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Abstract: In this paper, we study the traveling waves for the ratio-dependent predator-prey model with nonlocal diffusion, 

which is devoted to the existence and nonexistence of traveling wave solution. This model incorporates the ratio-dependent 

functional response into the Lotka-Volterra type system, and both species obey the logistic growth. Firstly, we construct a nice 

pair of upper and lower solutions when the wave speed is greater than the minimal wave speed. Then by applying Schauder's 

fixed point theorem with the help of suitable upper and lower solutions, we can obtain the existence of traveling waves when 

the wave speed is greater than the minimal wave speed. Moreover, in order to prove the limit behavior of the traveling waves at 

infinity, we construct a sequence that converges to the coexistence state. Finally, by using the comparison principle, we obtain 

the nonexistence of the traveling waves when the wave speed is greater than 0 and less than the minimal wave speed. The 

difficulty of this paper is to construct a suitable upper and lower solution, which is also the novelty of this paper. Under certain 

restricted condition, this paper concludes the existence and the nonexistence of the traveling waves for the ratio-dependent 

predator-prey model with nonlocal diffusion. 

Keywords: Traveling Wave Solution, Predator-prey Model, Nonlocal Diffusion, Ratio-dependent Functional Response, 
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1. Introduction 

The interaction between the predator and the prey 

constitutes a dynamic relationship that has been one of the 

main topics in ecological research, which is important for 

studying the distribution of organisms and the balance of the 

environment. 

This relationship can be described by the dynamic 

behavior of some mathematical models. To describe the 

predator-prey model, Tanner in [28] considered the following 

ordinary differential system 

�������� = ��	�
1 − ��	�
 − ����	����	�,������� = ���	� �1 − ��������� , 		        (1) 

where ���� = ����� 	�� > 0, � > 0�  denotes the functional 

response to predation suggested by Holling in [15] and � 

denotes the growth rate of predator. The second equation of (1) 

means that the intrinsic population growth rate � affects not 

only the potential increase of the population but also its 

decrease. The classical Lotka-Volterra model and its modified 

models have been studied for the stability of equilibria and the 

existence of traveling waves, see [8, 14, 17, 19, 29, 30]. 

By taking into account the effect of the diffusion, reaction-

diffusion predator-prey models have been established to 

describe the invasion of a predator species [11, 12, 22, 26]. 

Some previous work for dynamics of diffusive Holling-

Tanner predator-prey systems on a bounded region can be 

found in [3, 25]. Zuo and Shi in [31] has studied the reaction-

diffusion Holling-Tanner type predator-prey system with 

ratio-dependent functional response 

� !
 "���#, 	� = $�%%�#, 	� + ��#, 	��1 − ��#, 	�� − ���#, 	���#, 	���#, 	� + '��#, 	� ,���#, 	� = �%%�#, 	� + (��#, 	��1 − ��#, )���#, 	��,  
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the two species move randomly along a one-dimensional 

region R, and the parameter $ > 0  is a rescaled diffusion 

coefficient of the prey species while the diffusion coefficient 

for the predator is rescaled to be 1 . They established the 

existence of traveling wave solution by using the upper and 

lower solutions method and proved the existence of periodic 

traveling wave train by using the Hopf bifurcation theorem. 

Upper-lower solution and Fixed point theory have also be 

used to prove the existence of traveling wave solutions in a 

quasimonotone system, see [13, 16, 20, 21]. 

About the discrete diffusive ratio-dependent predator-prey 

model, Zhang and Su in [27] considered the following system 

*��+����� = ,-�.�	�/ + �.�	� �1 − �.�	�� − ��+����+����+����0�+��� ,��+����� = $,-�.�	�/ + 1�.�	� 21 − �+����+���3 , 	    (2) 

where 4 ∈ ℤ, 	 > 0, $ > 0, ,
7.
 = 7.�8 + 7.98 − 27.  and �, 

' , 1  are positive constants. Zhang and Su obtained the 

existence of invasion traveling wave solution of (2) by 

applying Schauder’s fixed point theorem with the help of 

suitable upper and lower solutions. 

Considering of special diffusion, the standard Laplacian 

operator is corresponding to expected values for individuals 

moving under a Brownian process. But the movement of 

individuals is free and random which can not be limited in a 

small area. So various integral operators have been widely 

applied to describe the nonlocal diffusion. The nonlocal 

reaction-diffusion system takes the form 

*;��#, 	�;	 = $8�< ∗ ��#, 	� − ��#, 	�� + >���#, 	�, ��#, 	��,;��#, 	�;	 = $?�< ∗ ��#, 	� − ��#, 	�� + @���#, 	�, ��#, 	��, 
where <�#� is the diffusion kernel given by 

< ∗ ��#, 	� = A <ℝ �)���# − ), 	�$), < ∗ ��#, 	� = A <ℝ �)���# − ), 	�$).	                                           (3) �< ∗ � − ���#, 	�  and �< ∗ � − ���#, 	�  represent nonlocal 

diffusion processes [1, 10, 23, 24]. Meanwhile, many 

researchers study the properties of the traveling wave 

solution for the reaction-diffusion systems with nonlocal 

diffusion term, see [2, 4, 5, 6, 7, 9]. 

Inspired by these results, we consider the ratio-dependent 

predator-prey model with nonlocal diffusion, that is 

�D��%,��D� = $8�< ∗ ��#, 	� − ��#, 	�� + ��#, 	��1 − ��#, 	�� − E��%,����%,����%,���0��%,�� ,D��%,��D� = $?�< ∗ ��#, 	� − ��#, 	�� + ���#, 	� �1 − ��%,����%,��� , 		                                      (4) 

where ��#, 	� and ��#, 	� are the population densities of the 

prey and predator species at the location #  and time 	 
respectively, < ∗ ��#, 	�  and < ∗ ��#, 	�  are the same as the 

previous (3); the parameters 1 , ' , $F�G = 1,2�  and �  are 

positive constants. The parameters $F�G = 1,2� are diffusion 

rates for the prey and predator individuals, respectively, � is 

the intrinsic growth rate of predator, 1 is the capturing rate, 

and ' is the half-capturing saturation constant. If 1 = 0, then 

the first equation of system (4) is simplified to fisher's KPP 

equation. If the preys are only as food for the predator, that 

is, � ≡ 1 , then the second equation of system (4) is 

simplified to fisher's KPP equation. Some authors obtained 

the nonexistence of traveling wave solutions of predator 

systems by considering the related Cauchy problem of 

fisher's equation, see [31]. Throughout this paper, we need 

the below assumptions of the kernel function <. 
Assumption 1.1 �I8� The function < is a smooth function 

in ℝ  and satisfies < ∈ J8�ℝ� , <�)� = <�−)� ≥ 0 , A <ℝ �)�$) = 1. �I?�  There exists LM ∈ �0, +∞
  such that A <ℝ �)�O9PQ$) < +∞  for any L ∈ 
0, LM� , and A <ℝ �)�O9PQ$) → +∞ as L → LM − 0. 

In this work, we mainly study the existence of the 

traveling wave solution which connects the predator free 

state �1,0� with the coexistence state �T, T� of the system (4), 

where T = 1 − E0�8 > 0 , when 0 < 1 < ' . We will obtain 

that there exists U∗ > 0 such that for U > U∗, the system (4) 

admits traveling wave solution with wave speed U ; for 0 < U < U∗, the system (4) has no invasion traveling waves 

with wave speed U. Due to the nonlocal diffusion effect, it is 

more hard to obtain the uniform boundness of solutions. To 

overcome the difficulties, we construct an invariant cone in a 

large bounded domain with initial functions being defined 

on, then pass to the unbounded domain by limiting argument. 

This paper is organized as follows. In the following 

section, we introduce some preliminaries which will be used 

in the proof of our main results. In Section 3, we will use 

Schauder’s fixed point theorem under the assumption of the 

compactly supported for the kernel function < and to prove 

the existence of the traveling waves. Finally, we obtain the 

nonexistence of the traveling waves by the comparison 

principle. 

2. Some Preliminaries 

In this section, we will give some useful results for the 

proof of the existence of the traveling wave solution for the 

system (4). The traveling wave solution means a solution of 

the form ���# + U	�, ��# + U	�� . Let V = # + U	 , then ���V�, ��V�� satisfies 

�U�′�V� = $8 A <ℝ �)����V − )� − ��V��$) + ��V��1 − ��V�� − E��X���X���X��0��X� ,U�′�V� = $? A <ℝ �)����V − )� − ��V��$) + ���V� �1 − ��X���X�� . 	                                        (5) 
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Then we can get characteristic equations 

Y�Z,[�L, U� : = $F A <ℝ �)�O9PQ$) − $F − UL + ],	                                                                  (6) 

Where $F and ] are non-negative constants. By a direct calculation, for U > 0 and L > 0, we can obtain Y�Z,[�0, U� = ],	especially	Y�Z,M�0, U� = 0	and	Y�Z,^�0, U� = � > 0,  D_`Z,a�P,b�Db = −L < 0, D_`Z,a�M,b�DP = −U < 0	and	 D_`Z,a�P,b�DPc > 0.  
In view of the above properties of the function Y�Z,[�L, U�, we can get the following lemma. 

Lemma 2.1. For any given 0 < U < U∗, then Y�Z,^�L, U� > 0 for any L > 0. Moreover, for any U > U∗, there exist positive 

constants L?�U� < L∗ < L8�U� < Ld�U� such that 

	Y�Z,^�L, U� = �= 0, L = L?�U�, L = Ld�U�,> 0, L ∈ �0, L?�U�� ∪ �Ld�U�, +∞�,< 0, L ∈ �L?�U�, Ld�U��, 	  
	Y�Z,M�L, U� = �= 0, L = L8�U�,> 0, L ∈ �L8�U�, +∞�,< 0, L ∈ �0, L8�U��.   

In the sequel, we always assume that U > U∗ and simply denote LF�U� by LF for G = 1,2,3, respectively. 

Definition 2.1. If the functions ��, ��, �9, �9 satisfy the following inequalities 

g���, ����V� : = U����V��h − $8�< ∗ ���V� − ���V�� − ���V��1 − ���V�� + E�i�X��i�X��i�X��0�i�X� ≥ 0,	                        (7) 

g��9, ����V� : = U��9�V��h − $8�< ∗ �9�V� − �9�V�� − �9�V��1 − �9�V�� + E�j�X��i�X��j�X��0�i�X� ≤ 0,                         (8) 

g���, ����V� ≔ U����V��h − $?�< ∗ ���V� − ���V�� − ����V� + � ��i�X��c�i�X� ≥ 0,                                      (9) 

g��9, �9��V�:= U��9�V��h − $?�< ∗ �9�V� − �9�V�� − ��9�V� + � ��j�X��c�j�X� ≤ 0,                                    (10) 

for V ∈ ℝ ∖ n with some finite set n = {V8, V?, ⋯⋯Vq} and have no derivatives at VF�G = 1,2,⋯⋯ , s�, then the functions ���, ��� and ��9, �9� are called a pair of upper and lower solutions of the system (5). 

3. The Existence of Traveling Waves 

3.1. Upper and Lower Solutions of The System (5) 

Define 

���V� = �1, V ≤ ?t ln
E0 ,1 − Eu8�0u , V > ?t ln
E0 ,   

�9�V� = �1 − 0E OtX , V ≤ ?t ln
E0 ,1 − E0 , V > ?t ln
E0 ,	                                                                               (11) 

���V� = min w 0Ec OPcX , 1x , �9�V� = max w0, 0Ec OPcX�1 − yOzX�x,                                          (12� 
where 0 < 1 < ', 0 < { < L?	and	$8 A <ℝ �)�O9tQ$) − {U − $8 < 0,                                            (13) 

| ∈ �0, ���V��, } ∈ �0,	min{L?, Ld − L?}�,	                                                            (14) 

and y > 1 satisfies 
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y = ^0c9Ec�09E�_`Z,~�Pc�z,b� + Ec0 + 1.	                                                                        (15) 

Lemma 3.1. Let U > U∗, the functions ���, ��� and ��9, �9� are a pair of upper and lower solutions of the system (5) which 

are defined as in (11)-(12). 

Proof. Firstly, we show that (7) holds. If V ≤ ?t ln
E0, ���V� = 1, we can obtain 

g���, ����V� = E�i�X�8�0�i�X� > 0,	where	���V� > 0.  
If V > ?t ln

E0, ���V� = 1 − Eu8�0u, 

g���, ����V� = ���V� ����V� − 1 + E�i�X��i�X��0�i�X��≥ �� � E�i�X�8�0�i�X� − Eu8�0u� > 0,   

where we use | < ���V� and the function 
E%8�0% is increasing in #, when 1 > 0. 

Next, if V > ?t ln
E0, �9�V� = 1 − E0, then 

g��9, ����V� = −$8 �1 − E0�A <ℝ �)�$) + $8 �1 − E0� − �1 − E0� E0 + E�89����i�X�89���0�i�X�= �1 − E0� � E�i�X�89���0�i�X� − E0� ≤ �1 − E0� �E0 − E0� = 0.   

For V ≤ ?t ln
E0 < 0 , �9�V� = 1 − 0E OtX  and ���V� = min{ 0Ec OPcX , 1} ≤ 0Ec OPcX ≤ 0Ec OtX  since 0 < { < L? . By easy 

calculation and the similar above argument, we can get that 

1 − �9�V� − E�i�X��j�X��0�i�X� = 0E OtX − E�i�X�89������0�i�X�  
≥ 0E OtX − �����89�������c�c��� ≥ 0E OtX − �����89����������� = 0.  

Hence, with (13), we obtain 

g��9, ����V� = −U{ 0E OtX − $8 A <ℝ �)��1 − 0E Ot�X9Q��$) + $8 �1 − 0E OtX�−�9�V� �1 − �9�V� − E�i�X��j�X��0�i�X��= 0E OtX-$8 A <ℝ �)�O9tQ$) − U{ − $8/ − �9�V� �1 − �9�V� − E�i�X��j�X��0�i�X��≤ −�9�V� �1 − �9�V� − E�i�X��j�X��0�i�X�� ≤ 0.
  

So the (8) holds. 

Then, we show that (9) holds. It is clear that 

���V� = �1, V ≥ 8Pc ln
Ec0 ,0Ec OPcX , V < 8Pc ln
Ec0 .  

For V ≥ 8Pc ln
Ec0 , ���V� = 1. That is 

g���, ����V� = −� + ^�i�X� ≥ 0.  
For V < 8Pc ln

Ec0 , ���V� = 0Ec OPcX. We can deduce 

g���, ����V� ≥ − 0Ec OPcX�$? A <ℝ �)�O9PcQ$) − $? − UL? + �� + � 0cE� O?PcX .  
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By the definition of Y�Z,^�L, U� and Lemma 2.1, we can get 

g���, ����V� ≥ � 0cE� O?PcX > 0.  
Lastly, we prove that (10) holds. For V ≥ 8z ln

8�, �9�V� = 0 and with (14), we get 

g��9, �9��V� : = 0.  
For V < 8z ln

8� < 0, �9�V� = 0Ec OPcX�1 −yOzX�, we have 

g��9, �9��V�≤ U �L? 0Ec OPcX − �L? + }� 0EcyO�Pc�z�X�−$? �A <ℝ �)� � 0Ec OPc�X9Q� − 0EcyO�Pc�z��X9Q�� $) − 0Ec OPcX + 0EcyO�Pc�z�X�−� � 0Ec OPcX − 0EcyO�Pc�z�X� + � � ��c��c�9 ��c����ci����c89��≤ − 0Ec OPcX-$? A <ℝ �)�O9PcQ$) − $? − UL? + �/ + � � ��c��c�9 ��c����ci����89��
0Ec OPcX+ 0EcyO�Pc�z�X-$? A <ℝ �)�O9�Pc�z�Q$) − $? − U�L? + }� + �/= 0EcyO�Pc�z�X-$? A <ℝ �)�O9�Pc�z�Q$) − $? − U�L? + }� + �/ + � 0�E��09E� O?PcX−� 0�E��09E�yO�?Pc�z�X≤ 0EcyO�Pc�z�X-$? A <ℝ �)�O9�Pc�z�Q$) − $? − U�L? + }� + �/ + � 0�E��09E� O?PcX≤ 0EcyO�Pc�z�X-$? A <ℝ �)�O9�Pc�z�Q$) − $? − U�L? + }� + �/ + � 0�E��09E� ≤ 0,

  

where use the facts that �9�V�? ≤ �9�V� 0Ec OPcX, (6) and Lemma 2.1, (14)-(15), this completes the proof. 

Now we define � > max{8z lny, ?t ln
0E} and a function set 

�� = ����⋅�, ��⋅�� ∈ J�
−�, �
, ℝ?� ���−�� = �9�−��, ��−�� = �9�−��,�9�V� ≤ ��V� ≤ ���V�, �9�V� ≤ ��V� ≤ ���V�
for	any	V ∈ 
−�, �
. �. 

For any ���⋅�, ��⋅�� ∈ J�
−�, �
,ℝ?�, we define 

���V� = �����, V > �,��V�, |V| ≤ �,�9�−��, V < −�, ���V� = �����, V > �,��V�, |V| ≤ �,�9�−��, V < −�,  
and consider the following initial value problems 

U�h�V� = $8 A <ℝ �)� ����V − )� − ��V�� $) + ��V��1 − ��V�� − E��X���X���X��0��X�,                                      (16) 

U�h�V� = $? A <ℝ �)�����V − )� − ��V��$) + ���V� �1 − ��X���X��,                                                 (17) 

with ��−�� = �9�−��, ��−�� = �9�−��.	                                                                           (18) 

Obviously, the problems (16)-(18) admit a unique solution ����⋅�, ���⋅��  satisfying ���⋅� ∈ J8�
−�, �
�  and ���⋅� ∈J8�
−�, �
�. Then, we define an operator ℱ = �ℱ8, ℱ?�: �� → J�
−�, �
� by ℱ8
�, �
�V� = ���V� and ℱ?
�, �
�V� = ���V� 
for V ∈ 
−�, �
. 

Lemma 3.2. The operator ℱ maps �� into ��. 

Proof. For any ���⋅�, ��⋅�� ∈ ��, we should prove that ℱ8
�, �
�−�� = �9�−��,   ℱ?
�, �
�−�� = �9�−��,  
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and �9�V� ≤ ℱ8
�, �
�V� ≤ ���V�, �9�V� ≤ ℱ?
�, �
�V� ≤ ���V� for	any V ∈ 
−�, �
.  
By the definition of the operator ℱ, it is obvious to see that ℱ8
�, �
�−�� = ���−�� = �9�−��,   ℱ?
�, �
�−�� = ���−�� = �9�−��.  
Then according to Lemma 3.1 and direct calculation, we can directly obtain �9�V� ≤ ℱ8
�, �
�V� ≤ ���V�, �9�V� ≤ ℱ?
�, �
�V� ≤ ���V� for	any V ∈ 
−�, �
.  
This ends the proof. 

Lemma 3.3. The operator ℱ: �� → �� is completely continuous. 

Proof. We first show that ℱ is continuous. By a direct calculation, we get that 

ℱ8
�, �
 = ���V� = �9�−��exp w− 8b A �$8 + ���� + E���������0�����X9� $�x+ 8b A exp
X9� w− 8b A �$8 + ���� + E���������0�����Xz $�x ->��}� + ��}�/$},                    (19) 

and 

ℱ?
�, �
 = ���V� = �9�−��exp w− 8b A �$? + � ���������X9� $�x+ 8b A exp
X9� w− 8b A �$? + � ���������Xz $�x 
$@��}� + ���}�
$},                              (20) 

where 

>��}� = A <9�9� �} − )��9�)�$) + A <�9� �} − )���)�$) + A <��� �} − )�����$),  
and 

@��}� = A <9�9� �} − )��9�)�$) + A <�9� �} − )���)�$) + A <��� �} − )�����$).  
For ∀ ��8�⋅�, �8�⋅��, ��?�⋅�, �?�⋅�� ∈ ��, we have that 

|>���}� − >�c�}�| ≤ �A <�9� �} − )�
�8�)� − �?�)�
$)� +  A <��� �} − )�
�8��� − �?���
$) ≤ 2 maxQ∈
9�,�
|�8�)� − �?�)�|,   

and ∣ @���}� − @�c�}� ∣≤ 2 maxQ∈
9�,�
|�8�)� − �?�)�|.  
Combining with the continuity of the compound function, ℱ is continuous. 

Next we confirm that ℱ is compacted, thus we should prove that for any bounded subset ¢ ⊂ ��, ℱ�¢� is precompact. By 

the definition of ℱ, we have that for all ���, ��� ∈ ℱ�¢�, there exists ��, �� ∈ ¢ such that ℱ
�, �
�V� = ���, ����V�,  ∀ V ∈ 
−�, �
.  
Since ��, �� ∈ ¢, in (19) and (20), we obtain that ∣ ���V� ∣≤ y8 and  ∣ ���V� ∣≤ y8,  ∀ V ∈ 
−�, �
,  

where y8 > 0 is a constant. That is, ℱ�¢� is uniformly bounded. Further, according to the equations (16), (17) and the above 

inequality, then there exists some constant y? > 0 such that ∣ �′��V� ∣≤ y?   and   ∣ �′��V� ∣≤ y?,  ∀ V ∈ 
−�, �
.  
So we can get that ℱ�¢� is equicontinuous. By Arzela-Ascoli Theorem, then we have that ℱ�¢� is precompact. Thus we 

establish that ℱ: �� → �� is completely continuous with respect to the maximum norm. 

Theorem 3.1. The operator ℱ has a fixed point in ��. 

Proof. By the definition of �� , it is easy to see that ��  is closed and convex. Thus, according to Lemma 3.3 and using 

Schauder’s fixed point theorem, there exists ���∗�⋅�, ��∗�⋅�� ∈ �� such that 
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���∗�V�, ��∗�V�� = ℱ
��∗ , ��∗
�V�, ∀V ∈ 
−�, �
.  
To obtain the existence of solutions for (5), we need some estimates about ���∗�⋅�, ��∗�⋅��. For the sake of convenience, we 

use ����⋅�, ���⋅�� instead of ���∗�⋅�, ��∗�⋅��. 
Assumption 3.1. �Id� The kernel function < is compactly supported. 

Lemma 3.4. Assume that �I8� − �Id� hold, then there exists some constant J > 0 such that ∥ �� ∥¥�,��
9¦,¦
�< J  and   ∥ �� ∥¥�,��
9¦,¦
�< J  

for any 0 < ( < �, where � > max{8z lny, ?t ln
0E}. 

Proof. By Theorem 3.1, we have that ����⋅�, ���⋅�� satisfies 

U�′��V� = $8 �A <ℝ �)�����V − )�$) − ���V�� + ���V�
1 − ���V�
 − E�§�X��§�X��§�X��0�§�X�,                                  (21) 

and 

U�′��V� = $?�A <ℝ �)�����V − )�$) − ���V�� + ����V� �1 − �§�X��§�X��,                                               (22) 

where 

����V� = � �����, V	 > �,���V�, |V| ≤ �,�9(−�), V < −�,	���(V) = � ��(�), V	 > �,��(V), |V| ≤ �,�9(−�), V < −�.  
Following that 1 − E0 ≤ ��(V) ≤ 1, 0 < ��(V) ≤ 1 for V ∈ [−(, (], we have 

|�′�(V)| ≤ ��b  A <ℝ ())���(V − ))$)  + ��b |��(V)| + 8b |��(V)(1 − ��(V))| + Eb |�§(X)�§(X)||�§(X)�0�§(X)|
≤ ?������ ���j�b ,   

and 

|�′�(V)| ≤ �cb  A <ℝ ())���(V − ))$)  + �cb |��(V)| + b̂ ���(V) �1 − �§(X)�§(X)��≤ ?�c�^/©b .   

So there exists some constant J8 > 0 such that ∥ �� ∥¥�([9¦,¦])< J8 and ∥ �� ∥¥�([9¦,¦])< J8. It is obvious to obtain that 

|��(V) − ��(})| < J8|V − }|  and  |��(V) − ��(})| < J8|V − }|                                           (23) 

for any V, } ∈ [−(, (]. In view of (3.11), we have 

U|�′�(V) − �′�(})| ≤ $8 A <ℝ ())[���(V − )) − ���(} − ))]$)  + $8|��(V) − ��(})|+|��(V)[1 − ��(V)] − ��(})[1 − ��(})]|+ E0(09E) |��(V)��(V) − ��(})��(})|: = $8ª8 + $8ª? + ªd + E0(09E)ª©.
                         (24) 

By the conditions (I8) − (Id), we can assume that « is its Lipschitz constant and ¬ is the radius of supp <. Then, we have 

ª8 = �A <�­9­ ())���(V − ))$) − A <�­9­ ())���(} − ))$)�= �A <X�­X9­ (V − ))���())$) − A <z�­z9­ (} − ))���())$)�≤ �A <X�­z�­ (V − ))���())$)� + �A <z9­X9­ (V − ))���())$)�+ �A [z�­z9­ <(V − )) − <(} − ))]���())$)�≤ 2(∥ < ∥®¯+ ¬«)|V − }|,
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ªd = |���V� − ��?�V� − ���}� + ��?�}�|≤ |���V� − ���}�| + |��?�V� − ��?�}�|≤ 3|���V� − ���}�|,   

and ª© = |���V����V� − ���}����}�|≤ |���V� − ���}�||���V�| + |���}�||���V� − ���}�|≤ |���V� − ���}�| + |���V� − ���}�|.   

Combining (23) and (24), we obtain that there exists some constant «? > 0 such that |�′��V� − �′��}�| ≤ «?|V − }|.  
Then applying with (19), we also have U|�′��V� − �′��}�| ≤ $? A <ℝ �)�
����V − )� − ����} − )�
$)  + $|���V� − ���}�|+� ����V� �1 − �§�X��§�X�� − ���}� �1 − �§�z��§�z���: = $?°8 + $?°? + �°d.                                (25) 

Similar to the same argument of ª8, we have that °8 =  A <ℝ �)�����V − )�$) − A <ℝ �)�����} − )�$) ≤ 2�∥ < ∥®¯+ ¬«�|V − }|.   

Then, by (23), (25) with 

°d ≤ |���V� − ���}�| + ��§c�X��§�z�9�§c�z��§�X��§�X��§�z� �
≤ |���V� − ���}�| + |�§c�X�9�§c�z�||�§�X�| + |�§c�z�||�§�z�9�§�X�||�§�X��§�z�|≤ |���V� − ���}�| + ?009E |���V� − ���}�| + 0c�09E�c |���}� − ���V�|≤ d09E09E |���V� − ���}�| + 0c�09E�c |���}� − ���V�|,

  

we can get that |�′��V� − �′��}�| ≤ «?|V − }|  
for any V, } ∈ 
−(, (
. So we have obtained that there exists a constant J > 0 for any ( satisfying ( < � independent of � > max{8z lny, ?t ln

0E} such that 

∥ �� ∥¥�,��
9¦,¦
�< J  and   ∥ �� ∥¥�,��
9¦,¦
�< J.  
3.2. Existence of Traveling Waves 

Theorem 3.2. Assume that �I8� − �Id�  hold. For any U > U∗ , there exists a pair function ��±�V�, �±�V��  satisfying (5), ��±�−∞�, �±�−∞�� = �1,0� and ��±�+∞�, �±�+∞�� = �T, T�, where T = 1 − E0�8. 
Proof. Choosing an increasing sequence{�q}q²8��  such that limq→�� �q = +∞ and �q > max{8z lny, ?t ln

0E} for each s. For 

every U > U∗, there exists ���¶ , ��¶� ∈ ��¶ which satisfies Lemma 3.4 and equations (21), (22) in V ∈ 
−�q, �q
. According to 

the estimates for the sequence {���¶ , ��¶�} in Lemma 3.4, we can extract a subsequence by a standard diagonal extract 

argument, denoted by {���¶· , ��¶·�}¸∈¹, tending towards ��±, �±� ∈ J8�ℝ� in the following topologies 

��¶· → �±  and  ��¶· → �±  in  Jº»b8 �ℝ�	as	T → +∞.  
By the assumption of the kernel function <�)� and applying the dominated convergence theorem, we can obtain that 

lim¸→��A <ℝ �)����¶·�V − )�$) = A <ℝ �)��±�V − )�$),  
and 
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lim¸→��A <ℝ �)����¶·�V − )�$) = A <ℝ �)��±�V − )�$)  

for any V ∈ ℝ. Then, it is easy to show that ��±, �±� satisfies system (5) and �9�V� ≤ �±�V� ≤ ���V�, �9�V� ≤ �±�V� ≤ ���V�.  
By the above inequality, we can further get that ��±, �±� satisfies ��±�−∞�, �±�−∞�� = �1,0�, and 

1 − E0 ≤ liminf	X→�� �±�V� ≤ limsup	X→�� �±�V� ≤ 1 − Eu8�0u ,  0 ≤ liminfX→�� 	�¼�V� ≤ limsupX→�� 	�¼�V� ≤ 1                           (26) 

Since	limsupX→�� 	�¼�V� ≤ 1 − Eu8�0u and liminf	X→�� �±�V� > 0, there exist	V > VM  and |M ∈ �0,1 − E0� such that �±�V� ≤ 1 − Eu½8�0u½  and |M ≤ �±�V� for any V > VM, then by (26), we get that 

|M < �±�V� ≤ 1 − Eu½8�0u½   and  |M ≤ �±�V� ≤ 1                                                               (27) 

for any V > VM. Now, we introduce a sequence {¾q}q¿M defined by 

À¾M = 1, ¾8 = |M,1 − ¾q�8 = EÁ¶Á¶j��0Á¶ , s ≥ 1.  
By direct calculation, we can get that the sequences {¾?q}q¿M and {¾?q�8}q¿M are adjacent. They converge to T and satisfy 

for each s ≥ 0, 

¾8 < ¾d < ⋯ < ¾?q�8 < ⋯ < 1 − E8�0 < ⋯ < ¾?q < ⋯ < ¾? < ¾M.  
Next, we prove that ¾?q�8 ≤ �±�V� ≤ ¾?q�?   and  ¾?q�8 ≤ �±�V� ≤ ¾?q                                                                (28) 

for all s ≥ 0 and V > VM. According to the inequality (27), this inequality (28) holds true for s = 0. Let us now argue by 

induction on s. Assume that (28) hold true for all s ≥ 1 and let us prove that (28) holds true for s + 1. Since �±�V� ≤ ¾?q�?, 

then �±�V� satisfies 

U�±′�V� − $? A <ℝ �)�
�±�V − )� − �±�V�
$) − ��±�V� �1 − �±�X�Ác¶ic� ≤ 0  for  V ≥ VM.  
which means that �±�V� is the subsolution of the equation 

U�±′�V� − $? A <ℝ �)�
�±�V − )� − �±�V�
$) − ��±�V� �1 − �±�X�Ác¶ic� = 0  for  V ≥ VM.                                   (29) 

Since ¾?q�? is a solution of the equation (29), we can get that �±�V� ≤ ¾?q�? for all V ≥ VM. Then we can get that �±�V� 
satisfies 

U�±′�V� − $8 A <ℝ �)�
�±�V − )� − �±�V�
$) − �±�V�
1 − �±�V�
 + EÁc¶ic�¼�X�Ác¶j��0Ác¶ic ≥ 0  for  V ≥ VM.  
which means, �±�V� is the supersolution of the equation 

U�±′�V� − $8 A <ℝ �)�
�±�V − )� − �±�V�
$) − �±�V�
1 − �±�V�
 + EÁc¶ic�¼�X�Ác¶j��0Ác¶ic = 0  for  V ≥ VM.  
Using the fact that 1 − ¾?q�d = EÁc¶icÁc¶i��0Ác¶ic for s ≥ 0, we 

can get that �±�V� ≥ ¾?q�d for V ≥ VM. By the same arguments 

as before and �±�V� ≥ ¾?q�d, one can easy to conclude that �±�V� ≥ ¾?q�d for V ≥ VM. Then we can use the result to get 

that �±�V� ≤ ¾?q�© for V ≥ VM. Thus (28) holds true for s + 1. 

Letting s → +∞ of (28), we can obtain that 

�±�V� ≡ 1 − E0�8 ,   �±�V� ≡ 1 − E0�8  
for V ≥ VM. So we can get �±�+∞� = �±�+∞� = 1 − E0�8. This 

completes the proof of the theorem. 

4. Nonexistence of Traveling Waves 

In this section, we will establish the nonexistence of 

traveling waves for (5) when 0 < U < U∗ . When the initial 

value is given, the traveling wave system becomes a single 

fisher's equation. So we can use the comparison principle to 

prove the non-existence of traveling wave solutions. Firstly, 

we consider an associated Cauchy problem for Fisher’s KPP 

equation with the nonlocal diffusion 
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ÂDÃ�%,��D� = $�< ∗ ª�#, 	� − ª�#, 	�� + ª�#, 	��1 − ª�#, 	��,ª�#, 0� = Ä�#�, # ∈ ℝ,    (30) 

where < satisfies condition �I8� − �I?�, d is a constant, and 

the initial function Ä�#�  is uniformly continuous and 

bounded. In view of [18], we have the following Lemmas of 

system (30). 

Lemma 4.1. Assume that 0 ≤ Ä�#� ≤ 1. Then system (30) 

admits a solution for all # ∈ ℝ  and 	 > 0 . If Å�#, 0�  is 

uniformly continuous and bounded, and Å�#, 	� satisfies 

À;Å�#, 	�;	 ≥ �≤�$�< ∗ Å�#, 	� −Å�#, 	�� +Å�#, 	���1 −Å�#, 	��,Å�#, 0� ≥ �≤�Ä�#�, # ∈ ℝ,  

then there holds Å�#, 	� ≥ �≤�ª�#, 	�, # ∈ ℝ, 	 > 0. 
Lemma 4.2. Assume that Ä�#� > 0. Then for any 0 < U <U∗, we have 

liminf�→�� inf|%|Æb�ª�#, 	� = limsup�→�� sup|%|Æb�ª�#, 	� = 1. 
Lemmas 4.1-4.2 can be directly derived from the theorem 

2.3 and 3.5 of [18]. 

Theorem 4.1. For any speed 0 < U < U∗ , there exists no 

nontrivial positive solution ���V�, ��V�� of (5) satisfying 

limX→9����V�, ��V�� = �1,0�	's$	 limX→�����V�, ��V�� = �T, T�. (31) 

Proof. By contradiction, we suppose that there exists some U8 < U∗  such that system (5) has a positive solution ���V�, ��V�� satisfying (31). Then ��V� is bounded on ℝ. We 

can find a positive constant ¬? such that ��V� = ��# + U8	� 
satisfies 

À;��#, 	�;	 ≥ $?�< ∗ ��#, 	� − ��#, 	�� + ���#, 	���1 − ¬?��#, 	��,��#, 0� = ��#� > 0.  

Let #�	� = − �b��b∗�? 	 . Then |#�	�| = �b��b∗�? |	| < U∗	 . 

From Lemmas 4.1-4.2, we obtain 

liminf�→�� inf|%|²�Ç�iÇ∗�c ���#, 	� ≥ 8­c > 0.  
On the other hand, let #�	� + U8	 = �b�9b∗�? 	, then 

V = # + U8	 → −∞	as		 → +∞,  
and 

limsup�→�� ��#�	�, 	� = limX→9���V� = 0,  
which is a contradiction. Hence, the proof is completed. 
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