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Abstract: This paper is mainly concerned with some free boundary problems for a modified Leslie-Gower predator-prey model 

in higher dimensional and heterogeneous environment. To keep it simple in this article, we assume that the environment and 

solutions are all radially symmetric. We consider the problem which be used to describe the spreading of an introduced predator 

species in higher dimensional and heterogeneous environment. We will assume that the prey is initially uniformly well disturbed. 

The prey undergoes the diffusion and growth in the entire space ��. The predator is initially introduced in some localized location. 

We establish that a spreading-vanishing dichotomy is held for this model. We use the comparison principle. we will give the 

existence, uniqueness and some estimates of the solution to the problem. We study the asymptotic behavior of two species 

evolving. The free boundary represents the spreading front of the predator species. The boundary condition is described by classic 

Stefan-like condition. It is proved that the problem addressed is well posed, and that the predator species disperses to all domains 

in finite time. The long time behaviors of solution and criteria for spreading and vanishing of predator species are also provided. 

Furthermore, in the case that spreading of predator species happens, we deduce some rough estimates of the spreading speed. 

Keywords: Free Boundary, Predator-Prey Model, Spreading-Vanishing Dichotomy, Spreading Speed,  

Heterogeneous Environment 

 

1. Introduction 

It is an important issue how to understand the nature and 

spreading of an invasive species in mathematical ecology. In 

recent years, many mathematicians have established various 

invasion models and investigated them from the viewpoint of 

mathematical ecology, refer to [2, 3, 26, 28, 29, 30] etc. For 

the most theoretical approaches, they are all based on or 

started with single species models. In order to realize the 

spreading mechanism of a new or invasive species, Du and 

Lin [13] deduced the following free boundary problem of the 

diffusive logistic equation 

��
��� 	 
��� � �
� 	 ���, � � 0, 0 � � � �
��,�
�, �
��� � 0, ��
�, 0� � 0, � � 0,�′
�� � 	���
�, �
���, � � 0,�
0� � ��, �
0, �� � ��
��, 0 � � � ��,

   (1) 

where � � �
�� is the moving boundary to be determined, �, �, 
 are given positive constants, �� � 0 denotes the size of 

initial habitat, � � 0 is the ratio of expanding speed of the 

free boundary and population gradient at expanding front, 

and ��  is an given positive initial function. They have 

obtained the spreading-vanishing dichotomy result. 

Since then, the problems describing the spread by free 

boundary have been studied intensively, such as in [1, 4, 16, 

21, 22, 37]. As an example, Kaneko and Yamada in [24] 

studied the free boundary problem which condition �� � 0 at � � 0 in 
1�	 is replaced by � � 0. Du, Guo and Peng in [10], 

and Du and Liang in [12] considered the free boundary 

problem in the time periodic environment. Peng and Zhao in 

[31] studied the seasonal succession case. When the 

nonlinear term �
� 	 ��� is replaced by a general function 
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�
��, this problem has been investigated by Du and Lou in 

[15] and Du, Matsuzawa and Zhou in [17]. For the 

population model, there are many authors who have studied 

the diffusive competition system with the free boundary, such 

as Du and Lin in [14], Guo and Wu in [19, 20], Wang in [32, 

33, 34], wang and Zhang in [35], wang and Zhao in [36], etc. 

For the initial value problem of the Leslie-Gower predator-

prey model, A. Ducrot in [18] has studied some spreading 

properties of modified Leslie-Gower predator-prey reaction-

diffusion system. In [6], we have considered the spreading 

speed properties for the Leslie-Gower predator-prey model 

with the fractional diffusion term � 
! ∈ 
0, 1)). In [7], we 

have showed the existence and stability of the Leslie-Gower 

predator-prey model with nonlocal diffusion. Liu et al. in 

[27] obtained the asymptotic behavior of two species 

evolving in a domain with a free boundary in one-

dimensional environment. 

In consideration of the environment heterogeneity, Du and 

Guo in [8, 9] have studied the diffusive logistic model with a 

free boundary in heterogeneous environment, where the 

heterogeneous environment coefficients were required to 

have positive lower and upper bounds. They also obtained 

the corresponding spreading-vanishing dichotomy results. 

The predator-prey systems with heterogeneous environment 

have also been examined extensively, refer to [11, 39]. For 

instance, Wang and Zhao in [38] gave the discussion of the 

competition model with free boundary in the higher 

dimensional and heterogeneous environment. Some epidemic 

models with free boundary have been considered by some 

authors, such as in [23]. 

Motivated by those results, we consider in this paper with 

the following Leslie-Gower predator-prey reaction-diffusion 

system with free boundary and radial symmetry 

�##
�
##�

�� − 
�$� = �(�(%) − �(%)�) − &(%)�', � > 0, % > 0,'� − �$' = ' (!(%) − )($)*+,- . , � > 0, 0 < % < ℎ(�),'(�, %) = 0, � > 0, % ≥ ℎ(�),�$(�, 0) = '$(�, 0) = 0, ℎ′(�) = −�'$(�, ℎ(�)), � > 0,ℎ(0) = ℎ�, '(0, %) = '�(%), 0 ≤ % ≤ ℎ�,�(0, %) = ��(%), % ≥ 0,
                                     (2) 

where �$� = �$$ + �12$ �$ , �$' = '$$ + �12$ '$(% = |�|, � ∈ ℝ� , 4 ≥ 1), 
 , � , and ℎ�  are given positive constants, and the 

functions �, �, &, !, 5 ∈ 678([0, ∞)) for some ;� ∈ (0, 1) satisfy 

<2 ≤ �(%), �(%), &(%), !(%), 5(%) ≤ <=,  ∀ % ∈ [0, ∞)                                                     (3) 

for given positive constants <2 ≤ <= . Here the sphere {% = ℎ(�)} is the moving boundary to be determined. 

In this paper, we shall focus on the dynamical process of 

an invasive predator species with population density '(�, |�|) 

invading into the n−dimensional heterogeneous habitat of a 

native prey species with population density �(�, |�|). To do 

so, one shall consider that the prey population is initially 

uniformly well disturbed and undergoes the diffusion and 

growth in the entire space ℝ�, while the predator population 

is initially introduced in some localized location, namely, '�(|�|) occupies in a ball {% < ℎ�}, and disperses through 

random diffusion over an expanding ball {% < ℎ(�)}, whose 

boundary {% = ℎ(�)} is the spreading front and satisfies the 

free boundary condition ℎ′(�) = −�'$(�, ℎ(�)), where � is a 

given positive constant. Using such a framework, we are 

interested in deriving some information about the invasion of 

predator in the environment. Before stating our results, let us 

precise the assumptions on the initial data. We assume that 

the initial functions ��(%) and '�(%) satisfy 

A�� ∈ 6=([0, ∞)) ∩ CD((0, +∞)), �� > 0 in [0, ∞),'� ∈ 6=([0, ℎ�]),  '�(ℎ�) = 0 and '� > 0 in (0, ℎ�).   (4) 

The paper is organized as follows. In Section 2, we first 

state the existence, boundedness and uniqueness of the 

solution for the problem (2), as well as some comparison 

principle for the following proof. Section 3 is mainly devoted 

to the proof of the spreading-vanishing dichotomy result. In 

Section 4, some rough estimates for the spreading speed are 

obtained in the case that spreading of ' happens. 

2. Some Preliminaries 

In this section, we will give the existence, uniqueness and 

some estimates of the solution to the problem (2). Then, we 

show some comparison results, which will be used in the 

following sections. 

Theorem 2.1. For any given (��, '�) satisfying (4) and any ; ∈ (0, 1) , there exists L > 0  such that the problem (2) 

admits a unique bounded solution (�, ', ℎ) ∈ 6MNOP ,2,7(QRD) ×6MNOP ,2,7(QR) × 62,OP([0, L]) , where QRD = {(�, %) ∈ ℝ=: � ∈[0, L], % ∈ [0, ∞)} , QR = {(�, %) ∈ ℝ=: � ∈ [0, L], % ∈[0, ℎ(�)]}. Furthermore, there exist positive constants U2, U=, UV independent of L such that 

0 ≤ �(�, %) ≤ U2, for 0 < � ≤ L, % ≥ 0,           (5) 

0 < '(�, %) ≤ U=, for 0 < � ≤ L, 0 ≤ % < ℎ(�),     (6) 

0 < ℎ′(�) ≤ UV, for 0 < � ≤ L. )                (7) 

Proof. Since the functions � , � , & , !  and 5  are bounds, 

then the proofs of the existence, uniqueness, the estimates of (5) − (6)  and the first estimate of ( 7) can be done by 

modifying the arguments for a general free boundary 

problem in [8, 14]. The details are omitted here. 

To derive an upper bound of ℎ′(�), we define 
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Z[ : � {
�, %): 0 < � < L, ℎ(�) − \12 < % < ℎ(�)},  
and construct an auxiliary function 

](�, %) = U=[2\(ℎ(�) − %) − \=(ℎ(�) − %)=],  
where \  is a positive constant such that ](�, %) ≥ '(�, %) 

holds over Z[. By direct calculation, for (�, %) ∈ Z[, we can 

obtain 

]� = 2U=\ℎ′(�)[1 − \(ℎ(�) − %)] ≥ 0,−]$ = 2U=\[1 − \(ℎ(�) − %)] ≥ 0,−]$$ = 2U=\=, ' (!(%) − )($)*+,- . ≤ U=<=.  
Then, we can choose \ satisfying \= ≥ ^P=  such that 

]� − (]$$ + �12$ ]$. ≥ 2U=\= ≥ ' (!(%) − )($)*+,- . 	in	Z[ .  
Moreover, we have ]
�, ℎ(�) − \12) = U= ≥ '(�, ℎ(�) −\12)  and ](�, ℎ(�)) = '(�, ℎ(�)) = 0 . Since '�(%) =− _ '`8$ ′�(a)
a ≤ (ℎ� − %) ∥ '′� ∥c([�,`8])  in [ℎ� − \12, ℎ�], 

and ](0, %) = U=[2\(ℎ� − %) − \=(ℎ� − %)=] ≥U=\(ℎ� − %)  in [ℎ� − \12, ℎ�] , it is easy to show that if \U= ≥∥ '′� ∥c([�,`8]), then 

'�(%) ≤ (ℎ� − %) ∥ '′� ∥c([�,`8])≤ ](0, %)	in	[�� 	 \12, ℎ�].  
Set \ = max Ad^P= , ∥*e8∥f([8,g8])hP i, by the maximum principle 

to ] − '  over Z[ , we can obtain that '(�, %) ≤ ](�, %)  for (�, %) ∈ Z[, which implies that 

'$(�, ℎ(�)) ≥ ]$(�, ℎ(�)) = −2U=\, 	�′(�) = −�'$(�, ℎ(�)) ≤ 2�U=\ =: UV.  
This completes the proof. 

Theorem 2.2. If the conditions in Theorem 2.1 still hold, 

then the solution of the problem (2) defined in Theorem 2.1 

can be extended uniquely to all � ∈ (0, ∞). 

Proof. Set [0, Ljk�) be the maximal time interval in which 

the solution exists. It is easy to show Ljk� > 0  through 

Theorem 2.1. We only need to prove Ljk� = ∞ . On the 

contrary, we assume Ljk� < ∞ . Due to Theorem 2.1, the 

standard Cl  estimates and the Sobolev embedding theorem, 

we can find a constant 6 > 0  depending only on Um(n =1,2,3)  such that �  is continuous for (�, %) ∈ [0, Ljk�) ×[0, ∞) and ∥ '(�,⋅) ∥cMNqP([�,`(�)])≤ 6. Then from the proof of 

Theorem 2.1, there exists r > 0  depending only on 6  and Um(n = 1,2,3)  such that the solution of problem (2)  with 

initial time Ljk� − s= can be extended uniquely to the time Ljk� − s= + r . It is contradicted with the assumption. The 

proof is now completed. 

Following we present some comparison principles which 

will be used in the following sections. 

Lemma 2.1. (Comparison Principle). Assume that L ∈(0, ∞) , ℎ‾ ∈ 62([0, L]) , �‾ ∈ CD(QRD) ∩ 62,=(QRD) , '‾ ∈6(u‾R∗ ) ∩ 62,=(uR∗ )  with uR∗ = {(�, %) ∈ ℝ=: � ∈ (0, L], % ∈(0, ℎ‾(�))}. If (�‾ , '‾, ℎ‾) satisfies 

�#�
#��‾� − 
�$�‾ ≥ �‾(�(%) − �(%)�‾), � > 0, % > 0,'‾� − �$'‾ ≥ '‾ (!(%) − )($)*‾+‾ ,- . , � > 0,0 < % < ℎ‾(�),�‾$(�, 0) = 0, '‾$(�, 0) = 0, � > 0,'‾(�, ℎ‾(�)) = 0, ℎ‾′(�) ≥ −�'‾$(�, ℎ‾(�)), � > 0,

                                       (8) 

and 

ℎ‾(0) ≥ ℎ�, 	 '‾
0, %) ≥ 0	in	[0, ℎ‾(0)],  
��(%) ≤ �‾(0, %)	in	[0, ∞), 	 '�
%� � '‾
0, %)	in	[0, ℎ�],  

then the solution (�, ', ℎ) of the equation (2) satisfies 

�(�, %) ≤ �‾(�, %)	on	QRD , 	'
�, %) ≤ '‾(�, %)	on	QR , 	�
�� ��‾
��	on	[0, L],  
where QRD and QR  are defined in Theorem 2.1. 

Proof. For the case ℎ� < ℎ‾(0), we claim that ℎ(�) < ℎ‾(�) 

for all � ∈ (0, L]. If our claim does not hold, then there exists 

a first �∗ ≤ L  such that ℎ(�) < ℎ‾(�)  for � ∈ (0, �∗)  and ℎ(�∗) = ℎ‾(�∗). It is easy to see 

ℎ′(�∗) ≥ ℎ‾′(�∗).	                         (9) 

We first show that � � �‾  in [0, �∗] × [0, ∞) . Setting x = �‾ − �, we get that x satisfies 

yx� − 
�$x ≥ (<2 − 2<=U2z )x, 	0 < � ≤ �∗, % > 0,x$(�, 0) = 0,0 < � ≤ �∗,x(0, %) ≥ 0, 	% ≥ 0,   

where U2z  is an upper bound of �‾  and � in [0, L] × [0, ∞). By 

the maximum principle, we can obtain that x(�, %) ≥ 0  in [0, �∗] × [0, ∞), that is � ≤ �‾  in [0, �∗] × [0, ∞). 

Letting { = ('‾ − ')|1}� , it is easy to show that { 

satisfies 

��
�{� − �${ ≥ (<2 − ~ − 2<=�=U2z U=z ){, 	0 < � ≤ �∗, 0 < % < ℎ(�),{(�, %) = 0, 	0 < � ≤ �∗, % ≥ ℎ‾(�),{$(�, 0) = 0, 	0 < � ≤ �∗,{(0, %) ≥ 0, 	% ≥ 0,

                             (10) 

where U=z  is an upper bound of '‾ and ' in [0, L] × [0, ∞) and ~  is sufficiently large such that ~ ≥ 2<=�=U2z U=z + 1 + <2 . 
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Since the first inequality of 
10) holds only in part of [0, ∞), 

the maximum principle cannot be used directly. We can prove 

that for any � > ℎ(�∗), 

{(�, %) ≥ − hPz ($P,=��)�P 	in	[0, �∗] × [0, �],  
then, taking � → ∞  yields that {(�, %) ≥ 0  in [0, �∗] ×[0, ∞) , therefore ' ≤ '‾  in [0, �∗] × [0, ∞) . Set {‾ (�, %) ={(�, %) + hPz ($P,=��)�P , since that '‾ ≥ 0  over {(�, %):	0 ≤ � ≤L, 0 ≤ % ≤ ℎ‾(�)}, then {‾  satisfies 

�#�
#�{‾ � − �${‾ ≥ (<2 − ~ − 2<=�=U2z U=z ){‾ , 	0 < � ≤ �∗, 0 < % < ℎ(�),{‾ (�, %) ≥ hPz ($P,=��)�P > 0, 	0 < � ≤ �∗, ℎ(�) ≤ % ≤ �,{‾$(�, 0) = 0, 	0 < � ≤ �∗,{‾ (0, %) ≥ 0, 	0 ≤ % ≤ �.

  

We need only to prove min[�,�∗]×[�,�]{‾ : = � ≥ 0. In fact, if � < 0, then there exists (�2, %2) ∈ ℝ=  with 0 < �2 ≤ �∗  and 0 ≤ %2 < ℎ(�2) such that {‾ (�2, %2) = � < 0. It is easy to show ({‾ � − �${‾ )(�2, %2) ≤ 0. But due to our choice of ~, we have 

(<2 − ~ − 2<=�=U2z U=z ){‾ (�2, %2) = (<2 − ~ − 2<=�=U2z U=z )� ≥ −� > 0.  
It is a contradiction. Then, it is easy to get that {‾ ≥ 0 in [0, �∗] × [0, �], which implies that 

{(�, %) ≥ − hPz ($P,=��)�P 	for	[0, �∗] × [0, �].  
Since �(�, %) = '‾(�, %) − '(�, %) satisfies 

�� − �$� ≥ (<2 − 2<=�=U2z U=z )�, 0 < � ≤ �∗, 0 < % < ℎ(�),  
we can use the strong maximum principle and the Hopf 

boundary lemma to obtain that �(�, %) > 0  in (0, �∗] ×[0, ℎ(�)] , and �$(�∗, ℎ(�∗)) < 0 . Then we deduce ℎ′(�∗) <ℎ‾′(�∗). This contradicts with (9). This proves our claim that ℎ(�) < ℎ‾(�) for all � ∈ (0, L]. 
Apply the above produce over [0, L] × [0, ∞) , we can 

conclude that � ≤ �‾  and ' ≤ '‾ in [0, L] × [0, ∞). Moreover, ' ≤ '‾  in [0, L] × [0, ℎ(�)) . If ℎ� = ℎ‾(0) , let (�� , '� , ℎ�) 

denote the unique solution of (2)  with ℎ�  replaced by ℎ�(1 − �) for small � > 0. From the continuous dependence 

on parameter of the solution to (2), it is easy to show that (��, '� , ℎ�)  converges to (�, ', ℎ) . The desired results are 

followed by letting � → 0 in the inequalities �� ≤ �‾ , '� ≤ '‾ 

and ℎ� ≤ ℎ‾ . 

Lemma 2.2. (Comparison Principle). Let L ∈ (0, ∞) , ℎ ∈ 62([0, L])  with ℎ > 0  for all � ∈ [0, L] , and ' ∈6(u‾R∗∗) ∩ 62,=(uR∗∗)  with uR∗∗ = {(�, %) ∈ ℝ=: � ∈ (0, L], % ∈(0, ℎ(�))}. Suppose that (', ℎ) satisfies 

y'� − �$' ≤ '(!(%) − 5(%)�12'), � > 0,0 < % < ℎ(�),'$(�, 0) = 0, '(�, ℎ(�)) = 0, � > 0,ℎ′(�) ≤ −�'$(�, ℎ(�)), � > 0,   

and 

ℎ(0) ≤ ℎ�,	and	'�
%� ≥ '
0, %)	in	[0, ℎ(0)],  
then the solution (�, ', ℎ) of the equation (2) satisfies 

'(�, %) ≥ '(�, %)	in	u‾R∗∗, 	�
�� ≥ �
��	in	[0, L].  
We omit the details of the proof which can be proved as 

the process with the above lemma. 

3. The Spreading-Vanishing Dichotomy 

In this section, we prove the spreading-vanishing 

dichotomy of the free boundary problem (2). By the estimate 

of ℎ′(�) in Theorem 2.1, it is easy to show that there exists ℎD ∈ (0, ∞] such that lim�→Dℎ(�) = ℎD. 

Let �2(
, !, �)  be the principal eigenvalue for the 

following problem 

A−
�� = �!(|�|)�, � ∈ �� ,� = 0, � ∈ ��� ,  
where !(%) > ^M=  for % ∈ [0, ∞) , !(%) ∈ 62([0, ∞))  and ��  

stands for the ball with center at 0 and radius � . We can 

know in that �2(
, !, �) is a strictly decreasing continuous 

function in � and satisfies 

lim�→�N�2(
, !, �) = ∞	and	 lim�→D�2

, !, �) = 0.  
Therefore, for fixed 
 > 0  and ! ∈ 62([0, ∞)) , there 

exists a unique �∗(
, !)  such that �2(
, !, �∗(
, !)) = 1 , �2(
, !, �) < 1  for � > �∗(
, !) , and �2(
, !, �) > 1  for � < �∗(
, !) . Since �2(
, !, �)  is a strictly decreasing 

continuous function in ! and �, we have that �∗(
, !) is a 

strictly decreasing continuous function in !. 

In order to investigate asymptotic properties of solutions 

for the problem (2), we first recall the following spreading-

vanishing dichotomy for the radially symmetric diffusive 

logistic problem 

��
�]� − 
�$] = ](!(%) − 5(%)]), � > 0,0 < % < ℎ(�),]$(�, 0) = 0, ](�, ℎ(�)) = 0, � > 0,ℎ′(�) = −�]$(�, ℎ(�)), � > 0,ℎ(0) = ℎ�, ](0, %) = ]�(%), 0 ≤ % ≤ ℎ�. 	(11) 

Theorem 3.1. (spreading-vanishing dichotomy)(See [Du 

and Guo [8], Theorem 2.4 ]) Let 
]
�, %), ℎ(�))  be the 

solution of the free boundary problem (11). Then one of the 

following holds: (n)  spreading: ℎD = ∞  and lim�→D](�, %) = ]�(%) 

uniformly in any compact subset of [0, ∞), where ]�(|�|) is 

the unique positive (radial) solution of the equation 

−
�]� = ]�(!(|�|) − 5(|�|)]�)	in	��;  
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nn�  vanishing: �D � �∗

, !)  and lim�→D ∥ ](�,⋅) ∥c([�,`(�)])= 0. 

Theorem 3.2. (See [Du and Guo [8]]) If ℎ� ≥ �∗(
, !), 

then spreading always happens. If ℎ� < �∗(
, !), then there 

exists �∗ > 0 depending on ]�  such that vanishing happens 

when � ≤ �∗ and spreading happens when � > �∗. 

We will give the following lemmas to obtain the 

asymptotic properties of solutions for the problem (2). 

Lemma 3.1. If ℎD < ∞, then 

lim�→D�(�, %) = x(%)	uniformly in any compact	subset of	[0, ∞),                                             (12) 

where x(|�|) is the unique positive (radial) solution of the 

equation 

−
�� = �(�(|�|) − �(|�|)�), � ∈ ℝ� ,	            (13) 

and 

lim�→D ∥ '
�,⋅) ∥c([�,`(�)])= 0.	                   (14) 

Proof. By the similar way to that of [34, Theorem 2.1], we 

can get some uniform estimates of 
�, ', ℎ′). Then according 

to Lemma of [36], we can obtain that (14) holds. The details 

are omitted here. 

We use a squeezing argument introduced in [16] to state 

that (12) holds. Considering the Dirichlet problem 

−
�$� = �(�(%)(1 − �) − �(%)�), % < �, 	�
�� � 0,  
where � > 0 is a given constant, and the boundary blow-up 

problem 

−
�$] = ](�(%) − �(%)]), % < �, 	]
�� � +∞.  
When �  is small enough and �  is sufficiently large, it is 

well known that these problems have positive radial solutions ���  and ]� , respectively. As � → 0,  and � → ∞ , we can 

deduce from the comparison principle given in [16] that ���  

increases to x  and ]�  decreases to x , where x(%)  is the 

unique positive radial solution of the equation (13). 

We choose a decreasing sequence {�m} and an increasing 

sequence {�m}  such that �m → 0, , �m → ∞  as n → ∞  and �2(
, �(%)(1 − �m), �m) < 1 for all n . By (14), for each �m , 

there exists Lm > 0  such that '(�, %) < ^M^P �m ≤ k($)�($) �m  for all � ≥ Lm and % ∈ [0, ∞). By comparison principle, we have that �(�, %) ≥ �m(�, %), (�, %) ∈ [Lm , ∞) × [0, �m] for each n, where �m(�, %) is the solution of the following problem with fixed 

boundary 

y�� − 
�$� = �(�(%)(1 − �m) − �(%)�), � > Lm , 0 < % < �m ,�$(�, 0) = 0, �(�, �m) = 0, � > Lm ,�(Lm , %) = �(Lm , %), 0 ≤ % ≤ �m .                                           (15) 

Since �2(
, �(%)(1 − �m), �m) < 1, it is well known (see, 

Proposition 3.3 in [3]) that (15) admits a unique positive 

solution �m(�, %). Moreover, 

lim�→D�m(�, %) = ����� (%)	uniformly	for	% ∈ [0, �m].  
It follows that 

liminf�→D �(�, %) ≥ ����� (%)	uniformly	for	% ∈ [0, �m].  
Letting n → ∞, we can obtain that 

liminf�→D �(�, %) ≥ x(%)	uniformly in any compact subset of	[0, ∞).                                        (16) 

Similarly, by arguments to these in the proof of Theorem 4.1 of [16], it is easy to show that 

limsup�→D �(�, %) ≤ ]��(%)	uniformly	for	% ∈ [0, �m],  
which implies that 

limsup�→D �(�, %) ≤ x(%)	uniformly in any compact subset of	[0, ∞).                                         (17) 

From (16) and (17), we can obtain that (12) is true. 

Lemma 3.2. If ℎD < ∞, then ℎD ≤ �∗(1, !). 

Proof. On the contrary, we assume ℎD > �∗(1, !). Since �∗(1, !)  is a strictly decreasing continuous function in ! , 

then for any given �2 > 0  sufficiently small, there exists 

r ≫ 1 such that ℎ(r) > max{ℎ�, �∗(1, ! − �2)}. 

We can take advantage of the comparison principle to 

show that '(�, %) ≥ ](�, %) , ∀	� ≥ r , 0 ≤ % ≤ ℎ(r) , where ] = ](�, %) is the positive solution of the following initial 

boundary value problem with fixed boundary 

y]� = �$] + ](!(%) − �2 − 5(%)�12]), � > r, 0 < % < ℎ(r),]$(�, 0) = 0, ](�, ℎ(r)) = 0, � > r,](r, %) = '(r, %), 0 ≤ % ≤ ℎ(r).   

Since �2(1, ! − �2, ℎ(r)) < �2(1, ! − �2, �∗(1, ! − �2)) = 1 , we can know from [3] that ](�, %) → ]∗(%)  as � → ∞ 
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uniformly for % ∈ [0, ℎ(r)], where ]∗ is the unique positive 

solution of 

A�$]∗ + ]∗(!(%) − �2 − 5(%)�12]∗) = 0, % ∈ (0, ℎ(r)),]$∗(0) = ]∗(ℎ(r)) = 0.   

Hence 

liminf�→D'(�, %) ≥ lim�→D](�, %) = ]∗(%) > 0 in [0, ℎ(r)). 

This is a contradiction with (14) . Therefore, ℎD ≤�∗(1, !) holds. 

Lemma 3.3. Let (�, ', ℎ) be any solution of the equation (2). If ℎD = ∞, then 

�2(%) ≤ liminf�→D '(�, %) ≤ limsup�→D '(�, %) ≤ �=(%)  

uniformly in any compact subset of [0, ∞), where �2(|�|) and �=(|�|) are unique positive (radial) solutions of the equations 

−�' = '(!(|�|) − 5(|�|)�12'), � ∈ ℝ� ,  
and 

−�' = '(!(|�|) − 5(|�|)x12(|�|)'), � ∈ ℝ�,  
respectively, where x(|�|) is defined in Lemma 3.1. 

Proof. Since ℎD = ∞ , there exists L > 0  such that ℎ(L) > �∗(1, !) . We choose a function '�(%)  satisfying '� ∈ 6=([0, ℎ(�)]) , '�(%) ≤ '(L, %)  in [0, ℎ(L)] , '�(%) > 0 

in (0, ℎ(L))  and '�(ℎ(L)) = 0  and consider the following 

problem 

�#�
#�'� − �$' = '(!(%) − 5(%)�12'), � > L, 0 < % < ℎ(�),'$(�, 0) = '(�, ℎ(�)) = 0, � > L,ℎ′(�) = −�'$(�, ℎ(�)), � > L,ℎ(L) = ℎ(L), '(L, %) = '�(%), 0 ≤ % ≤ ℎ(L).

  

By Theorem 2.1 of [8], this problem has a unique solution (', ℎ) for all � > L. In view of Lemma 2.2, we have 

'(�, %) ≥ '(�, %) for � ≥ L, 0 ≤ % ≤ ℎ(�),ℎ(�) ≥ ℎ(�) for � ≥ L.        (18) 

Using Theorem 3.1, we can see that 

lim�→D'_ (�, %) = �2(%) uniformly in any compact subset of [0, ∞).                                                (19) 

It follows from (18) and (19) that 

liminf�→D '(�, %) ≥ �2(%) uniformly in any compact subset of [0, ∞).  
We define 

�‾(�, %) = (1 + ^P∥+8∥��([8,�))^M |1(^MP/^P)�. x(%).                                                        (20) 

Since x(%)  satisfies (13)  and <2 ≤ �(%), �(%) ≤ <= , it is easy to show that 
^M^P ≤ x(%) ≤ ^P^M  for % ∈ [0, ∞) . By direct 

calculation, we can obtain 

�‾� − 
�$�‾ − �‾(�(%) − �(%)�‾)= ^P∥+8∥��([8,�))^M |1(^MP/^P)�x(%) ¡− ^MP^P + (1 + ^P∥+8∥��([8,�))^M |1(^MP/^P)�)�(%)x(%)¢≥ 0,   

and �‾(0, %) = (1 + ^P∥+8∥��([8,�))^M . x(%) >∥ �� ∥£�([�,D))≥ ��(%). Due to lim�→D�‾(�, %) = x(%) uniformly in [0, ∞), for any 

given � > 0 , there exists L� > L  such that �‾(�, %) ≤ x(%)(1 + �) , ∀� ≥ L� , % ∈ [0, ∞) . Then we consider the auxiliary 

problem 

�#�
#�'‾� − �$'‾ = '‾ (!(%) − )($)¤($)(2,�),- '‾. , � > L�, 0 < % < ℎ‾(�),'‾$(�, 0) = 0, '‾(�, ℎ‾(�)) = 0, � > L�,ℎ‾ ′(�) = −�'‾$(�, ℎ‾(�)), � > L�,ℎ‾(L�) = ℎ(L�), '‾(L� , %) = '(L� , %), 0 ≤ % ≤ ℎ‾(L�),

  

and deduce that (x(1 + �), '‾, ℎ‾) satisfies (8) for � > L�. Though Lemma 2.1, it is easy to show that 

ℎ‾(�) ≥ ℎ(�), '‾(�, %) ≥ '(�, %),  ∀� > L� , 0 < % < ℎ(�).  
Hence, ℎ‾(∞) = ∞. By Theorem 3.1, it is easy to show that 

lim�→D'‾(�, %) ≤ ��(%) uniformly in any compact subset of [0, ∞),  
where ��(|�|) is the unique radial positive solution of the 

following equation 
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Here completes the proof. 

By the above Lemmas 3.1∼3.3, it is easy to show the 

following dichotomy result. 

Theorem 3.3. Suppose that (�, ', ℎ) is the unique solution 

of the equation (2) with the initial condition (4). Then the 

following alternative holds.  

Either (n)  spreading of ' : ℎD = ∞  and 

�2(%) ≤ liminf�→D'(�, %) ≤ limsup�→D'(�, %) ≤ �=(%)  

uniformly in any compact subset of [0, ∞); 

or (nn)  vanishing of ' : ℎD ≤ �∗(1, !)  and lim�→D ∥ '(�,⋅) ∥c([�,`(�)])= 0. 

Theorem 3.4. In Theorem 3.3, if ℎ� ≥ �∗(1, !) , then 

spreading of ' always happens. If ℎ� < �∗(1, !), then there 

exist �∗ ≥ �∗ > 0  depending on (��, '�)  such that the 

spreading of ' happens exactly when � > �∗ and vanishing 

of ' occurs exactly when � ≤ �∗. 

For the case ℎ� ≥ �∗(1, !) , since that ℎ′(�) > 0  for � > 0 

which is obtained in Theorem 2.1, we have ℎD > �∗(1, !) . 

Hence Lemmas 3.2 and 3.3 imply the spreading result. We prove 

the result for the case ℎ� < �∗(1, !) by the following lemmas. 

Lemma 3.4. If ℎ� < �∗(1, !), then there exists � > 0 depending on (��, '�) such that ℎD = ∞ when � ≥ �. 

Proof. Considering the following auxiliary problem 

�#�
#�' − �$' = '(!(%) − 5(%)�12'), � > 0,0 < % < ℎ(�),'$(�, 0) = 0, '(�, ℎ(�)) = 0, � > 0,ℎ′(�) = −�'$(�, ℎ(�)), � > 0,ℎ(0) = ℎ�, '(0, %) = '�(%), 0 ≤ % ≤ ℎ�.

  

By Lemma 2.2, we have that 

ℎ(�) ≤ ℎ(�), '(�, %) ≤ '(�, %),  ∀� > 0,0 < % < ℎ(�).  
Since ℎ(0) = ℎ� < �∗(1, !), by Lemma 2.8 of [8], there 

exists �_ > 0  such that ℎD = ∞  for � ≥ � . Therefore, ℎD = ∞ for � ≥ �. The proof is finished. 

Lemma 3.5. Suppose ℎ� < �∗(1, !) . Then there exists �‾ > 0 depending on '� such that ℎD < +∞ if � ≤ �‾. 

Proof. Using Lemma 2.1, it is easy to show that (^P^M , '‾(�, %), ℎ‾(�))  is an upper solution for (2) , where ('‾(�, %), ℎ‾(�)) is a solution of the following problem 

�#
�
#�'‾� − �$'‾ = '‾ ¦!(%) − 5(%) *‾§P§M,-¨ , � > 0,0 < % < ℎ‾(�),

'‾$(�, 0) = 0, '‾(�, ℎ‾(�)) = 0, � > 0,ℎ‾′(�) = −�'‾$(�, ℎ‾(�)), � > 0,ℎ‾(0) = ℎ�, '‾(0, %) = '�(%), 0 ≤ % ≤ ℎ�.
  

Since ℎ‾(0) = ℎ� < �∗(1, !), it follows from Theorem 3.2 

that there exists �‾ > 0 depending on '� such that ℎ‾D < ∞ if � ≤ �‾ . Therefore, ℎD < ∞  for � ≤ �‾ . The proof is 

completed. 

Lemma 3.6. Suppose ℎ� < �∗(1, !) . Then there exist �∗ ≥ �∗ > 0 depending on (��, '�) such that ℎD ≤ �∗(1, !) 

if � ≤ �∗ and ℎD = ∞ if � > �∗. 

Proof. The proof can be found in many papers, such as 

Theorem 3.5 of [38], Theorem 4.11 of [24], et al. For the 

convenience of the readers, we give the outline of the proof 

of this result. 

In order to clarify the dependence of the solution for (2) 

on �, we will write (�© , '© , ℎ©) in place of (�, ', ℎ). Define 

ª∗ = {� > 0: ℎ©,D ≤ �∗(1, !)} . By Lemmas 3.5 and 3.2, (0, �‾] ⊂ ª∗ . In view of Lemma 3.4, ª∗ ∩ [�, ∞) = ∅ . 

Therefore, set �∗ : = supª∗ ∈ [�‾, �]. By the definition of ª∗ 

and Lemma 3.2, we can deduce that ℎ©,D = ∞ when � > �∗. 

We will show that �∗ ∈ ª∗. Otherwise, it is easy to get that ℎ©∗,D = ∞  and there exists L > 0  such that ℎ©∗(L) >�∗(1, !). By the continuous dependence on parameter � of (�© , '© , ℎ©), there exists a constant � > 0 such that ℎ©(L) >�∗(1, !) for � ∈ [�∗ − �, �∗ + �]. It follows that for all such � , lim�→Dℎ©(�) > ℎ©(L) > �∗(1, !) . This implies that [�∗ − �, �∗ + �] ∩ ª∗ = ∅  and supª∗ ≤ �∗ − � . This 

contradicts with the definition of �∗. 

Set ª∗ = {; > 0: ; ≥ �‾  such that ℎ©,D ≤ �∗(1, !)  for all � ≤ ;}, where �‾ is given in Lemma 3.5. Then �∗ : = supª∗ ≤�∗  and (0, �∗) ⊂ ª∗ . Similar to the above argument, it is 

easily obtained �∗ ∈ ª∗. The proof is completed. 

4. Estimates of the Spreading Speed 

When spreading of '  happens, we give some rough 

estimates on the spreading speed of ℎ(�) in this section. 

Proposition 4.1 (See [Du and Lin [13], Proposition 4.1]) 

For any given constants � > 0 , � > 0 , 
 > 0  and ~ ∈[0,2√�
), the problem 

−
x″ + ~x′ = �x − �x= in (0, ∞), x(0) = 0, (4.1) 

admits a unique positive solution x = x} = xk,¯,} , and it 

satisfies x(%) → k̄
 as % → ∞. Moreover, x′}(%) > 0 for % ≥ 0, 
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x′}M(0) > x′}P(0), x}M(%) > x}P(%) for % > 0 and ~2 > ~= , 

and for each � > 0, there exists a unique ~� = ~�(�, �, �) ∈(0, √2�
) such that �x′}8(0) = ~�. Furthermore, 

lim°±²³→D
}8√k´ = 2, lim°±²³→�

}8√k´ ¯´k© = 2√V.  
It was shown in [13] that ~�(�, �, �) is increasing in � and �, and is decreasing in �. More precisely, 

�2 ≥ �=, �2 ≥ �= and �2 ≤ �= imply ~�(�2, �2, �2) ≥~�(�=, �=, �=),  

with strict inequality holding when (�2, �2, �2) ≠ (�=, �=, �=). 

It is can also easily shown that ~�(�, �, �) is a continuous 

function. Using the function ~�(�, �, �) , we have the 

following estimates for the spreading speed of ℎ(�). 

Since that the assumption (3) holds, we can define 

!D ≔ limr→∞ α(r)≤<= , !D: = lim$→D !(%) ≥ <2 ;  
5D ≔ limr→∞ β(r)≤<= , 5D: = lim$→D 5(%) ≥ <2.  

Theorem 4.1. If ℎD = ∞, then 

 

~�(�, !D, 5D�12) ≤ liminf�→D `(�)� ≤ limsup�→D
`(�)� ≤ ~�(�, !D, 5D(U2 + �)12).  

Proof. Since (�, ', ℎ) satisfies 

�#�
#�'� − �' = ' (!(%) − )($)*+,- . ≤ ' (!(%) − )($)hM,- '. , � > 0,0 < % < ℎ(�),'$(�, 0) = '(�, ℎ(�)) = 0, � > 0,ℎ′(�) = −�'$(�, ℎ(�)) = 0, � > 0,ℎ(0) = ℎ�, '(0, %) = '�(%) > 0, 0 ≤ % ≤ ℎ�,

  

then (', ℎ) is a lower solution to the following problem 

�#�
#�'‾� − �'‾ = '‾(!(%) − 5(%)(U2 + �)12'‾), � > 0,0 < % < ℎ‾(�),'‾$(�, 0) = 0, '‾(�, ℎ‾(�)) = 0, � > 0,ℎ‾′(�) = −�'‾$(�, ℎ‾(�)), � > 0,ℎ‾(0) = ℎ�, '‾(0, %) = '�(%), % ∈ [0, ℎ‾(0)].

  

It follows that ℎ‾(�) ≥ ℎ(�) → ∞ as � → ∞. By [8], we can 

obtain 

limsup�→D
‾̀ (�)� ≤ ~�(�, !D, 5D(U2 + �)12).  

Thus we have 

limsup�→D
`(�)� ≤ ~�(�, !D, 5D(U2 + �)12).  

Similarly, it is easy to show 

liminf�→D `(�)� ≥ ~�(�, !D, 5D�12).  
Corollary 4.1. Assume that ℎD = ∞, if there exist !∗, 5∗ 

such that !(%) → !∗, 5(%) → 5∗ as % → ∞, then 

~�(�, !∗, 5∗�12) ≤ liminf�→D `(�)� ≤ limsup�→D
`(�)� ≤~�(�, !∗, 5∗(U2 + �)12).  

Remark 4.1. We notice that the asymptotic spreading speed 

of (2) depends on the bounds of the prey, on parameter � and 

on !(%), 5(%). If !∗ = 5∗ = 1, then it is the corresponding 

estimate of the speed to Theorem 4.1  of [5]. If the 

coefficients �(%) , �(%) , &(%) , !(%) , 5(%)  are all positive 

constants, then the theorems of the long time behaviors for (2) all hold, such as in [5]. 

5. Conclusion 

We have examined the dynamical behavior of the 

population v(t,x) and u(t,x) with spreading front x = h(t) 

determined by (2), and also the dynamical behavior of the 

population u(t,x) and v(t,x). We have proved that for both 

problems, a spreading-vanishing dichotomy holds (Theorems 

3.1, 3.3 and 3.4), and when spreading occurs the spreading 

fronts expand at a nearly constant speed for large time 

(Theorem 4.1 and Corollary 4.1.). These phenomena are in 

agreement with numerous documented observations for the 

spreading of species in ecology, but differ from the 

mathematical conclusions obtained from (2), which predicts 

successful spreading for all initial data.
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