−t

β
δε
1

log1+  

⇒ t ≤ 1+β.
δε
1

log1+  ⇒ t = 
δε
1

log1+ .O(β), 

where ε and δ depend on ω. Besides, t depends on β. 

Further, denote imax, jmax indexes satisfying 

dmax = max{di,j | i=1, 2, …, r, j=1, 2, …, ki } = dimax,jmax. 

From the constraint of the problem (P) 

( ) iij

Pp

ji kjridpx
ji

,...,2,1,,..,2,1,.
,

, ==∀≥∑
∈

λ
 

we have 

λ ≤
( )∑

∈ maxmax,

maxmax,

jiPp

ji px
/ dimax,jmax ≤

∑
∈

maxmax,

)().(

jis
Ee

ezec
/ dmax 

≤ 
maxmax,jisE .cemax / dmax ≤ m.cemax /dmax 

that implies 

β = λ ≤ m.cemax /dmax 

⇒ t = 
δε
1

log1+ .O(m.cemax/dmax), 

Replacing δ = 
ε

ε

1

1

1
−










−
++ nm  to the above expresion, we 

have 

t = 
εε ε −
++

+
1

1
log

1
1

nm
.O(m.cemax/dmax).     (18) 

On the other hand, each phase implements k loop, so the 

loop number is k.t. Consider the loop transfering di,j converted 

units of commodities from si,j to ti,j, i=1, 2, …, r, j=1, 2, …, ki. 

Since cmin is the the minimal capacity of edges and nodes, the 

l

1

δε
1

log1+

l

1

l

1

l

1
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number of steps required to execute the loop is not exceeded 

(di,j/cmin+1). The main procedure in each step, finding the 

shortest path from si,j to ti,j, has a complexity of n
3
 [8]. So the 

complexity of the loop is (di,j/cmin+1).n
3
. Hence the 

complexity of each phase is: 

∑∑
= =

r

i

k

j

ji

i

d
1 1

,( /cmin+1).n3= ∑∑
= =

r

i

k

j

ji

i

d
1 1

,( /cmin+1).n3= (χ+k).n3. 

So the algorithm’s complexity is 

t.(χ+k).n3 =
εε ε −
++

+
1

1
log

1
1

nm
.O(m.cemax/dmax).(χ+k).n3 

= O(
εε ε −
++

+
1

1
log

1
1

nm
.m.(cemax/dmax).(χ+k).n3) 

= O(ω−2.(cemax/dmax).(χ+k).m.n3.log2(m+n+1)), 

for ε = 1 − 3

1

1

ω+
 = O(ω) và log2(1+ε)≈ε. 

6. Conclusions 

The contribution defines the maximal concurent limited 

cost flow problems on extended multi-commodity multi-cost 

networks, that can be more exactly and effectively applied to 

model many practical problems. The maximal concurent 

limited cost flow problems are modeled as implicit linear 

optimization problems. On the base of dual theory in linear 

optimization, an effective polynomial approximate algorithm 

is developed. Correctness and algorithm complexity are 

proved. 
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