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Abstract: In the present work, Susceptible-Exposed-Infected-Recovered-Susceptible (SEIRS) mathematical model for 

COVID-19 Pandemic is formulated and analyzed. The positivity, boundedness, and existence of the solutions of the model 

are proved. The Disease-free equilibrium point and endemic equilibrium points are identified. Local Stability of disease-

free Equilibrium point is checked with the help of Next generation matrix. Global stability of endemic equilibrium point is 

proved using the Concept of Liapunove function. The basic reproduction number for Novel Corona virus pandemic is 

computed as R0 = (αβΛ) ⁄ [(δ + µ) (β + δ + µ) (γ + δ + µ)] which depend on six different parameters. It is observed that if 

basic reproduction number is less than one, then number of cases decrease over time and eventually the disease dies out, 

and if the basic reproduction number is equals to one, then number of cases are stable. On the other hand, if the basic 

reproduction number is greater than one, then the number of cases increase over time gets worth. Sensitivity analysis of the 

basic reproduction number is done with respect to each parameter. It is observed that only some parameters Λ, α, β have 

high impact on the basic reproduction number. Consequently, with real data on the parameter it is helpful to predict the 

disease persistence or decline in the present situation. Lastly, numerical simulations are given using DEDiscover software to 

illustrate analytical results. 
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1. Introduction 

Corona virus disease 2019 (COVID-19) is an infectious 

disease that can cause illnesses range from the common cold 

to much more severe illnesses like SARS, MERS, and 

COVID-19 [1-3]. 

Severe acute respiratory syndrome corona virus 2 (SARS-

Cov-2), commonly known as Novel Corona virus (nCoV), is 

a single, positive-stranded, RNA virus that belongs to 

Nidoviral type, which are responsible for the Current covid-

19 Pandemic [4]. A species that host corona virus is known 

to be bat. Recent research shows that SARS-CoV-2 virus and 

bat corona virus have 96% identical genetic sequences [1, 2]. 

The novel corona virus (nCoV) or COVID-19 may show 

signs of fever, cough, breathing difficulties, organ failures or 

even death of whole society. [1, 5]. It can be transmitted from 

person to person even before any actual signs appeared, 

which is difficult to prevent and control [5]. Researchers all 

round the world have been trying to know how the virus 

spreads and find out effective ways control the outbreak. 

Compared the reproduction number R0 of severe acute 

respiratory syndrome of H1N1 virus (1.25), SARS (2.2-3.6), 

the R0 of COVID-19 indicates awful potential transmission 

as 2.2, 3.8 and 2.68 by different researcher in the world. 

WHO published an estimated R0 of COVIDh-19 is (1.4-2.5). 

The larger basic reproduction number R0 the greater power of 

transmission rate of disease and the smaller the basic 

reproduction number R0 the lower the transmission rate of the 

disease [1, 4, 6] 

According to WHO report, the virus that causes COVID-

19 is mainly transmitted through droplets generated when an 

infected person coughs, sneezes, or speaks. These droplets 

are too heavy to hang in the air. They quickly fall on floors or 

surfaces. You can be infected by breathing in the virus if you 

are within 1 meter of a person who has COVID-19, or by 

touching a contaminated surface and then touching your 
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eyes, nose or mouth before washing your hands. There is no 

specific medicine to prevent or treat corona virus disease 

(COVID-19). People may need supportive care to help them 

breathe. If you have mild symptoms, stay at home until you 

have recovered. You can relieve your symptoms if you:(i) 

rest and sleep, (ii) keep warm, (iii) drink plenty of liquids, 

and (iv) use a room humidifier or take a hot shower to help 

ease a sore throat and cough. People with COVID-19 develop 

signs and symptoms, including mild respiratory symptoms 

and fever, on an average of 5-6 days after infection (mean 

incubation period 5-6 days, range 1-14 days). 

According to WHO report, most people infected with the 

COVID-19 virus will experience mild to moderate 

respiratory illness and recover without requiring special 

treatment. Older people, and those with underlying medical 

problems like cardiovascular disease, diabetes, chronic 

respiratory disease, and cancer are more likely to develop 

serious illness. 

Novel Corona virus (2019-nCoV), Situation Report-1, 

Initially the Disease spread in china, republic of Korea, and 

Thailand and It was 282 number of confirmed cases reported 

globally up to 21 January 2020. Coronavirus disease 2019 

(COVID-19) Situation Report-94, shows that there are 2, 

695, 418 peoples are infected and 188, 804 peoples are died 

and 739, 871 peoples are recovered from Corona virus 

disease (Covid-19) pandemic up to 23 April 2020. Therefore 

it is urgent to study and provide more scientific information 

for a better understanding of the novel corona virus (nCoV) 

or Covid-19. Thus susceptible-Exposed-infectious-recovered-

susceptible (SEIRS) model is adopted to estimate the 

dynamics and the potential spread based on the current data 

of cases, to calculate the basic reproduction number R0  

under different scenarios of the epidemics and to draw 

preliminary conclusions about the effectiveness of public 

health measures like hygiene, Masks. 

The main purpose of this article is to formulate and to 

made Mathematical model analysis that describes the 

disease transmission dynamics of COVID-19 based on 

different literature reviews. The paper will create better 

understanding of the current corona virus pandemic. In [2, 

4] SEIR epidemic model of a data-driven analysis is done, 

and some parametric estimation is computed based on curve 

fitting and numerical methods. In [2] SIRS model of 

COVID-19 is constructed in the case of Indian country. 

This paper is organized as follows: In section 2, 

Mathematical model formulation Model assumptions, 

description of variables and parameters, Model diagram 

and Model equations are presented. In section 3, 

Mathematical Analysis of Model: positivity, Boundedness, 

and existence of solution, Equilibrium points are 

Discussed. In section 4, Stability Analysis of Equilibrium 

points; Next Generation matrix, Local Stability of disease 

free equilibrium point (LSDFEP), Global Stability of 

endemic equilibrium point (GSEEP), Basic Reproduction 

number will be presented. In Section 5, Simulation Study 

of our model equations are performed with initial 

conditions given for the variables and some values are 

assigned for the parameters. The results and discussion are 

given in section 6. In Section 7, Conclusions and 

Recommendations are drawn depend on the stability 

analysis and simulation study. 

2. Mathematical Model Formulation 

In the present study SEIRS model of COVID-19 is 

Constructed as follows. The total populations are divided into 

four classes: (i) Susceptible class denoted by �	Contains 

population which are capable of becoming infected (ii) 

Exposed class denoted by�	consists of populations being 

infected but not infectious and waiting for a short period time 

is called latency period.(iii) Infected class denoted by 

�	consists of population which are infected with COVID-19 

and are also infectious and (iv) Recovered class denoted 

by �	 consists of recovered class from infectious disease 

COVID-19. Mathematical SEIRS model of COVID-19 is 

formulated based on the following hypotheses so as to 

predict the past or future dynamics of COVID-19 progression 

and transmission Dynamics in the world. 

(i) The size of total population is assumed to be 

constant, � = �	
� + �	
� + �	
� + �	
� 

(ii) Both the number of births and death are may not be 

equal and populations are well mixed. 

(iii) Susceptible class are recruited into the compartment 

�	
� at a constant rate Λ 

(iv) The Exposed class has short incubation period and 

not yet infective but moved to infective class at rate � 

(v) Susceptible class are infected when they come into 

contact with COVID-19 patient and the disease 

transmitted according to bilinear interaction rate 

��	
��  where, �	
� = �	
�  which is force of 

infection. 

(vi) Recovered class revert to the susceptible class after 

losing their immunity at a rate 	� 

(vii) All types of population suffer natural mortality at a 

rate	�. 

(viii) All types of population suffer die due to Covid-19 

Pandemic at a rate � 

(ix) All parameters in the model are positive. 

Table 1. Notations and description of model variables. 

Variable Description 

S	t� 	 Number of susceptible individuals at time
 

�	
� Number of Exposed individuals at time 
 ( infected but not infectious) 

I	t� 	 Number of infective individuals at time 
 ( infectious class) 

R	t� 	 Number of recovered individuals at time 
 ( removed, or immune) 
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Table 2. Notations and description of model parameters. 

Parameter Description Λ Constant influx of new susceptible. With this rate new susceptible class will Recruited and will enter into susceptible class � Infection rate or Contact rate or effective contact rate. With this rate covid-19 transfer from compartment �	to	� � Latency transfer rate. With this rate exposed class moves from compartment �	to compartment �. � Recovery rate or removal rate. With this rate infected class moves from compartment �	to	� � Loss immunity (re-infection rate). With this rate recovered class moves from compartment �	to	� � Death rate due to infection of COVID-19. With this rate all class of compartment suffer due to the diseases. � Natural death rate. With this rate all class of Compartment suffer natural death rate. 

Having the above assumptions, variables, and parameters the model diagram can be given as in Figure 1 

 

Figure 1. Model diagram. 

Based on the assumptions, the notations of variables, 

parameters, and Model diagram, system of ordinary 

differential equations are formulated as follows: �� �
⁄ = Λ + ��(
) − ��(
)�(
) − ��(
) − ��(
)      (1) �� �
⁄ = ��(
)�(
) − ��(
) − ��(
) − ��(
)	          (2) �� �
⁄ = ��(
) − ��(
) − ��(
) − ��(
)	                 (3) �� �
⁄ = ��(
) − ��(
) − ��(
) − ��(
)	                (4) 

with initial conditions, �(0) > 0, �(0) ≥ 0, �(0) ≥ 0, �(0) ≥ 0 , �(
) = �(
)  which 

is force of infection 

3. Mathematical Model Analysis 

In this section mathematical model analysis part is 

Presented. The analysis consists of the following features:(i) 

positivity of solutions the model, (ii) Boundedness of 

solutions of the model, (iii) Existence of solutions of the 

model, (iv) equilibrium points of the model: Disease free 

equilibrium points, endemic equilibrium points (v) Basic 

reproduction number (vi) Stability analysis of equilibrium 

points: Local stability of disease free equilibrium point and 

(vii) Global stability of endemic equilibrium point 

3.1. Positivity, Boundedness, and Existence of Solution 

In order to show that the model is biologically valid, it is 

required to prove that the solutions of the system of ordinary 

differential equations (1)-(4) are positive and bounded for all 

time [7]. 

Theorem 1 (Positivity) Solutions of the model equations  

(1)–(4) together with the initial conditions , 

�(0) > 0, �(0) ≥ 0, �(0) ≥ 0, �(0) ≥ 0  are always 

positive That is, the model variables �(
), �(
), �(
),	 and �(
) are positive for all 
 and will remain in ℝ"# . 

Proof: Positivity of the model variables is shown 

separately for each of the model variables, �(
), �(
), �(
),	and �(
). 
Positivity of 	�(
) : The model equation (1) given 

by �� �
⁄ = Λ + �� − ��� − �� − ��  can be expressed 

without loss of generality, after eliminating the positive terms (	Λ + ��) which are appearing on the right hand side, as an 

inequality as �� �
⁄ ≥ −(�� + � + �)�.  Using variables 

separable method and on applying integration, the solution of 

the foregoing differentially inequality can be obtained 

as	�(
) ≥ $%(&'"("))*. Recall that an exponential function is 

always non–negative irrespective of the sign of the exponent, 

Hence, it can be concluded that	�(
) ≥ 0. 

Positivity 	�(
):  The model equation (2) arranged 

as	�� �
⁄ = ��� − �� − �� − ��  can be expressed without 

loss of generality, after eliminating the positive term (���) 
which are appearing on the right hand side, as an inequality 

as �� �
⁄ ≥ −(� + � + �)� . Using variables separable 

method and on applying integration, the solution of the 

foregoing differentially inequality can be obtained as	�(
) ≥$%(,"("))* . Recall that an exponential function is always 

non–negative irrespective of the sign of the exponent. Hence, 

it can be concluded that	�(
) ≥ 0. 

Positivity of 	�(
) : The model equation (3) arranged �� �
⁄ = �� − �� − �� − ��can be expressed without loss of 

generality, after eliminating the positive term (��) which are 

appearing on the right hand side, as an inequality as  �� �
⁄ ≥ −(� + � + �)�. Using variables separable method 

and on applying integration, the solution of the foregoing 

differentially inequality can be obtained as 	�(
) ≥$%(-"("))* . Recall that an exponential function is always 

 

��(
) 
S(t) E(t) I(t) R(t) 

��(
)�(
) ��(
) 

��(
) 

��(
) ��(
) ��(
) ��(
)
Λ 

��(
) ��(
) ��(
) ��(
) 
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non–negative irrespective of the sign of the exponent. Hence, 

it can be concluded that	�(
) ≥ 0. 

Positivity of 	�(
) : The model equation (4) arranged �� �
⁄ = �� − �� − �� − ��	can be expressed without loss 

of generality, after eliminating the positive term (��) which 

are appearing on the right hand side, as an inequality 

as �� �
⁄ ≥ −(� + � + �)�.  Using variables separable 

method and on applying integration, the solution of the 

foregoing differentially inequality can be obtained as	�(
) ≥$%(."("))* . Recall that an exponential function is always 

non–negative irrespective of the sign of the exponent. Hence, 

it can be concluded that	�(
) ≥ 0. Thus, the model variable �(
), �(
), �(
),	 and �(
)  representing population size of 

different class are positive quantities and will remain in ℝ"#  

for all	
. 
Theorem 2 (Boundedness) The positive solutions of the 

system of model equations (1)-(4) are bounded. That is, the 

model variables �(
), �(
), �(
),	 and �(
)  are bounded for 

all	
.  
Proof: Recall that each population size is bounded if and 

only if the total population size is bounded. Hence, in the 

present case it is sufficient to prove that the total population 

size � = �(
) + �(
) + 	�(
) + 	�(
) is bounded for all	
. It 
can be shown that all feasible solutions are uniformly 

bounded in a proper subset Ω ∈ ℝ"# where the feasible 

region Ω is given by 

Ω =	 0(�, �, �, �) ∈ ℝ"# ; 	N ≤ (Λ (δ + μ)⁄ )6 It is 

clear that the derivative of total population with respect to 

time t is given by �� �
⁄ = 7�� �
⁄ 8 + 7�� �
⁄ 8 + 7�� �
⁄ 8 + 7�� �
⁄ 8 . 

Then summation of all the four model equations (1)-(4) as 

follows: 

�� �
⁄ = 7Λ + �� − ��� − �� − ��8 + 7��� − �� − �� − ��8 + 7�� − �� − �� − ��8 + 7�� − �� − �� − ��8 
which simplified N(t) dt⁄ = Λ − (δ + μ)(S + E + I + R) . 

This can be written as 	dN(t) dt⁄ = Λ − (δ + μ)N(t)  Now, Λ − (δ + μ)N(t) ≥ 0 if Λ ≥ (δ + μ)N(t)  which 

is Λ (δ + μ)⁄ ≥ N(t) = S + E + I + R ≥ 0 . Thus it can be 

concluded that 	�(
)  is bounded as it is shown that 	0 ≤�(
) ≤ (Λ (δ + μ)⁄ ) . Therefore, (Λ (δ + μ)⁄ )  is an upper 

bound of �(
).  Hence, feasible solution of the system of 

model equations (1)-(4) remains in the region Ω  which is 

positively invariant set. Thus, the system is biologically 

meaningful and mathematically well posed in the domain Ω. it 
is sufficient to consider the dynamics of the populations 

represented by the model system (1)-(4) in that domain. 

Therefore, it can be summarized the result of theorem 2 as the 

model variables �(
), �(
), �(
),	 and �(
)  are bounded for 

all	
. 
Theorem 3 (Existence) Solutions of the model equations  

(1)–(4) together with the initial conditions,  �(0) > 0, �(0) ≥ 0, �(0) ≥ 0, �(0) ≥ 0  exist in ℝ"# i.e. 

the model variables �(
), �(
), �(
),	 and�(
)  exist for all 


	and will remain in ℝ"# . 

Proof: Let the system of equation (1)-(4) arranged as 

follows: ;< = Λ + �� − ��� − (� + �)� ;= = ��� − (� + � + �)�  ;> = �� − (� + � + �)� ;# = �� − (� + � + �)� 

According to Derrick and Grossman theorem, let us now 

define the feasible region Ω that has been discussed under 

primarily results boundedness of the solutions,  

Ω =	 0(�, �, �, �) ∈ ℝ"# ; 	N ≤ (Λ (δ + μ)⁄ )6 
Then equations (1)–(4) have a unique solution if (?;@) A?BCD⁄ , E, F = 1, 2, 3, 4  are continuous and bounded 

in Ω  [7]. Here, B< = �, B= = �, B> = �, B# = � , The 

continuity and the boundedness are shown in Table 3 as 

follows: 

Table 3. Partial derivatives of functions with respect of model variables. 

For;<: |(?;<) (?�)⁄ | = 	 |−�� − (� + �)| < ∞ |(?;<) (?�)⁄ | = 	0 < ∞ |(?;<) (?�)⁄ | = 	 |−��| < ∞ |(?;<) (?�)⁄ | = |�| < ∞. 

For;>: |(?;>) (?�)⁄ | = 	0 < ∞ |(?;>) (?�)⁄ | = |�| < ∞ |(?;>) (?�)⁄ | = |−(� + � + �)| < ∞ |(?;>) (?�)⁄ | = 	0 < ∞ 

For;=: |(?;=) (?�)⁄ | = |��| < ∞ |(?;=) (?�)⁄ | = |−(� + � + �)| < ∞ |(?;=) (?�)⁄ | = |��| < ∞ |(?;=) (?�)⁄ | = 	0 < ∞ 

For;#: |(?;#) (?�)⁄ | = 	0 < ∞ |(?;#) (?�)⁄ | = 	0 < ∞ |(?;#) (?�)⁄ | = |�| < ∞ |(?;#) (?�)⁄ | = |−(� + � + �)| < ∞ 

 
Thus, all the partial derivatives , (?;@) A?BCD,⁄ 	E, F = 1, 2, 3, 4	exist, continuous and bounded 

in Ω. Hence, by Derrick and Groosman theorem, a solution 

for the model (1)-(4) exists and is unique. 

To understand the dynamics of the system, it is necessary to 

identify equilibrium points of the model Equation. An 

equilibrium solution is a steady state solution of the model 

equations (1)-(4) in the sense that if the system begins at such a 

state, it will remain there for all times. In other words, the 

population sizes remain unchanged and thus the rate of change 

for each population vanishes. Equilibrium points of the model 

are found, categorized, stability analysis is done and the results 

have been presented in the following sub-sections. 

3.2. Disease Free Equilibrium Point 

Disease free equilibrium points are steady state solutions 

where there is no disease in the population. In the absence of 

the disease this implies that �(
) = �(
) = 0 and the right 

hand side of the model is equal to zero. 

 Thus Λ − (� + �)� = 0  which implies � = Λ (� + �)⁄ . 
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Thus, the disease-free equilibrium point of the model 

equation in (1)–(4) above is given by,  �(�, �, �, �) = (Λ (� + �)⁄ , 0, 0, 0) 
3.3. Endemic Equilibrium Point 

The endemic equilibrium point �∗0�∗, �∗, �∗, �∗6 in the 

feasible region is a steady state solution where the disease 

persists in the population. The endemic equilibrium point is 

obtained by setting rates of changes of variables with respect 

to time in model equations (1)-(4) to zero. That is, setting  �� �
⁄ = �� �
⁄ = �� �
⁄ = �� �
⁄ = 0  the model 

equations can be written as the system of non linear 

equations Λ + �� − ��� − O� = 0                                     (5) ��� − P� = 0                                              (6) �� − Q� = 0                                           (7) �� − �� = 0                                           (8) 

Where, O = � + �, P = � + � + �, Q = � + � + �, � =� + � + �solving equations (7) and (8) will give expression 

for � and�	in terms of variable � as follows: � = (� Q⁄ )�	                                     (9) � = (� �⁄ )� = (� �⁄ )(� Q⁄ )� , This expression could be 

re-written as 

� = (�� �Q⁄ )�	                              (10) 

Now substitute (9) and (10) into (6) so as to solve � which 

results	��(� Q⁄ )� − P� = 0 

This can be arranged 7��(� Q⁄ ) − P8� = 0 However, �	does 

not vanish, since the disease is assumed endemic and it is a 

computation of non zero equilibrium point of the system. 

Thus the only meaningful solution ��(� Q⁄ ) − P = 0, then 

solution is given by the expression �∗ = 7PQ8 7��8⁄                                  (11) 

Then substituting equations (9), (10) and (11) into (5) 

giveΛ + �7(�� �Q⁄ )�8 − �(PQ ��⁄ ) − O(PQ ��⁄ ) = 0 . after 

some algebraic simplifications an expression for �∗ can be 

obtained as �∗ = 7�Q0PQ(� + O) − ��Λ68 7��=��8⁄              (12) 

Finally, substitution of �∗ in (10) and (11) will give 

expressions for �∗and �∗ in terms of parameters 

�∗ = 7�0PQ(� + O) − ��Λ68 7����8⁄                  (13) �∗ = 70PQ(� + O) − ��Λ68 7���8⁄                   (14) 

Therefore the endemic equilibrium points computed above 

is given by 

�∗(�∗, �∗, �∗, �∗)= (7PQ8 7��8⁄ , 7�Q0PQ(� + O) − ��Λ68 7��=��8,⁄ 7�0PQ(� + O) − ��Λ68 7����8⁄ , 70PQ(� + O) − ��Λ68 7���8⁄ ) 
3.4. Basic Reproductive Number 

The basic reproduction number represent the average 

number of new infections generated by each infected person 

[7-9]. The higher value of �R the speedy the disease 

transmission rate and the Smaller values of �R the slower the 

disease transmission rate [12]. There are three options for the 

values of�R (i) �R < 1 means the number of new cases will 

decrease over time and eventually the outbreak will end on its 

own.(ii)�R = 1means the cases are stable. (iii)�R > 1means 

the outbreak is self-sustaining unless effective control 

measures are implemented. According to WHO Determining 

factors of basic reproduction number �R: (i) infectious period-

how long the infection is contagious, for instance flu typically 

up to 8 days and in children up to 2 weeks. The longer an 

infection is contagious for the higher the reproduction 

number.(ii) Contact rate-how many people an infected person 

comes into contact with�R will be lower if a person stays at 

home, higher if they are out and about. (iii) Mode of 

transmission (shedding potential): rapid speed transmission, 

if the disease transmitted by airborne, flu or measles, no 

physical contact or fomite necessary, and Slower 

transmission, the disease transmitted by body fluids, Ebola, 

Hepatitis B, C, or HIV. [1, 5, 9] In the discussion of disease 

transmission if 20% of infected individuals are responsible 

for 80% of transmissions those spreaders is called Super-

spreaders and if 80% of infected individuals are responsible 

for 20% of transmissions are called mini-spreaders. [1, 5] 

To drive the general reproduction number for the 

formulated model of Covid-19 under the discussion of 

primary results.�∗ ≥ Λ O⁄ , if and only if 7PQ8 7��8⁄ ≥ Λ O⁄ . 

Without losing original generality dividing both sides of 

the inequality by 7PQ8 7��8⁄  yields 1 ≥ (αβΛ) (OPQ)⁄ = �U , 

where the letters notation a, b, c and d are given by O = � +�, P = � + � + �, Q = � + � + �, � = � + � + � and hence 

the basic reproduction number of the model (1)-(4) would be �U = (αβΛ) 7(� + �)(� + � + �)(� + � + �)8⁄ . 

4. Stability Analysis 

4.1. Stability Analysis of the Disease Free Equilibrium 

In absence of the infectious disease, the model equations 

have a unique disease free steady state �U.  

It is shown that DFEP of model (1)-(4) is given by�U =07Λ (� + �)⁄ 8, 0, 0, 06. Now local stability analysis of 

DFEP is presented in the following theorem and proved with 

the help of next generation matrix. 

Theorem 4 [Local Stability of Disease-free equilibrium 

points (LSDFEP)] The model equations (1)-(4) is locally 

asymptotically stable at disease free equilibrium point 

(DFEP)	�U 
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Proof: Consider the right hand side expressions of the 

equations (1)-(4) as functions to compute Jacobian matrix �� �
⁄ = Λ + �� − ��� − O�	 ≡ 	;(�, �, �, �) ��/�
 = ��� − P�	 ≡ 	X(�, �, �, �) ��/�
 = �� − Q�	 ≡ ℎ(�, �, �, �) ��/�
 = �� − �� ≡ 	Z(�, �, �, �) 
Where, O = � + �, P = � + � + �, Q = � + � + �, � =� + � + �  Now the Next generation matrix of functions (;, X, ℎ, Z) with respect to (�, �, �, �) is given by 

[(� � � �) 	= 	 \−�� − O 0 −�� ��� −P 0 00 � −Q 00 0 � −�]	
Therefore the Next generation matrix [ of model at the 

disease free equilibrium �U reduces to 

[7(Λ O⁄ ) 0, 0, 08 = \−O 0 (−�Λ) O⁄ �0 −P (−�Λ) O⁄ 00 � −Q 00 0 � −�] 
Then the eigen values of [(�U)  are computed from 

characteristic equation �$
7[(�U) − ��8 = 0. 

^−O − � 0 (−�Λ) O⁄ �0 −P − � (−�Λ) O⁄ 00 � −Q − � 00 0 � −� − �^ =	0 

(−O − �) _−P − � (−�Λ) O⁄ 0� −Q − � 00 � −� − �_ =	0 

(−O − �)(−� − �) `a−P − � (−�Λ) O⁄0 −Q − � a` = 0 

(−O − �)(−� − �)(−P − �)(−Q − �) = 0 

Thus the four eigen values of the matrix are found as �< = −O�= = −��> = −P�# = −Q �< = −(� + �)	�= = −(� + � + �)	�> = −(� + � + �)	�#= −(� + � + �) 
Therefore, it is concluded that the LSDFEP �U  of the 

system of differential equations (1)-(4) is locally 

asymptotically stable due to all eigen value is negative. 

4.2. Global Stability Analysis of Endemic Equilibrium Point 

The Global stability Analysis of endemic equilibrium 

point �∗(�∗, �∗, �∗, �∗) is stated in Theorem 5 and 

proved by taking appropriate liapunove function. [7, 8] 

Theorem 5 [Global Stability of endemic equilibrium point 

(GSEEP)] The endemic equilibrium point  �∗(�∗, �∗, �∗, �∗) is globally asymptotically stable. 

Proof:  

Let 

b(�, �, �, �) = m< (s − s∗)= 2⁄ + m=(E − E∗)=/2 + m>(I − I∗)=/2 + m#(R − R∗)=/2 [7, 8] �b �
⁄ 	= 	m<(s − s∗)0ds dt⁄ 6 + m=(E − E∗)0dE dt⁄ 6 + e>(I − I∗)0�� �
⁄ 6 + e#(R − R∗)0�� �
⁄ 6               (15) 

Now substitute the model equation (1)-(4) into (15) dL dt⁄ = m<(s − s∗)0Λ + �� − ��� − O�6 + m=(E − E∗)0��� − P�6 +m>(I − I∗)0�� − Q�6 +m#(R − R∗)0�� − ��6 
Take out S, E, I, Rand put as change dL dt⁄ = m<(s − s∗)(s − s∗)07(Λ + ��)/�8 − �� − O6 + m=(E − E∗)A(E − E∗)D0(���/�) − P6 +m>(I − I∗)(I − I∗)0(��/�) − Q6 +m#(R − R∗)(R − R∗)0(��/�) − �6 
By rearranging and take out negative sign from the bracket it could be obtained as dL dt⁄ = −m<(s − s∗)=0−7(Λ + ��)/�8 + �� + O6 − m=(E − E∗)=0−(���/�) + P6 −m>(I − I∗)=0−(��/�) + Q6 −m#(R − R∗)=0−(��/�) + �6 
Thus it is possible to set e<, e=, e>, e>are non negative integers such that	dL dt⁄ ≤ 0 and endemic equilibrium point 
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is globally stable. 

5. Numerical Simulation 

In this section, the numerical simulation of model 

equations (1)-(4) is carried out using the software DE 

Discover 2.6.4. For Simulation purpose, a set of meaningful 

values are assigned to the model parameters. A set of initial 

conditions are given to the model variables. These sets of 

parametric values are given in Tables 4 and Model equations 

and parameter is arranged for DEDiscover software in this 

way for simulation purpose: 

dS/dt=Lambda+Rho*R-Alpha*S*I-(Delta+Mu)*S // the number of Susceptible class 

dE/dt=Alpha*S*I-(Beta+Delta+Mu)*E // the number of Exposed class 

dI/dt=Beta*E-(Gamma+Delta+Mu)*I // the number of infective class 

dR/dt=Gamma*I-(Rho+Delta+Mu)*R // the number of Recovered class 

Table 4. Parameter values used for Simulation. 

Parameter Value Reference 

Λ 271.230 [3] 

� 2.50000 [2] 

� 0.14280 [1] 

� 0.06600 [3] 

� 0.000095 [5] 

� 0.13100 estimated 

� 0.000001 [5] 

Using the parameter values given in Table 2 with different 

initial conditions in model equations (1)-(4) a simulation is 

done and the results are given in Figure 2-5. 

From Figure 2, it is observed that when the number of 

exposed individual increases then the number of infected 

people will increase that leads to the decrease on the 

susceptible and recovered populations. Figure 3, shows all 

those class of population changing for some time and 

eventually the populations will be constant. Thus in any 

situations there will exist those class of populations and 

continue in stable state after some time in future. 

From Figure 4, recovered and infected populations are 

inversely proportional. That is if the population gets greater the 

number of infection, then will be less the number of recovery 

may be due to lack of resources or management, and Similarly, 

from Figure 5, exposed and infected populations are directly 

proportional. If there is more infection in the community, there 

will be more exposed individual and the less infected 

community, the less the exposed community. 

 

Figure 2. Time series plot for all variables with different initial condition. 
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Figure 3. Time series plot for all variables with same initial condition. 

 

Figure 4. Time series plot for infected and recovered population. 
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Figure 5. Time series plot for exposed and infected population. 

6. Sensitivity Analysis 

Sensitivity analysis tells us how important each 

parameter is to disease transmission. It is used to discover 

parameters that have a high impact on �U and should be 

targeted by intervention strategies. Sensitivity indices allow 

us to measure the relative change in a variable when a 

parameter changes. The normalized forward sensitivity 

index of a variable with respect to a parameter is the ratio 

of the relative change in the variable to the relative change 

in the parameter. If the result is negative, then the 

relationship between the parameters and �U  is inversely 

proportional. In this case, we will take the modulus of the 

sensitivity index so that we can deduce the size of the effect 

of changing that parameter. On the other hand, a positive 

sensitivity index means an increase in the value of a 

parameter. 

A highly sensitive parameter should be carefully 

estimated, because a small variation in that parameter will 

lead to large quantitative changes. An insensitive 

parameter, on the other hand, does not require as much 

effort to estimate, since a small variation in that parameter 

will not produce large changes to the quantity of interest 

[9, 11, 13] 

The explicit expression of �U is given by �U = 7��Λ8 7	� � ��	� � � � ��	� � � � ��8⁄ . Since �U 

depends only on six parameters, we derive an analytical 

expression for its sensitivity to each parameter using the 

normalized forward sensitivity index as follows: 

Table 5. Sensitivity of �U for the Parameter values. 

Parameter Sensitivity index ofgh Sign 

Λ ij
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where, O � � � �, P � � � � � �, Q � � � � � �, � � � �
� � � , and From the Table 5, It is to be noted that the 

parameters Λ, �, � are positive and hence play a vital role in 

controlling the stability aspects of the system, and the 

remaining parameters are negative and hence have not big 

influence on the system. 

7. Result and Discussion 

A mathematical SEIRS model of COVID-19 was Conducted 

and the sensitivity indices of the basic reproduction number �U 

is Computed to determine the relative importance of the model 

parameters in the disease transmission. This information leads 

us to identify the influence of each model parameter in the 

basic reproduction number. Consequently, it is helpful to know 
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and predict the disease progress, persistent or decline in the 

past, present and future. 

This mathematical model analysis may provide critical 

information for decision makers and public health officials, 

who may have to deal with infectious disease of COVID-19 

pandemic. I hope that the paper will have a great impact on 

citizens of the whole world to concentrate on prevention and 

control of COVID-19 pandemic. Such contribution is 

interesting regarding to COVID-19, which causes a large 

disruption in the lives of sufferers and has enormous socio-

economic costs occurred in the world. 

Almost all latest research recommend the following 

protective measures: hygiene, masks, physical distancing, 

staying indoors, boosting immune system, raising awareness 

through networking (like face book, and twitter), boosting 

moral of front-line workers such as (medical practitioners, 

nursing staff, cleaning staff, health care centers) who are 

interacting directly with the patients. 

8. Conclusion 

In this Paper, SEIRS mathematical model describing the 

dynamics of COVID-19 is formulated and analyzed. The model 

is developed based on biologically reasonable assumptions. The 

mathematical analysis has shown that if basic reproduction 

number is less than one, then number of cases decrease over 

time and eventually the disease die out, and if the basic 

reproduction number is equals to one, then cases are stable. On 

the other hand, if the basic reproduction number is greater than 

one then the number of cases increase over time gets worth, and 

the disease continue to spread more rapidly. 

Moreover, existence, positivity and boundedness of the 

solution of the model is shown to clarify the model is 

biologically meaningful and mathematically well posed. 

Stability analysis of the model is checked with help of next 

generation matrix and global stability are proved by taking 

appropriate liapunove function. 
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