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Abstract: Competing risks refer to the situation where there are multiple causes of failure and the occurrence of one type of
event prohibits the occurrence of the other types of event or alters the chance to observe them. In large cohort studies with
long-term follow-up, there are often competing risks. When the failure events are rare, or the information on certain risk factors
is difficult or costly to measure for the full cohort, a case-cohort study design can be a desirable approach. In this paper, we
consider a semiparametric proportional subdistribution hazards model in the presence of competing risks in case-cohort studies.
The subdistribution hazards function, unlike the cause-specific hazards function, gives the advantage of outlining the marginal
probability of a particular type of event. We propose estimating equations based on inverse probability weighting techniques for
the estimation of the model parameters. In the estimation methods, we considered a weighted availability indicator to properly
account for the case-cohort sampling scheme. We also proposed a Breslow-type estimator for the cumulative baseline
subdistribution hazard function. The resulting estimators are shown, using empirical processes and martingale properties, to be
consistent and asymptotically normally distributed. The performance of the proposed methods in finite samples are examined
through simulation studies by considering different levels of censoring and event of interest percentages. The simulation results
from the different scenarios suggest that the parameter estimates are reasonably close to the true values of the respective
parameters in the model. Finally, the proposed estimation methods are applied to a case-cohort sample from the Sister Study, in
which we illustrated the proposed methods by studying the association between selected CpGs and invasive breast cancer in the
presence of ductal carcinoma in situ as competing risk.

Keywords: Case-cohort Study, Competing Risks, Inverse Probability of Censoring Weight, Subdistribution Hazard,
Weighted Estimating Equation

1. Introduction

Large epidemiologic cohort studies that require the follow-
up of thousands of subjects for a prolonged period of time can
generally be expensive as data collection from participating
subjects is resource-demanding. Further, when the disease
under investigation is rare, large number of subjects must be
enrolled to ensure adequate number of failures are observed
during the follow-up period. Case-cohort study design [1] is an

efficient alternative to reduce cost and achieve the same goal as
a cohort study. A case-cohort study includes a random sample
of the entire cohort, named subcohort, plus all subjects who
develop the disease of interest regardless of being selected in
the random subcohort or not.

Conventional statistical methods for survival data consider
that there is only one possible event to occur and define the
outcome as the time until the occurrence of that particular
event of interest. However, in many studies, it is possible that



American Journal of Applied Mathematics 2021; 9(5): 165-185 166

there may be other events which ‘compete’ with the event of
interest, so that the occurrence of such an event precludes or
modifies the chance of the occurrence of the primary event.
For instance, in the Sister Study, a prospective observational
cohort study designed to assess environmental and genetic risk
factors for breast cancer [2], participants can develop either
invasive breast cancer or ductal carcinoma in situ (DCIS), a
pre-invasive condition of breast cancer. Oftentimes, patients
with DCIS receive aggressive treatments such as lumpectomy,
hormonal therapy or radiation therapy, which greatly reduce
their chance of getting subsequent invasive breast cancer [3].
Thus, we consider DCIS as a competing risk for invasive breast
cancer.

A standard approach for competing risks data involves
modeling the cause-specific hazard functions of the different
competing events under the proportional hazards assumption
[4]. Cause-specific hazard function for an event is defined as
the instantaneous rate of the event in subjects who are currently
event free (i.e., in subjects who have not yet experienced any
type of events). The cause-specific hazard function is very
useful when the interest is in, for example, understanding
disease etiology or comparison of cause-specific hazards
across groups. However, the cause-specific hazard function
does not have a direct interpretation in terms of survival
probabilities for the particular event type [5-7]. Instead, the
subdistribution hazard, introduced by Fine & Gray [5], is
defined as the instantaneous risk of failure from the event of
interest in subjects who have not yet experienced this event
of interest (i.e., subjects who have not yet experienced any
type of event and subjects who developed another type of event
prior to this time point), and it is directly related to the survival
probability for the particular event type. Hence, modeling the
subdistribution hazards is of greater interest when the focus
is on estimating the actual risk and prognosis or if one is
interested in the overall effect of covariates on the incidence
of the event of a particular type [8, 9].

Despite the considerable literature on statistical methods for
case-cohort study [1, 10-16], methods for case-cohort study in
the presence of competing risks have been limited. Sørensen &
Andersen [17] considered proportional cause-specific hazards
model, where they generalized the pseudolikelihood approach
proposed by Prentice [1] and Self & Prentice [10] for a
single event to competing risks setting. Sun et al. [18]
followed a similar approach for additive cause-specific hazards
model. Wolkewitz et al. [19] implemented Prentice’s [1]
pseudolikelihood approach for cause-specific hazards in the
analyses of a real dataset under a case-cohort design. There has
not been much work for examining the subdistribution hazard
in the presence of competing risks in case-cohort designs.

In this paper, we consider a proportional subdistribution
hazards model in the presence of competing risks in case-
cohort studies and examine a weighted estimating equation
approach for parameter estimation. In Section 2, we introduce
the data structure of a case-cohort study design in the presence
of competing risks and the proportional hazards model for the
subdistribution of a competing risk. Methods for parameter
estimation are presented in Section 3. We establish the

asymptotic properties of the proposed estimation procedures
in Section 4 and investigate the performance of the proposed
methods in finite samples through simulation studies in Section
5. We apply the proposed methods to analyze a case-cohort
sample data from the Sister Study in Section 6. We conclude
with some final remarks in Section 7. Outline of the proofs of
the theorems are available in the Appendix.

2. Data Structure and Model

2.1. Data Structure with Competing Risks

Let n be the total number of independent subjects, indexed
by i = 1, . . . , n, in the entire cohort. The follow-up period
is [0, τ ], where τ is the study end time. Let Ti and Ci be
the potential failure and censoring times, respectively, and
εi ∈ (1, . . . , K) be the cause of failure for subject i. Without
loss of generality, we denote the event of interest as ‘cause
1’ (εi = 1) and refer to it as ‘cause of interest’ or ‘event
of interest’ interchangeably. Let Zi(t) be a p × 1 possibly
time-dependent covariates vector of bounded variation for
subject i at time t. Note that the time-dependent covariates
are “external” in the sense that they are not affected by the
disease process [6, Chapter 6]. From now on, we assume
that the cause of failure εi is observable whenever Ti is
observed. Considering the entire cohort, for right-censored
data we observe {Xi = min(Ti, Ci), ∆i = I(Ti ≤
Ci), ∆iεi, Zi(t)}, i = 1, . . . , n, and assume that they are
independent and identically distributed.

Let Ni(t) and Yi(t), 0 ≤ t ≤ τ, denote the counting
and “at risk” processes for the event of interest for subject i.
Specifically, Ni(t) = I(Ti ≤ t, εi = 1) has right-continuous
paths taking value 0 if subject i has not experienced the event
of interest prior to time t, and value 1 otherwise. The process
Yi(t) = 1 − Ni(t−) has left-continuous sample paths taking
value 1 if subject i has (i) neither failed from the cause of
interest nor censored by time t or (ii) already failed by time
t from a cause other than the cause of interest, and value
0 otherwise. Therefore, the risk set at a specific time point
includes not only subjects who have neither been censored nor
failed from any cause but also subjects who have already failed
from other causes than the cause of interest [5]. Subjects who
experienced other event remain in the risk set indefinitely as
long as they have not failed from the cause of interest. Without
loss of generality, we assume that there are only two types of
events or causes of failure (K = 2). This does not create any
restriction on the generalization of the results, since when there
are more than two types of event, all event types other than the
event of interest can be combined into one “other” category
and considered as the competing event [20].

2.2. Case-Cohort Sampling Design in the Presence of
Competing Risks

In a case-cohort study, we sample a random subcohort and
all subjects who failed from the event of interest regardless of
whether they are in the selected subcohort. Suppose there are
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m subjects in the subcohort. Covariate information Zi(t) can
be decomposed into two parts as Zi(t) =

{
ZCi (t), ZEi (t)

}
where ZCi (t) are available on the entire cohort and ZEi (t) are
the expensive covariates which are only available on: (1) the
subjects who experienced the event of interest, i.e., ∆iεi = 1,
regardless of whether they were selected into the subcohort
or not, and (2) all of the subcohort members regardless of
their disease status. We considered simple random sampling
(SRS) method for the selection of the subcohort. Let ξi be
an indicator for subject i being selected into the subcohort.
When the subcohort is selected using SRS with fixed sample
size, ξ1, . . . , ξn are correlated. Let P (ξi = 1) = α ∈ (0, 1]
be the sampling probability for the subcohort and assume that
α̃ = m/n converges to α in probability as n → ∞. Thus,
in a case-cohort study, the observable data for subject i is{
Xi, ∆i, ∆iεi, ξi, Z

C
i (t), ZEi (t)

}
if ξi = 1 or ∆iεi = 1

and is
{
Xi, ∆i, ∆iεi, ξi, Z

C
i (t)

}
if ξi = 0 and ∆iεi 6= 1.

2.3. The Proportional Subdistribution Hazards Model

Without loss of generality, we denote the event of interest
as ‘event 1’ and we are interested in modeling the cumulative
incidence function for this event conditional on the covariates,
i.e., F1(t|Z(t)) = P (T ≤ t, ε = 1|Z(t)). The corresponding
subdistribution hazard is λ1(t|Z) = −∂ log{1−F1(t|Z)}

/
∂t.

We consider a proportional subdistribution hazards model [5]

λ1(t|Z) = λ1·0(t) exp{βT0 Z(t)}, (1)

where λ1·0(t) ≥ 0 is an unspecified baseline subdistribution
hazard function and β0 is a p × 1 vector of fixed
and unknown parameters. We further denote M1

i (t) =

Ni(t) −
∫ t

0
Yi(u)λ1·0(u) exp{βT0 Zi(u)}du, which satisfies

the definition of a martingale under the filtration F1(t) =
σ{Ni(u), Yi(u),Zi(u), u ≤ t, i = 1, . . . , n}.

3. Estimation

In the presence of right censoring with the full cohort
data, Fine & Gray [5] used the inverse probability censoring
weighting (IPCW) techniques [21] to construct estimating
equations for the parameters in model (1). Here, we assume
that (T, ε) and C are independent; and C is independently
distributed with P (C ≥ t) = G(t). The common
cumulative hazard of the censoring distribution is given by
Λc(t) = − logG(t). Further, let Ĝ(·) be the Kaplan-Meier
estimator of G(·) which can be calculated based on {Xi, 1 −
∆i, i = 1, . . . , n}. Note that if C is dependent on some
covariates in the model, the IPCW methods can still be applied
with some modifications. Specifically, if C depends on
discrete covariates, G(·) can be estimated by Kaplan-Meier
estimator for each combination of the covariates. On the
other hand, if C depends on continuous covariates, G(·) can
be estimated through modeling the hazard function of the
censoring time with the covariates. Fine & Gray [5] considered
a time-dependent weight function, ωi(t) = I(Ci ≥ Ti ∧

t)Ĝ(t)
/
Ĝ(Xi∧t), i = 1, . . . , n, and their proposed estimator

is the solution to the weighted score equation,

UF (β) =

n∑
i=1

∫ τ

0

{
Zi(u)− Z̄F (β, u)

}
ωi(u)dNi(u), (2)

where Z̄F (β, t) = Ŝ
(1)
F (β, t)

/
Ŝ

(0)
F (β, t), and

Ŝ
(d)
F (β, t) = n−1

n∑
i=1

ωi(t)Yi(t)Zi(t)
⊗d exp{βTZi(t)}

for d = 0, 1, 2.

Only the subjects who failed from the cause of interest
contribute to the summation in (2) and the other subjects affect
the score function UF (·) only through the at-risk covariate
average Z̄F (·). Iterative methods, such as the Newton-
Raphson or Fisher Scoring, can be used to solve the system
of equations UF (β) = 0 for β.

Under the case-cohort study design, because Z(·) is not
observed on every subject, the score function in (2) cannot
be calculated directly. We consider an approximation for (2)
based on the sampling proportions. Specifically, we consider
the following weighted estimating equation:

UC(β) =

n∑
i=1

∫ τ

0

{
Zi(u)− ẐC(β, u)

}
ωi(u)dNi(u) = 0, (3)

where

ẐC(β, t) = Ŝ
(1)
C (β, t)

/
Ŝ

(0)
C (β, t),

Ŝ
(d)
C (β, t) = n−1

n∑
i=1

ρi(t)ωi(t)Yi(t)Zi(t)
⊗dexp{βTZi(t)}

for d=0, 1, 2,

ρi(t) = ∆iI(εi = 1) +
(
1−∆iI(εi = 1)

)
ξi
/
α̂(t),

and α̂(t) is the ratio of the number of subjects in the sub-cohort
who are at risk for the event cause of interest at time t to the
number of subjects in the entire cohort who are at risk for the
event cause of interest at time t. That is,

α̂(t) =

∑n
i=1 ξi

(
1−∆iI(εi = 1)

)
Yi(t)∑n

i=1

(
1−∆iI(εi = 1)

)
Yi(t)

.

Note that if time-dependency is not needed, α̂(·) can be
replaced by the inverse of the sampling fraction, m/n. In
the score function UC(β) in (3), ẐC(t) includes not only the
subcohort members but also all the failures from the cause
of interest which occurred outside of the subcohort. The
estimator β̂ is the solution to UC(β) = 0.

For the cumulative baseline subdistribution hazard function,
Λ1·0(t) =

∫ t
0
λ1·0(u)du, we propose Breslow-type of

estimator:

Λ̂1·0(t) = n−1
n∑
i=1

∫ t

0

1

Ŝ
(0)
C (β̂, u)

ωi(u)dNi(u), (4)
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where Ŝ(0)
C (β̂, t) is Ŝ(0)

C (β, t) evaluated at β̂. The cumulative
incidence at time t for an individual with covariate values
Z = z0 can be estimated by F̂1(t|z0) = 1−exp{−Λ̂1(t|z0)}
where

Λ̂1(t|z0) =

∫ t

0

exp{β̂Tz0(u)}dΛ̂1·0(u)

= n−1
n∑
i=1

∫ t

0

exp{β̂Tz0(u)}
Ŝ

(0)
C (β̂, u)

ωi(u)dNi(u). (5)

The consistency of β̂ for β0 and uniform convergence
of Λ̂1·0(t) to Λ1·0(t), both summarized in the next section,

ensure the uniform convergence of F̂1(t|z0) to F1(t|z0) on
a suitably chosen interval. Moreover, using similar techniques
as in Fine & Gray [5], analytic as well as simulation-based
confidence intervals and confidence bands can be constructed
subsequently.

4. Asymptotic Properties

In this section, we establish the asymptotic properties of
the proposed estimates. For convenience, we define some
additional notations.

S(d)(β, t) = n−1
n∑
i=1

Yi(t)Zi(t)
⊗d exp{βTZi(t)} for d = 0, 1, 2,

s(d)(β, t) = lim
n→∞

S(d)(β, t) for d = 0, 1, 2, e(β, t) = s(1)(β, t)
/
s(0)(β, t),

v(β, t) =
s(2)(β, t)s(0)(β, t)− s(1)(β, t)⊗2

s(0)(β, t)2
, Z̄i(β, t) = Zi(t)− e(β, t),

Ω(β) =

∫ τ

0

{
s(2)(β, t)

s(0)(β, t)
− e(β, t)⊗2

}
s(0)(β, t)dΛ1·0(t) =

∫ τ

0

v(β, t)s(0)(β, t)dΛ1·0(t),

M c
i (t) = I(Xi ≤ t, ∆i = 0)−

∫ t

0

I(Xi ≥ u)dΛc(u),

π(u) = lim
n→∞

n−1
n∑
i=1

I(Xi ≥ u), ω̃i(t) = I(Ci ≥ Ti ∧ t)G(t)
/
G(Xi ∧ t),

φ(t) = lim
n→∞

n−1
n∑
i=1

(1−∆iI(εi = 1))Yi(t) = E{(1−∆1I(ε1 = 1))Y1(t)},

ηi(β) =

∫ τ

0

Z̄i(β, t)ω̃i(t)dM
1
i (t), ρ̃i = ∆iI(εi = 1) +

(
1−∆iI(εi = 1)

)
ξi
/
α̃,

r
(d)
i (β, t) =

(
1−∆iI(εi = 1)

)
Yi(t)

{
ω̃i(t)Zi(t)

⊗d exp{βTZi(t)} −
g(d)(β, t)

φ(t)

}
for d = 0, 1,

g(d)(β, t) = E
{(

1−∆jI(εj = 1)
)
ω̃j(t)Yj(t)Zj(t)

⊗d exp{βTZj(t)}
}

for d = 0, 1,

µi(β) =

∫ τ

0

[
r

(1)
i (β, t)− e(β, t)r

(0)
i (β, t)

]
dΛ1·0(t),

p(β, u, t) = lim
n→∞

n−1
n∑
j=1

1

s(0)(β, t)
ρj(t)ω̃j(t)Yj(t) exp{βTZj(t)}

[
Zj(t)− e(β, t)

]
I(t ≥ u > Xj)

q(β, u) = lim
n→∞

n−1
n∑
i=1

∫ τ

0

p(β, u, t)ω̃i(t)dNi(t), and ψi(β) =

∫ τ

0

q(β, u)

π(u)
dM c

i (u).

(6)

We assume the following regularity conditions:

(a) {Xi, ∆i, ∆iεi, Zi} are independent and identically
distributed for i = 1, . . . , n.

(b) [Finite Interval].
∫ τ

0
λ1·0(t)dt <∞.

(c) Zij(·), for i = 1, . . . , n; j = 1, . . . , m, have bounded
total variations. That is, for the jth component
of Zi, say Zij , j = 1, . . . , m, we have |Zij(0)| +∫ τ

0
|dZij(t)| ≤ Dm < ∞, almost surely for some

constant Dm.

(d) P
(
(1−∆)Y (τ) = 1

)
> 0.

(e) [Asymptotic stability]. There exists a compact
neighborhood B of β0, and continuous functions s(0),
s(1) and s(2) (scalar, vector and matrix, respectively) of
β ∈ B × [0, τ ] such that:

i) lim
n→∞

sup
t∈[0, τ ]

β∈B

‖ S(d)(β, t)− s(d)(β, t) ‖ p−→ 0.

ii) There exists a positive definite matrix Σ(β0) such

that var
{ n∑
i=1

[(
ηi(β0) +ψi(β0)

)⊗2

+(1− α)α−1
(
µi(β0)

)⊗2]} p−→ Σ(β0).
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(f) [Asymptotic regularity conditions].

i) For all β ∈ B, where B is a compact set of Rp
with nonempty interior, and t ∈ [0, τ ], s(d)(·, t)
(for d = 0, 1, 2) are continuous functions of β ∈
B, uniformly in t ∈ [0, τ ] and are bounded on
B × [0, τ ].

ii) The scalar s(0)(β, t) is bounded away
from zero and the covariance matrix

Ω(β) =

∫ τ

0

v(β, t)s(0)(β, t)dΛ1·0(t)

is positive definite.

(g) [Alternative Lindeberg condition]. There exists δ > 0
such that

lim
n→∞

n−1/2sup
i, t
‖ Zi(t) ‖Yi(t)I

{
βT0 Zi(t)

> −δ ‖ Zi(t) ‖
} p−→ 0.

(h) [Nontrivial subcohort]. lim
n→∞

α̃
p−→ α for some constant

α ∈ (0, 1), α = P (ξi = 1).

(i) [Asymptotic normality of subcohort averages atβ0]. For
i = 1, . . . , n

i) lim
n→∞

n−1sup
i, t

exp
{
βT0 Zi(t)

}2 p−→ 0, and

ii) lim
n→∞

n−1sup
i, t
‖ Zi(t) ‖2 exp

{
βT0 Zi(t)

}2 p−→ 0.

The asymptotic properties are summarized in the following
theorems. Note that these regularity conditions are similar
to those of Andersen [23, Theorem 4.1] with additional
conditions (e), (h) and (i) to accommodate the case-cohort
sampling design.

Theorem 4.1 (Asymptotic properties of β̂). Under
Conditions (a)–(i), β̂ is a consistent estimator of β0,
i.e., β̂

p−→ β0 as n → ∞. Further, n
1
2

(
β̂ − β0

)
is

asymptotically normal with mean zero and variance matrix
Ω(β0)−1Σ(β0)Ω(β0)−1, where Ω(β) is defined in (6) and
Σ(β) = E

{[
ηi(β)+ψi(β)

]⊗2}
+(1−α)α−1E

{
µi(β)⊗2

}
.

The consistency of β̂ can be shown based on an extension
of the Inverse Function Theorem[24] by verifying these four
conditions: (I) ∂UC(β)/∂β exists and is continuous in an
open neighborhood B of β0; (II) −n−1∂UC(β0)

/
∂βT0 is a

positive definite (and hence invertible) with probability going
to one as n −→∞; (III) −n−1∂UC(β)

/
∂βT converges in

probability to a fixed function, Ω(β), uniformly in an open
neighborhood B of β0; and (IV) asymptotic unbiasedness
of the estimating functions, n−1UC(β)

p−→ 0. Verification
of (I)–(III) are based on conditions (a)–(i) whereas that of
(IV) is additionally based on some algebraic manipulations
under empirical processes. The outlines of the proofs are
available in the Appendix. The asymptotic variance of β̂ can
be consistently estimated by replacing each component by its
empirical counterpart, i.e. n−1Ω̂−1Σ̂Ω̂−1 where

Ω̂ = n−1
n∑
i=1

{
Ŝ

(2)
C (β̂, Xi)

Ŝ
(0)
C (β̂, Xi)

− ẐC(β̂, Xi)
⊗2

}
∆iI(εi = 1),

Σ̂ = n−1

{ n∑
i=1

ρ̃i
[
η̂i + ψ̂i

]⊗2
+
(
1− α̃

)
α̃−1

n∑
i=1

ρ̃i
(
µ̂i
)⊗2
}
,

η̂i =
{
Zi(Xi)− ẐC(β̂, Xi)

}
ωi(Xi)∆iI(εi = 1)

− n−1
n∑
j=1

ωj(Xj)∆jI(εj = 1)ωi(Xj)Yi(Xj) exp
{
β̂TZi(Xj)

}
Ŝ

(0)
C (β̂, Xj)

×
{
Zi(Xj)− ẐC(β̂, Xj)

}
,

µ̂i = n−1
n∑
j=1

ωj(Xj)∆jI(εj = 1)

Ŝ
(0)
C (β̂, Xj)

[
r̂
(1)
i (β̂, Xj)− ẐC(β̂, Xj)r̂

(0)
i (β̂, Xj)

]
,

r̂
(d)
i (β̂, Xj) =

(
1−∆iI(εi = 1)

)
Yi(Xj)

{
ωi(Xj)Zi(Xj)

⊗d exp{β̂TZi(Xj)} −
ĝ(d)(β̂, Xj)

φ̂(Xj)

}
for d = 0, 1,

ĝ(d)(β̂, Xj) = n−1
n∑
k=1

(
1−∆kI(εk = 1)

)ξk
α̃
ωk(Xj)Yk(Xj)Zk(Xj)

⊗d exp{β̂TZk(Xj)} for d = 0, 1,

φ̂(Xj) = n−1
n∑
i=1

ρ̃i
(
(1−∆iI(εi = 1))Yi(Xj)

)
,

ψ̂i =
q̂(Xi)

π̂(Xi)
I(∆i = 0)− n−1

n∑
l=1

(
q̂(Xl)

π̂(Xl)2

)
ρl(Xl)I(Xi ≥ Xl)I(∆l = 0),

q̂(Xi) = n−1
n∑
j=1

p̂(Xi, Xj)ωj(Xj)∆jI(εj = 1), π̂(Xi) = n−1
n∑
j=1

ρj(Xi)I(Xj ≥ Xi), and

p̂(Xi, Xj) = n−1
n∑
k=1

1

Ŝ
(0)
C (β̂, Xj)

ρ̃kωk(Xj)Yk(Xj) exp{β̂TZk(Xj)}
{
Zk(Xj)− ẐC(β̂, Xj)

}
I(Xj ≥ Xi > Xk).
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Theorem 4.2 (Asymptotic properties of Λ̂1·0(β̂, t)). Under
conditions (a)–(i) listed above, Λ̂1·0(β̂, t) is a consistent
estimator of Λ1·0(t). Furthermore, for every t ∈ [0, τ ],

n
1
2

{
Λ̂1·0(β̂, t) − Λ1·0(t)

}
converges weakly to a mean-zero

Gaussian process with variance ΣΛ1·0(t) = E
{
W11(t)⊗2

}
+

(1− α)α−1E
{
W21(t)⊗2

}
where, for i = 1, . . . , n,

W1i(t) = Ω(β0)−1
[
ηi(β0) +ψi(β0)

]
h(t) +

∫ t

0

p∗(β0, s, t)

π(s)
dM c

i (s) +

∫ t

0

ω̃i(u)dM1
i (u)

s(0)(β0, u)
,

W2i(t) =

[
Ω(β0)−1µi(β0)h(t) +

∫ t

0

r
(0)
i (β0, u)

dΛ1·0(u)

s(0)(β0, u)

]
, h(t) = −

∫ t

0

s(1)(β0, u)

s(0)(β0, u)
dΛ1·0(u), and

p∗(β, s, t) = lim
n→∞

n−1
n∑
j=1

∫ t

0

1

s(0)(β, u)
ρ̃jYj(u) exp{βTZj(u)}ω̃j(u)I(u ≥ s > Xj)dΛ1·0(u).

The proof follows the ideas in Kulich & Lin [25] and
Kang & Cai [15] by decomposing n

1
2

{
Λ̂1·0(β̂, t) − Λ1·0(t)

}
into three parts and then apply Taylor series expansion,

martingale properties, and empirical process theory to show
their asymptotic properties. An outline of the proof is available
in the Appendix. The variance ΣΛ1·0(t) can be consistently
estimated by

Σ̂Λ1·0(t) = n−1

{ n∑
i=1

ρ̃i
{
Ŵ1i(t)

}⊗2
+
(
1− α̃

)
α̃−1

n∑
i=1

ρ̃i
{
Ŵ2i(t)

}⊗2
}
,

where

Ŵ1i(t) = ĥ(t)T Ω̂−1
(
η̂i + ψ̂i

)
+

∫ t

0

p̂∗(β̂, s, t)

π̂(s)
dM̂ c

i (s) +

∫ t

0

ωi(u)dM̂1
i (u)

Ŝ
(0)
C (β̂, u)

,

Ŵ2i(t) = ĥ(t)T Ω̂−1µ̂i +

∫ τ

0

r̂
(0)
i (β̂, u)

dΛ̂1·0(u)

Ŝ
(0)
C (β̂, u)

, ĥ(t) = −
∫ t

0

Ŝ
(1)
C (β̂, u)

Ŝ
(0)
C (β̂, u)

dΛ̂1·0(u),

M̂1
i (t) = I(Ti ≤ t, εi = 1)−

∫ t

0

{
1− I(Ti ≤ u, εi = 1)

}
exp

{
β̂TZi(u)

}
dΛ̂1·0(u),

p̂∗(β̂, s, t) = n−1
n∑
j=1

∫ t

0

1

Ŝ
(0)
C (β̂, u)

ρ̃jYj(u) exp{β̂TZj(u)}ωj(u)I(u ≥ s > Xj)dΛ̂1·0(u),

M̂ c
i (t) = I(Xi ≤ t, ∆i = 0)−

∫ t

0

I(Xi ≥ u)dΛ̂c(u), and Λ̂c(t) =

∫ t

0

∑
i ρi(u)d{I(Xi ≤ u, ∆i = 0)}∑

i ρi(u)I(Xi ≥ u)
.

5. Simulation Studies
Simulation studies were conducted to assess the

performance of the proposed estimators in finite samples. We
considered two covariates, Zi = (Zi1, Zi2) and two causes
of failures (K = 2), one is the event of interest (ε = 1) and
the other is considered as a competing risk (ε = 2). The
subdistribution for type 1 failure (event of interest) was given
by

F1(t|Zi) = P (Ti ≤ t, εi = 1|Zi)
= 1− [1− p{1− exp (−t)}]exp (β11Zi1+β12Zi2),

(7)

where p = F1(t = ∞|Z = 0), 0 < p < 1,
is the baseline lifetime survival probability and 1 − (1 −
p)exp (β11Zi1+β12Zi2) = P (εi = 1|Zi) is the probability of
the event of interest for an individual with covariate value Zi
and p. Further, note that the subdistribution of failure time
given in (7) is a unit exponential mixture with probability mass
1 − P (εi = 1|Zi = 0) = 1 − p at t = ∞ and based on the
proportional subdistribution hazards model in (1) with baseline

hazard

λ1·0 =
pe−t

1− p(1− e−t)
.

The subdistribution for type 2 failures (the competing event)
is obtained by taking P (εi = 2|Zi) = 1 − P (εi =
1|Zi) and considering an exponential distribution with rate
exp (β21Zi1+ β22Zi2) for P (Ti ≤ t|εi = 2, Zi = Zi).
Therefore,

F2(t|Zi) = P (Ti ≤ t, εi = 2|Zi = Zi)

= P (εi = 2|Zi = Zi) · P (Ti ≤ t|εi = 2, Zi = Zi)

= (1− p)exp (β11Zi1+β12Zi2)

×
{

1− exp [−t · exp (β21Zi1 + β22Zi2)]
}
.

On average, in the absence of censoring, P (εi = 1|Zi = Z)
of individuals with covariate value Z experience the event of
interest whereas P (εi = 2|Zi = Z) of individuals experience
the competing event in the full cohort. Censoring times were
generated from the uniform [a, b] distribution with a and b
chosen to depend on the desired percentage of censoring.
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Table 1. Summary of simulation results for (β̂11, β̂12) when (β11, β12) = (0.5, 0.5), Z1 ∼ N(0, 1), Z2 ∼ N(0, 1), p = 0.3, and n = 4, 000.

Percent Events of Subcohort Ratio β̂11 β̂12

censored1 interest % size nd :ncc -nd mean(β̂11) SE SSD (β̂11) C.R. mean(β̂11) SE SSD (β̂12) C.R.

80 6.5 278 1:1 0.509 0.105 0.113 0.954 0.510 0.105 0.108 0.944

556 1:2 0.505 0.086 0.089 0.936 0.506 0.086 0.088 0.946

834 1:3 0.503 0.078 0.081 0.940 0.504 0.077 0.081 0.938

90 3.2 131 1:1 0.512 0.161 0.177 0.934 0.509 0.160 0.175 0.942

263 1:2 0.510 0.131 0.140 0.950 0.508 0.130 0.135 0.956

394 1:3 0.507 0.118 0.125 0.950 0.508 0.117 0.121 0.942

95 1.7 70 1:1 0.517 0.231 0.276 0.920 0.516 0.230 0.270 0.914

141 1:2 0.515 0.185 0.204 0.940 0.510 0.184 0.198 0.952

211 1:3 0.511 0.161 0.181 0.930 0.509 0.167 0.172 0.942

Notations: mean(β̂): the average of the parameter estimates; SE: the average of the estimates of standard errors based on the proposed method; SSD(β̂): the sample standard

deviation of the parameter estimates; C.R.: the coverage rate of the nominal 95% C.Is. Censoring times were generated from U [0.00, 0.40] for 80%, from U [0.00, 0.18] for

90%, and from U [0.00, 0.09] for 95%.

Table 2. Summary of simulation results for (β̂11, β̂12) when (β11, β12) = (1.0, 0.5), Z1 ∼ Bin(0.5), Z2 ∼ N(0, 1), p = 0.5, and n = 4, 000.

Percent Events of Subcohort Ratio β̂11 β̂12

censored1 interest % size nd :ncc -nd mean(β̂11) SE SSD (β̂11) C.R. mean(β̂11) SE SSD (β̂12) C.R.

80 15.7 747 1:1 1.007 0.120 0.119 0.940 0.508 0.060 0.061 0.944

1493 1:2 1.000 0.101 0.098 0.960 0.501 0.049 0.051 0.942

2240 1:3 0.999 0.094 0.095 0.944 0.500 0.045 0.045 0.952

90 7.9 343 1:1 1.015 0.183 0.185 0.946 0.512 0.095 0.097 0.944

692 1:2 1.012 0.153 0.147 0.962 0.510 0.076 0.081 0.940

1038 1:3 0.999 0.143 0.151 0.940 0.502 0.069 0.073 0.936

95 4.0 167 1:1 1.039 0.270 0.272 0.944 0.534 0.144 0.142 0.930

333 1:2 1.013 0.226 0.221 0.962 0.514 0.115 0.118 0.940

500 1:3 1.011 0.210 0.220 0.942 0.505 0.103 0.110 0.936

Notations: mean(β̂): the average of the parameter estimates; SE: the average of the estimates of standard errors based on the proposed method; SSD(β̂): the sample standard

deviation of the parameter estimates; C.R.: the coverage rate of the nominal 95% C.Is. Censoring times were generated from U [0.00, 0.38] for 80%, from U [0.00, 0.17] for

90%, and from U [0.00, 0.08] for 95%.

In the first scenario, we considered independent standard
normal distributions for both covariates with parameter values
(β11, β12, β21, β22) = (0.5, 0.5, −0.5, 0.5) and p = 0.3. In
the second scenario, we considered a Bernoulli distribution
with mean 0.5 for Z1 and a standard normal distribution for
Z2. The true parameter values were (β11, β12, β21, β22) =
(1, 0.5, −1, 1) and p = 0.5. The full cohort sample size
was 4, 000 in both scenarios. We considered three different
levels of censoring percentage: 95%, 90%, and 80%. Let ncc
denote the size for the case-cohort sample and nd denote the
number of events of interest (i.e., cases) in the entire cohort.
Further, we note that ‘non-case’ refers to a subject who did not
fail from the event of interest, thus it indicates a subject who
has either never failed from any event or who failed from a
competing event. For the case-cohort samples, we considered
three average cases to non-cases ratios (i.e., nd : (ncc−nd)) in
the final case-cohort sample: 1:1, 1:2, and 1:3. This is achieved
by increasing the size of the random subcohort. For example,
suppose we have a full cohort of size 4, 000 in which 80%
of the subjects are censored, 6.5% experienced the event of
interest, and 13.5% experienced the competing event. Thus
we have about 4, 000 × 6.5% = 260 events of interest in the

cohort, and the ‘non-case’ percentage of subjects in the cohort
is 93.5%. To achieve a 1:1 cases to non-cases ratio on average,
the subcohort size should be about 260/0.935 ≈ 278, which
will include about 260 non-cases and 18 cases. Including all
cases outside of the subcohort, the final case-cohort sample
will have 278 + (260 − 18) = 520 subjects. Similarly, to
achieve 1:2 cases to non-cases ratio, the subcohort size should
be about 520/0.935 ≈ 556.

The simulation study results are summarized in Tables 1
(scenario 1) and 2 (scenario 2) for different case-cohort sample
setups, i.e., under different censoring percentages, events of
interest percentages and subcohort sizes, from full cohort
sizes of 4, 000. In the tables, Events of interest % and
Subcohort size denote, respectively, the percentage of the
events of interest observed in the entire cohort and the size of
the randomly selected subcohort. A total of 500 samples were
generated for each case-cohort scheme, under each scenario.

The simulation results suggest that, overall, the parameter
estimates are reasonably close to the true values of the
respective parameters. The results indicate that the proposed
estimation methods provide estimates that have smaller bias
and the estimated standard errors are closer to the empirical
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standard deviations when the censoring percentages are lower.
Considering the size of the subcohort in a case-cohort design,
it was observed that, as the subcohort size increases, the
parameter estimates tend to have smaller bias and lower
standard errors. Moreover, the standard errors from the
proposed methods are reasonably close to the empirical
variances in both scenarios. The coverage rates of the nominal
95% confidence intervals for β̂ were found to be in the range
of 91–96%. The proposed methods perform well with different
types of covariates.

6. Application to the Sister Study

The Sister Study is a long-term prospective cohort study
examining the environmental and genetic risk factors for
breast cancer and other health conditions, conducted by the
National Institute of Environmental Health Sciences (NIEHS).
Launched in July 2003, the Sister Study recruited a total
of 50,884 women, aged 35–74 years, living in the United
States and Puerto Rico, who had at least one sister diagnosed
with breast cancer but did not have the disease themselves
when they joined the study; and enrollment of the cohort
was closed in March 2009. Baseline data collection included
a comprehensive Computer Assisted Telephone Interview
(CATI) covering a wide range of questions. Follow-up
consisted of either a brief annual update on health status and
contact information or, every two to three years, a detailed
follow-up questionnaire. These follow-up questionnaires track
changes in women’s health, lifestyles, and environmental
exposures over the course of the study. Study response rates
were 91% for the third detailed follow-up (completed August
2016).

When a breast cancer or other incident cancer diagnosis is
reported via the periodic follow-ups and through telephone
calls, e-mails, or correspondence with the study helpdesk,
participants are asked for permission to retrieve medical
records, pathology reports and/or physician verification to
complement self-reported data. To date, medical records have
been obtained for > 80% of breast cancer diagnoses; the
positive predictive value of a self-reported breast cancer is
99.4% [26]. The Sister Study data collection components and
their details, the cohort enrollment and retention as well as
other characteristics of the study are published elsewhere [2].

We are interested in investigating the association between
DNA methylation signatures and invasive breast cancer risk in
non-Hispanic white women because the majority of the women
in the Sister Study cohort are non-Hispanic white. Because
blood DNA methylations are expensive to measure, it was only
available for a case-cohort sample which included: (1) 335
non-Hispanic white women who were diagnosed with incident
breast cancer, i.e., either invasive breast cancer or ductal
carcinoma in situ (DCIS), during the time interval between
their blood draw during baseline data collection and May 2008,
and (2) a random sample of 620 non-Hispanic white women
drawn from the 29,026 participants enrolled in the study by
June 2007. Forty-five of the 335 women who developed breast

cancer were included in the subcohort sample. Consequently,
our analysis was performed on a case-cohort sample of 910
women. Details of DNA extraction and genome-wide DNA
methylation profiling can be found in Xu et al. (2013) [27].

Our main event of interest is the incidence of invasive breast
cancer. In the Sister Study, of those diagnosed with breast
cancer, 72 were DCIS cases. DCIS is a pre-invasive condition
of breast cancer, but without treatment, it could progress
to invasive breast cancer over time. Treatment approaches
for DCIS frequently include breast conserving surgery and
radiation; some women also use hormone therapy or undergo
mastectomy and may elect to also have a contralateral
prophylactic mastectomy. Consequently, DCIS in women may
preclude the observation of invasive breast cancer or greatly
reduce the chance of invasive breast cancer [3]. Thus, we
considered the DCIS incidents as competing events. The
participating women in the case-cohort study are classified by
their disease status as having no breast cancer (‘no event’),
invasive breast cancer, or DCIS.

We implemented the proposed methodology in this dataset
to investigate the association between three CpGs, which
were identified in a previous study based on the Sister Study
[27], and invasive breast cancer (IBC) risk in the presence
of DCIS as a competing risk. These three CpGs (and
their gene symbols) are cg08287471 (NEK6), cg10237911
(ANKRA2), and cg22385477 (KM-HN-1). We fitted three
separate proportional subdistribution hazards models:

λ1(t|Z) = λ1·0(t) exp{βX + γTZ}, (8)

where X represents an individual CpG (i.e., cg08287471,
cg10237911, or cg22385477). We used the M-values of CpGs,
which is more statistically valid and oftentimes recommended
measurement, compared to the Beta-values, in differential
methylation and other statistical analyses [28]. The vector
Z contains the adjustment variables: smoking status (current
smoker, past smoker, or never smoked), BMI (normal/
underweight, overweight, or obese), ever used hormone
replacement therapy (HRT) (no or yes), and whether mother
diagnosed with breast cancer (no or yes). We examined the
distribution of the censoring time and found that it is dependent
on HRT. Therefore to calculate the inverse probability weights,
we used the Kaplan-Meier estimator for the survival function
of the censoring time for each of the two HRT groups.

Table 3 shows the baseline characteristics of the subcohort
members and of the full cohort participants in the Sister Study.
The summary statistics for the full cohort are extracted from
Sandler et al. [2] and White et al. [29]. The random
subcohort was similar to the full cohort study with regard to the
observed characteristics. The average age of the participants
was around 55 years. Close to 20% of the participants had a
mother with breast cancer and nearly half of the participants
used menopausal hormone therapy in the past. Over half of
participants of the study were either overweight or obese and
just over half of the women never smoked cigarettes. The
mean and standard deviations of the M-values of each of the
three CpG probes for the subcohort are presented in Table 3.
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This information is not available for the full cohort because the
DNA methylation profiling and identification of CpG probes

were carried out only on the case-cohort sample.

Table 3. Baseline characteristics of Sister Study (the subcohort and the full cohort).

Mean (SD) or N (%)
Characteristics

Subcohort (m = 620) Full Cohorta (n = 50,884)

Age 55.1 (9.0) 55.4 (9.8)

Smoking status

Current smoker 48 (7.7) 4,175 (8.2)

Past smoker 238 (38.4) 18,141 (35.7)

Never smoked 334 (53.9) 28,552 (56.1)

BMI

Normal/Under. 265 (42.8) 19,438 (38.2)

Overweight 200 (32.3) 16,151 (31.8)

Obese 154 (24.9) 15,278 (30.0)

Ever used HRT

No 328 (53.0) 27,793 (54.8)

Yes 291 (47.0) 22,932 (45.2)

Mother with BC

No 480 (79.3) 39,834 (81.3)

Yes 125 (20.7) 9,135 (18.7)

Probe’s M-value

cg08287471 −2.67 (0.37) −

cg10237911 −1.48 (0.29) −

cg22385477 −2.57 (0.26) −

Notations: SD: standard deviation; BMI: body mass index; HRT : hormone replacement therapy; BC: breast cancer. a Information were obtained from Sandler et al., 2017

and White et al., 2015.

Table 4. Estimated coefficients and standard errors in models for invasive breast cancer in the Sister Study.

Characteristics β̂ S.E. H.R. 95% C.I.

Smoker: Past 0.237 0.444 0.789 (0.330, 1.884)

Smoker: Current 0.240 1.102 1.271 (0.147, 11.022)

BMI: Overweight 0.066 0.512 1.069 (0.392, 2.917)

BMI: Obese 0.212 0.551 1.236 (0.420, 3.636)

HRT 0.810 0.510 0.445 (0.164, 1.208)

Mother with BC 0.161 0.541 1.175 (0.407, 3.392)

cg08287471 1.000 0.638 0.368 (0.105, 1.284)

Smoker: Past 0.320 0.501 0.726 (0.272, 1.937)

Smoker: Current 0.169 0.989 1.184 (0.170, 8.232)

BMI: Overweight 0.030 0.514 0.970 (0.355, 2.655)

BMI: Obese 0.026 0.582 1.027 (0.328, 3.210)

HRT 0.793 0.478 0.453 (0.178, 1.154)

Mother with BC 0.182 0.543 1.200 (0.414, 3.477)

cg10237911 1.303 1.036 0.272 (0.036, 2.070)

Smoker: Past 0.264 0.443 0.768 (0.323, 1.828)

Smoker: Current 0.208 1.101 1.231 (0.142, 10.647)

BMI: Overweight 0.022 0.503 0.979 (0.365, 2.624)

BMI: Obese 0.075 0.567 1.078 (0.355, 3.275)

HRT 0.869 0.495 0.420 (0.159, 1.107)

Mother with BC 0.222 0.517 1.248 (0.453, 3.441)

cg22385477 1.474 0.822 0.229 (0.046, 1.146)

Notations: S.E.: standard error; H.R.: hazard ratio; C.I.: confidence interval of the hazard ratio.
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We used age as the time-scale with left truncation at the
entry age (age at study enrollment). The observable period
of a woman is from the age at entry until the age of diagnosis
of breast cancer or the age either at analysis cutoff date (May
15, 2008) or at loss to follow up. We implemented the
IPCW technique proposed by Geskus [30] to accommodate
the presence of left truncation in modeling the subdistribution
hazard. Women with ‘no event’ had an average follow-up
time of 1,695 days (range: 320–1,717 days), those with IBC
had an average follow-up time of 524 days (range: 14–1,654
days), whereas women with DCIS had an average follow-up
time of 429 days (range: 5–1,212 days). The results from the
analyses of the proportional subdistribution hazards models
(8) based on the proposed methods are presented in Table 4.
The results from the tables suggest that the CpGs tend to be
associated with lower risk of invasive breast cancer although
the association is not statistically significant.

7. Concluding Remarks

We proposed a proportional subdistribution hazards model
to handle competing risks in case-cohort studies. We used
the inverse probability censoring weight (IPCW) to address
the incompleteness of observations due to competing risks. In
order to properly account for the case-cohort sampling scheme,
we considered a weighted availability indicator. A Breslow-
type estimator was proposed for the cumulative baseline
subdistribution hazard function. The proposed score function
reduces to the score function for the Cox proportional hazards
model when there is no competing risk and the full cohort
is observed. The asymptotic properties of the estimators
were proved by using martingale properties and the proposed
estimators were shown to be consistent and asymptotically
normally distributed. Simulation studies were conducted to

investigate finite sample performance of the proposed methods
under different settings. The Sister Study dataset was used
to study the association between selected CpGs and invasive
breast cancer in the presence of DCIS as competing risk for
illustration.

Throughout our work, we considered a simple random
sampling mechanism for the subcohort selection of the case-
cohort design. The proposed methods can be extended
to stratified case-cohort sampling [13] or generalized case-
cohort sampling [31]. Extension to other types of time-to-
event data such as interval-censored data is worthy of further
investigation.

Conflict of Interest
The authors declare that they have no competing interests.

Data Accessibility
The Sister Study dataset used to support the findings of

this study were supplied by NIEHS after the authors obtained
approval. Requests for access to this dataset should be made to
the Sister Study Steering Committee of NIEHS. The R codes
implemented in simulation studies and the Sister Study data
analyses can be obtained from the first author upon request.

Acknowledgements
This work is partially supported by NIH grants P01 CA

142538 (JC, AFW) and T32ES007018 (AFW), and by the
Intramural Research Program of NIH, NIEHS (SZ). The
funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Appendix

Outline of Proofs of Theorems

We define the following additional notations for convenience purposes.

S̃
(d)
F (β, t) = n−1

n∑
i=1

ω̃i(t)Yi(t)Zi(t)
⊗d exp{βTZi(t)} for d = 0, 1, 2,

S̃
(d)
C (β, t) = n−1

n∑
i=1

ρi(t)ω̃i(t)Yi(t)Zi(t)
⊗d exp{βTZi(t)} for d = 0, 1, 2,

Z̃F (β, t) = S̃
(1)
F (β, t)

/
S̃

(0)
F (β, t), and Z̃C(β, t) = S̃

(1)
C (β, t)

/
S̃

(0)
C (β, t).

The following lemmas will be used frequently in proving the theorems.

Lemma 7.1 (Proposition 1 of Self and Prentice (1988)). LetWn = (W1n, . . . , Wnn) and ξn = (ξ1n, . . . , ξnn) be independent
random variables such that:

(i) ξn is a vector of ones and zeros, with m ones and n −m zeros, each possible configuration of zeros and ones is equally
likely and m/n −→ α ∈ (0, 1).
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(ii) For some scalar functions ofWn, fin(Wn), and for any ε > 0,

n−1
n∑
i=1

[
fin(Wn)− f·n(Wn)

]2
I(|fin(Wn)−f·n(Wn)|>n1/2ε)

P−→ 0 and S2
fn

P−→ σ2
f ,

where f·n(Wn) = n−1
n∑
i=1

fin(Wn) and S2
fn = n−1

n∑
i=1

[
fin(Wn)− f·n(Wn)

]2
.

(iii) The scalar functions of Wn, gn(Wn), converge in distribution to a Gaussian random variable with mean 0 and variance
σ2
g .

Then for hn(Wn, ξn) = n
1
2

[
m−1

∑n
i=1 ξinfin(Wn) − f·n(Wn)

]
,
{
gn(Wn), hn(Wn, ξn)

}
converge in distribution to a

bivariate Gaussian random variable with mean 0 and covariate matrix given by(
σ2
g 0

0 (1− α)α−1σ2
f

)
.

Note that,

n
1
2

[
m−1

n∑
i=1

ξinfin(Wn)− f·n(Wn)
]

= n−
1
2

[ n∑
i=1

ξin

m
/
n
fin(Wn)−

n∑
i=1

fin(Wn)
]

= n−
1
2

n∑
i=1

(
ξin
α
− 1

)
fin(Wn).

Lemma 7.2 (Lemma 3 of Ni and Cai (2018)). Under Conditions (a)–(d), n
1
2

{
α̂−1(t)−α̃−1

}
converges to a zero-mean Gaussian

process, which implies

sup
0≤t≤τ

∣∣∣∣α̂−1(t)− α̃−1

∣∣∣∣ p−→ 0, and

n
1
2

{
α̂−1(t)− α̃−1

}
=

1

α̃E{
(
1−∆iI(εi = 1)

)
Yi(t)}

× n− 1
2

n∑
i=1

(
1− ξi

α̃

)(
1−∆iI(εi = 1)

)
Yi(t) + op(1).

Lemma 7.3. Under Conditions (a)–(e),

(i) n−1
n∑
i=1

ξi
[
ωi(t)Yi(t)

(
1−∆iI(εi = 1)

)
Zi(t)

⊗d exp {βTZi(t)}
] p−→

αE
[
ω̃i(t)Yi(t)

(
1−∆iI(εi = 1)

)
Zi(t)

⊗d exp {βTZi(t)}
]
, and

(ii) n−1
n∑
i=1

(
ξi/α̃− 1

)(
1−∆iI(εi = 1)

)
ωi(t)Yi(t)Zi(t)

⊗d exp {βTZi(t)}
p−→ 0,

uniformly in t ∈ [0, τ ] and β ∈ B for d = 0, 1, 2.
Proof Note that, since Ĝ(t) is a consistent estimator of G(t) (based on the asymptotic properties of the Kaplan-Meier

estimator), ωi(t) converges to ω̃i(t), n−1
n∑
i=1

ξi
[
ωi(t)Yi(t)

(
1−∆iI(εi = 1)

)
×Zi(t)⊗d exp {βTZi(t)}

]
converges in

probability to n−1
n∑
i=1

ξi
[
ω̃i(t)Yi(t)

(
1−∆iI(εi = 1)

)
Zi(t)

⊗d × exp {βTZi(t)}
]

uniformly in t ∈ [0, τ ] in (i). By the same

argument, in (ii), n−1
n∑
i=1

(
ξi/α̃ − 1

)(
1 − ∆iI(εi = 1)

)
ωi(t)Yi(t)Zi(t)

⊗d exp {βTZi(t)} converges in probability to

n−1
n∑
i=1

(
ξi/α̃ − 1

)(
1 − ∆iI(εi = 1)

)
ω̃i(t)Yi(t)Zi(t)

⊗d exp {βTZi(t)} uniformly in t ∈ [0, τ ]. Then by Condition (c),

Z⊗dij exp {βTZi(t)}ω̃i(t)Yi(t)
(
1 − ∆iI(εi = 1)

)
, j = 1, . . . , p, for d = 0, 1, 2 are of bounded total variation in t ∈ [0, τ ]

and β ∈ B. Then the respective convergences in probability of the terms in (i) and (ii) uniformly in t ∈ [0, τ ] and β ∈ B
follows from Lemma 7.1.

Lemma 7.4. Under Conditions (a)–(e),
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sup
0≤t≤τ
β∈B

∥∥∥∥Ŝ(d)
C (β, t)− S(d)(β, t)

∥∥∥∥ p−→ 0

for d = 0, 1, 2 and hence, asn −→∞,

sup
0≤t≤τ
β∈B

∥∥∥∥ẐC(β, t)− e(β, t)

∥∥∥∥ p−→ 0 and sup
0≤t≤τ
β∈B

∥∥∥∥VC(β, t)− v(β, t)

∥∥∥∥ p−→ 0,

where VC(β, t) = Ŝ
(2)
C (β, t)/Ŝ

(0)
C (β, t)− Ẑ⊗2

C (β, t).
Proof The proof is an extension of Appendix A.2 of Kulich and Lin (2004). We can write

Ŝ
(d)
C (β, t)− S(d)(β, t) =

[
Ŝ

(d)
C (β, t)− Ŝ(d)

F (β, t)
]

+
[
Ŝ

(d)
F (β, t)− S(d)(β, t)

]
= n−1

n∑
i=1

(
ρi(t)− 1

)
ωi(t)Yi(t)Zi(t)

⊗d exp {βTZi(t)}+
[
Ŝ

(d)
F (β, t)− S(d)(β, t)

]
.

(9)

The second part of the right-hand side of (9) converges to zero by similar arguments in Appendix A of Fine and Gray (1999).

Noting that (ρi(t)− 1) =

(
ξi
α̃ − 1

)(
1−∆iI(εi = 1)

)
−
(
α̃−1 − α̂(t)−1

)
ξi
(
1−∆iI(εi = 1)

)
, the first term in the right-hand

side of (9) becomes
Ŝ

(d)
C (β, t)− Ŝ(d)

F (β, t) = b1 − b2,

where

b1 = n−1
n∑
i=1

(
ξi/α̃− 1

)(
1−∆iI(εi = 1)

)
ωi(t)Yi(t)Zi(t)

⊗d exp {βTZi(t)} and

b2 =
(
α̃−1 − α̂(t)−1

)
n−1

n∑
i=1

(
1−∆iI(εi = 1)

)
ξiωi(t)Yi(t)Zi(t)

⊗d exp {βTZi(t)}.
(10)

Thus,
∥∥∥∥Ŝ(d)

C (β, t)− Ŝ(d)
F (β, t)

∥∥∥∥ ≤ ||b1||+ ||b2||.

By Lemma 3, ||b1|| converges to 0 in probability uniformly in t ∈ [0, τ ] and β ∈ B. For b2, we have
{
α̂−1(t) − α̃−1

}
converges to 0 in probability uniformly in t ∈ [0, τ ] by Lemma 7.2, together with (i) of Lemma 3, ||b2|| converges to 0 in
probability uniformly in t ∈ [0, τ ] and β ∈ B. This concludes that the first part of the right-hand side of (9) converges to 0 in

probability uniformly in t ∈ [0, τ ] and β ∈ B. Consequently sup
0≤t≤τ
β∈B

∥∥∥∥Ŝ(d)
C (β, t)− S(d)(β, t)

∥∥∥∥ p−→ 0 for d = 0, 1. Furthermore,

both E
{
Ŝ

(0)
C (β, t)

}
and E

{
Ŝ

(0)
F (β, t)

}
are bounded away from zero in B × [0, τ ], it follows that, as n −→∞,

sup
0≤t≤τ
β∈B

∥∥∥∥ẐC(β, t)− e(β, t)

∥∥∥∥ p−→ 0 and sup
0≤t≤τ
β∈B

∥∥∥∥VC(β, t)− v(β, t)

∥∥∥∥ p−→ 0.

Lemma 5 Under Conditions (a)–(d), we have

n
1
2

{
S̃

(d)
F (β0, t)− S̃(d)

C (β0, t)
}

= n−
1
2

n∑
i=1

(
1− ξi

α̃

)
r

(d)
i (β0, t) + op(1) for d = 0, 1,

where

r
(d)
i (β, t) =

(
1−∆iI(εi = 1)

)
Yi(t)

{
ω̃i(t)Zi(t)

⊗d exp{βTZi(t)} −
g(d)(β, t)

φ(t)

}
,

and
g(d)(β0, t) = E

{(
1−∆jI(εj = 1)

)
ω̃j(t)Yj(t)Zj(t)

⊗d exp{βTZj(t)}
}
ford = 0, 1.
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Proof

n
1
2

{
S̃

(d)
F (β0, t)− S̃(d)

C (β0, t)
}

= n−
1
2

n∑
i=1

(
1− ρi(t)

)
ω̃i(t)Yi(t)Zi(t)

⊗d exp{βT0 Zi(t)}

= n−
1
2

n∑
i=1

(
1− ξi

α̃

)(
1−∆iI(εi = 1)

)
ω̃i(t)Yi(t)Zi(t)

⊗d exp{βT0 Zi(t)}

+ n−
1
2

n∑
i=1

(
α̃−1 − α̂(t)−1

)(
1−∆iI(εi = 1)

)
ξiω̃i(t)Yi(t)Zi(t)

⊗d exp{βT0 Zi(t)}.

From Lemma 7.2, n
1
2

{
α̂−1(t) − α̃−1

}
=

n−
1
2

α̃φ(t)

n∑
i=1

(
1− ξi

α̃

)(
1 − ∆iI(εi = 1)

)
Yi(t) + op(1), where φ(t) = E{(1 −

∆1I(ε1 = 1))Y1(t)}. Therefore,

n
1
2

{
S̃

(d)
F (β0, t)− S̃(d)

C (β0, t)
}

= n−
1
2

n∑
i=1

(
1− ξi

α̃

)(
1−∆iI(εi = 1)

)
ω̃i(t)Yi(t)Zi(t)

⊗d exp{βT0 Zi(t)}

+ n−
1
2

n∑
i=1

(
ξi
α̃
− 1

)(
1−∆iI(εi = 1)

)Yi(t)
φ(t)

×
{
n−1

n∑
j=1

(
1−∆jI(εj = 1)

)ξj
α̃
ω̃j(t)Yj(t)Zj(t)

⊗d exp{βT0 Zj(t)}
}

+ op(1).

Since n−1
n∑
j=1

(
1−∆jI(εj = 1)

)ξj
α̃
ω̃j(t)Yj(t)Zj(t)

⊗d exp{βT0 Zj(t)} converges to g(d)(β0, t) uniformly in t ∈ [0, τ ] for

d = 0, 1 by Lemma 3, we can show that

n
1
2

{
S̃

(d)
F (β0, t)− S̃(d)

C (β0, t)
}

= n−
1
2

n∑
i=1

(
1− ξi

α̃

)(
1−∆iI(εi = 1)

)
Yi(t)

×
{
ω̃i(t)Zi(t)

⊗d exp{βT0 Zi(t)} −
g(d)(β0, t)

φ(t)

}
+ op(1)

= n−
1
2

n∑
i=1

(
1− (ξi

/
α̃)
)
r

(d)
i (β0, t) + op(1).

Proof of Theorem 1

LetU∗C(β) = n−1UC(β). One can employ an extension of Foutz’s theorem (Foutz, 1977) to prove the consistency of β̂ if the
following conditions are established;
(C1) ∂U∗C(β)

/
∂βT exists and is continuous in an open neighborhood B of β0,

(C2) −∂U∗C(β)
/
∂βT

∣∣
β=β0

is positive definite with probability going to one as n −→∞,
(C3) ∂U∗C(β)

/
∂βT converges to Ω uniformly in an open neighborhood B of β0, and

(C4) U∗C(β0)−→0 in probability as n−→∞.
We can show that

∂U∗C(β)

∂βT
= −n−1

n∑
i=1

∫ τ

0

{
Ŝ

(2)
C (β, t)

Ŝ
(0)
C (β, t)

− Ẑ⊗2
C (β, t)

}
ω̃i(t)dNi(t)

= −n−1
n∑
i=1

∫ τ

0

VC(β, t)ωi(t)dNi(t),
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since ωi(t)dNi(t) = ω̃i(t)dNi(t). By the continuity of Ŝ(d)
C (β, t) in β ∈ B for d = 0, 1, 2, condition (C1) is fulfilled. Since

dNi(t) = dM1
i (t) + Yi(t) exp{βTZi(t)}λ1·0(t)dt and by some algebraic manipulations, we have∥∥∥∥(− ∂U∗C(β)

∂βT

)
−Ω(β)

∥∥∥∥ ≤ ∥∥∥∥n−1
n∑
i=1

∫ τ

0

{
VC(β, t)− v(β, t)

}
ω̃i(t)dNi(t)

∥∥∥∥
+

∥∥∥∥n−1
n∑
i=1

∫ τ

0

v(β, t)ω̃i(t)dM
1
i (t)

∥∥∥∥
+

∥∥∥∥∫ τ

0

v(β, t)
{
S̃

(0)
F (β, t)− s(0)(β, t)

}
λ1·0(t)dt

∥∥∥∥.
(11)

We will show that each of the three terms on the right side of (11) uniformly converges to 0 for β ∈ B. First, by Lemma ??,

sup
0≤t≤τ
β∈B

∥∥∥∥VC(β, t)− v(β, t)

∥∥∥∥ p−→ 0 as n −→∞. Further, since Ŝ(d)
C (β, t) for d = 1, 2, 3 are of bounded variations,

VC(β, t) =
Ŝ

(2)
C (β, t)Ŝ

(0)
C (β, t)− Ŝ(1)

C (β, t)⊗2

Ŝ
(0)
C (β, t)2

(12)

is of bounded variation and can be expressed as the difference of two monotone functions. Second, let N̄(t) =
∑n
i=1 ω̃i(t)Ni(t)

and, by Theorem I.1 (part (a)) of Andersen and Gill (1982) for the application of Lenglart’s inequality, for all δ, γ > 0,

P
[
n−1N̄(τ) > γ

]
≤ δ

γ
+ P

[ ∫ τ

0

S̃
(0)
F (β, t)λ1·0(t)dt > δ

]
. (13)

Under regularity conditions, sup
0≤t≤τ
β∈B

∥∥∥∥S̃(0)
F (β, t)− s(0)(β, t)

∥∥∥∥ p−→ 0 as n −→∞.

Therefore, for δ >
∫ τ

0

s(0)(β, t)λ1·0(t)dt, P
[ ∫ τ

0

S̃
(0)
F (β, t)λ1·0(t)dt > δ

]
−→ 0 as n −→∞. Consequently, lim

γ→∞
lim
n→∞

P
[
n−1N̄(τ) > γ

]
= 0. Combining these results, by Lemma 1 of Lin et al. (2000), the first term on the right side of (11)

converges to 0 in probability for β ∈ B as n −→∞.
For the second term on the right side of (11), let M̄1(t) =

∑n
i=1 ω̃i(t)M

1
i (t). By Theorem I.1 (part (b)) and (2.3) of Andersen

and Gill (1982), for all δ, γ > 0,

P

[
sup

0≤t≤τ

∥∥∥∥∫ τ

0

v(β, t)
dM̄1(t)

n

∥∥∥∥ > γ

]
≤ δ

γ2
+ P

[
n−1

∫ τ

0

{
vll′(β, t)

}2
S̃

(0)
F (β, t)λ1·0(t)dt > δ

]
, (14)

where ll′ denotes the (l, l′) element of the indicated matrix. By regularity conditions, the term∫ τ

0

{
vll′(β, t)

}2
S̃

(0)
F (β, t)λ1·0(t)dt

is bounded in probability uniformly in β ∈ B, hence the second term on the right side of the inequality in (14) uniformly
converges in probability to zero for β ∈ B as n −→ ∞. Since δ > 0 may be taken arbitrarily small, it follows that

P

[
sup

0≤t≤τ

∥∥∥∥ ∫ τ

0

v(β, t)
dM̄1(t)

n

∥∥∥∥ > γ

]
converges in probability to 0 for β ∈ B. Consequently, the second term in (11)

uniformly converges in probability to 0 for β ∈ B as n −→∞.
Finally, under regularity conditions, the third term on the right side of (11) uniformly converges in probability to zero for

β ∈ B as n −→∞. Thus,
(
−∂U∗C(β)

∂βT

)
−Ω(β)

p−→ 0 uniformly for β ∈ B as n−→∞ and hence (C2) and (C3) are fulfilled.
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For (C4), we will investigate the asymptotic properties of n−
1
2UC(β0). Note that

n−
1
2UC(β0) = n−

1
2

n∑
i=1

∫ τ

0

{
Zi(t)− Z̃F (β0, t)

}
ω̃i(t)dNi(t)

+ n−
1
2

n∑
i=1

∫ τ

0

{
Z̃F (β0, t)− ẐC(β0, t)

}
ω̃i(t)dNi(t),

(15)

since ω̃i(t)dNi(t) = ωi(t)dNi(t). The first term on the right-hand side of (15) is the pseudo score function of the full cohort

data and, by the results in Fine and Gray (1999), it is asymptotically equivalent to n−
1
2

n∑
i=1

ηi(β0) where

ηi(β0) =

∫ τ

0

{
Zi(t)− e(β, t)

}
ω̃i(t)dM

1
i (t).

To explore the second term on the right-hand side of (15), first note that

∂

∂ωj(t)

{
Z̃F (β0, t)− ẐC(β0, t)

}
= −ρj(t)Yj(t) exp{βT0 Zj(t)}

nŜ
(0)
C (β0, t)

[
Zj(t)− ẐC(β0, t)

]
.

Using this result, the first order Taylor series expansion of
{
Z̃F (β0, t)− ẐC(β0, t)

}
with respect to ωj(t) around ω̃j(t) gives

{
Z̃F (β0, t)− ẐC(β0, t)

}
≈
{
Z̃F (β0, t)− Z̃C(β0, t)

}
−

n∑
j=1

Rj(β0, t)
{
ωj(t)− ω̃j(t)

}
,

where Rj(β0, t) =
ρj(t)Yj(t) exp{βT0 Zj(t)}

nS̃
(0)
C (β0, t)

[
Zj(t)− Z̃C(β0, t)

]
. Therefore, the second term on the right-hand side of (15)

becomes

n−
1
2

n∑
i=1

∫ τ

0

{
Z̃F (β0, t)− ẐC(β0, t)

}
ω̃i(t)dNi(t) = n−

1
2

n∑
i=1

∫ τ

0

{
Z̃F (β0, t)− Z̃C(β0, t)

}
ω̃i(t)dNi(t)

− n− 1
2

n∑
i=1

∫ τ

0

n∑
j=1

Rj(β0, t)
{
ωj(t)− ω̃j(t)

}
ω̃i(t)dNi(t).

(16)

Note that

Z̃F (β0, t)− Z̃C(β0, t) =
1

S̃
(0)
F (β0, t)

(
S̃

(1)
F (β0, t)− S̃(1)

C (β0, t)
)

−
S̃

(1)
C (β0, t)

S̃
(0)
F (β0, t)S̃

(0)
C (β0, t)

(
S̃

(0)
F (β0, t)− S̃(0)

C (β0, t)
)
,

and, from Lemma 5, we have

n
1
2

{
S̃

(d)
F (β0, t)− S̃(d)

C (β0, t)
}

= n−
1
2

n∑
i=1

(
1− ξi

α̃

)
r

(d)
i (β0, t) + op(1) for d = 0, 1.

Hence,

n
1
2

{
Z̃F (β0, t)− Z̃C(β0, t)

}
= n−

1
2

n∑
i=1

(
1− ξi

α̃

)

×
[

1

S̃
(0)
F (β0, t)

r
(1)
i (β0, t)−

S̃
(1)
C (β0, t)

S̃
(0)
F (β0, t)S̃

(0)
C (β0, t)

r
(0)
i (β0, t)

]
+ op(1).

(17)
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Now, the first term on the right-hand side of (16) is

n−
1
2

n∑
i=1

∫ τ

0

{
Z̃F (β0, t)− Z̃C(β0, t)

}
ω̃i(t)dNi(t) = n−

1
2

n∑
i=1

∫ τ

0

{
Z̃F (β0, t)− Z̃C(β0, t)

}
ω̃i(t)dM

1
i (t)

+ n
1
2

∫ τ

0

{
Z̃F (β0, t)− Z̃C(β0, t)

}
S̃

(0)
F (β0, t)dΛ1·0(t).

(18)

Under Conditions (a)–(e), we can show that sup
0≤t≤τ
β∈B

∥∥∥∥Z̃F (β, t)− Z̃C(β, t)

∥∥∥∥ p−→ 0 by the same arguments of Kulich and Lin

(2004) (Appendix A.2). Further, n−
1
2

n∑
i=1

ω̃i(u)dM1
i (u) converges weakly to a zero-mean Gaussian process. Therefore, the first

term on the right-hand side of (18) converges in probability to 0 uniformly in t ∈ [0, τ ] and β ∈ B by Lemma 1 of Lin et al.
(2000). Based on (17), the second term on the right-hand side of (18) becomes

n
1
2

∫ τ

0

{
Z̃F (β0, t)− Z̃C(β0, t)

}
S̃

(0)
F (β0, t)dΛ1·0(t)

=

∫ τ

0

n−
1
2

n∑
i=1

(
1− ξi

α̃

)[
1

S̃
(0)
F (β0, t)

r
(1)
i (β0, t)−

S̃
(1)
C (β0, t)

S̃
(0)
F (β0, t)S̃

(0)
C (β0, t)

r
(0)
i (β0, t)

]
× S̃(0)

F (β0, t)dΛ1·0(t) + op(1)

=n−
1
2

n∑
i=1

(
1− ξi

α̃

)∫ τ

0

[
r

(1)
i (β0, t)− Z̃C(β0, t)r

(0)
i (β0, t)

]
dΛ1·0(t) + op(1).

Under the regularity conditions, S̃(d)
C (β0, t) converges to s(d)(β0, t) uniformly in t ∈ [0, τ ] for d = 0, 1, 2 and hence

Z̃C(β0, t) converges to e(β0, t) uniformly in t ∈ [0, τ ]. Therefore,

n
1
2

∫ τ

0

{
Z̃F (β0, t)− Z̃C(β0, t)

}
S̃

(0)
F (β0, t)dΛ1·0(t)

=n−
1
2

n∑
i=1

(
1− ξi

α̃

)∫ τ

0

(
r

(1)
i (β0, t)− e(β0, t)r

(0)
i (β0, t)

)
dΛ1·0(t) + op(1)

=n−
1
2

n∑
i=1

(
1− (ξi

/
α̃)
)
µi(β0) + op(1),

(19)

where µi(β0) =

∫ τ

0

[
r

(1)
i (β0, t)− e(β0, t)r

(0)
i (β0, t)

]
dΛ1·0(t).

Now consider the second term on the right-hand side of (16), and call it n−
1
2ϕ(β0, τ); i.e.,

n−
1
2ϕ(β0, τ) = −n− 1

2

n∑
i=1

∫ τ

0

n∑
j=1

Rj(β0, t)
{
ωj(t)− ω̃j(t)

}
ω̃i(t)dNi(t).

Since ωj(t)− ω̃j(t) = −I(Xj < t)ω̃j(t)

∫ t

Xj

dM̄ c(u)

nπ(u)
+ op(1) based on Fine and Gray (1999), and hence

n−
1
2ϕ(β0, τ) = n−

1
2

n∑
i=1

∫ τ

0

n∑
j=1

Rj(β0, t)I(Xj < t)ω̃j(t)

∫ t

Xj

dM̄ c(u)

nπ(u)
ω̃i(t)dNi(t) + op(1)

= n−
1
2

n∑
k=1

∫ τ

0

Q(β0, u)
dM c

k(u)

π(u)
+ op(1),

where

Q(β0, u) = n−1
n∑
i=1

n∑
j=1

∫ τ

0

Rj(β0, t)I(t ≥ u > Xj)ω̃j(t)ω̃i(t)dNi(t).
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Further, it can be shown that
n∑
j=1

Rj(β0, t)I(t ≥ u > Xj)ω̃j(t) converges to p(β0, u, t) uniformly in t ∈ [0, τ ], where

p(β0, u, t) = lim
n→∞

n−1
n∑
j=1

I(t ≥ u > Xj)

s(0)(β0, t)
ρ̃jω̃j(t)Yj(t) exp{βT0 Zj(t)}

[
Zj(t)− e(β0, t)

]
,

noting that
(
ρj(t) − ρ̃j

)
converges in probability to 0 uniformly in t ∈ [0, τ ] based on Lemma 7.2. Hence, by Lemma 1 of Lin

et al. (2000),Q(β0, u) can be shown to be asymptotically equivalent to n−1
n∑
i=1

∫ τ

0

p(β0, u, t)ω̃i(t)dNi(t).

Finally, let q(β0, u) = lim
n→∞

n−1
n∑
i=1

∫ τ

0

p(β0, u, t) ω̃i(t)dNi(t). Based on these results, we have

n−
1
2ϕ(β0, τ) = n−

1
2

n∑
k=1

∫ τ

0

q(β0, u)

π(u)
dM c

k(u) + op(1) = n−
1
2

n∑
i=1

ψi(β0) + op(1),

where ψi(β0) =

∫ τ

0

q(β0, u)

π(u)
dM c

i (u).

Therefore, combining these results, we have

n−
1
2UC(β0, t) = n−

1
2

n∑
i=1

[
ηi(β0) +ψi(β0) +

(
1− (ξi

/
α̃)
)
µi(β0)

]
+ op(1). (20)

Following Lemma 7.1, n−
1
2UC(β0) is asymptotically normal with covariance matrix Σ(β0) = E

{[
ηi(β0) +ψi(β0)

]⊗2}
+

(1 − α)α−1E
{
µi(β0)⊗2

}
. Further, by Taylor series expansion, n

1
2

(
β̂ − β0

)
converges in distribution to a zero-mean normal

random vector with covariance matrix Ω(β0)−1Σ(β0)Ω(β0)−1 where Ω(β) is as defined in Section 4.

Proof of Theorem 2

Using the martingale decomposition of Ni(t) and after some algebraic manipulations for n
1
2

{
Λ̂1·0(β̂, t)− Λ1·0(t)

}
, we have

n
1
2

{
Λ̂1·0(β̂, t)− Λ1·0(t)

}
= n

1
2

n∑
i=1

∫ t

0

(
1

nŜ
(0)
C (β̂, u)

− 1

nŜ
(0)
C (β0, u)

)
ω̃i(u)dNi(u)

+ n−
1
2

n∑
i=1

∫ t

0

(
1

Ŝ
(0)
C (β0, u)

− 1

S̃
(0)
C (β0, u)

)
ω̃i(u)dNi(u)

+ n−
1
2

n∑
i=1

∫ t

0

1

S̃
(0)
C (β0, u)

ω̃i(u)dM1
i (u)

+ n
1
2

∫ t

0

{
S̃

(0)
F (β0, u)− S̃(0)

C (β0, u)

S̃
(0)
C (β0, u)

}
dΛ1·0(u),

(21)

since ωi(t)dNi(t) = ω̃i(t)dNi(t). Using the martingale decomposition of Ni(t), the first term on the right-hand side of (21) can
be written as

n
1
2

n∑
i=1

∫ t

0

(
1

nŜ
(0)
C (β̂, u)

− 1

nŜ
(0)
C (β0, u)

)
ω̃i(u)dNi(u)

=n
1
2

n∑
i=1

∫ t

0

(
1

nŜ
(0)
C (β̂, u)

− 1

nŜ
(0)
C (β0, u)

)
ω̃i(u)dM1

i (u)

+n
1
2

∫ t

0

(
1

Ŝ
(0)
C (β̂, u)

− 1

Ŝ
(0)
C (β0, u)

)
S

(0)
F (β0, u)dΛ1·0(u).

(22)
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By Taylor series expansion of Ŝ(0)
C (β̂, u)−1 around β0, we have(

1

nŜ
(0)
C (β̂, u)

− 1

nŜ
(0)
C (β0, u)

)
= −n−1 Ŝ

(1)
C (β∗, u)T

Ŝ
(0)
C (β∗, u)2

(
β̂ − β0

)
, (23)

where β∗ lies on the line segment between β0 and β̂. Thus the first term in (22) becomes

−
∫ t

0

Ŝ
(1)
C (β∗, u)T

Ŝ
(0)
C (β∗, u)2

(
β̂ − β0

)(
n−

1
2

n∑
i=1

ω̃i(u)dM1
i (u)

)
. (24)

Since
Ŝ

(1)
C (β∗, u)T

Ŝ
(0)
C (β∗, u)2

can be written as a sum of two monotone functions in t ∈ [0, τ ], together with the weak convergence of

n−
1
2

n∑
i=1

ω̃i(u)dM1
i (u) (Appendix 1 of Sun et al., 2004), (24) converges in probability to 0 uniformly in t ∈ [0, τ ]. By similar

expansion, the second term on the right-hand side of (22) is

−n 1
2

∫ t

0

Ŝ
(1)
C (β∗, u)T

Ŝ
(0)
C (β∗, u)2

(
β̂ − β0

)
S

(0)
F (β0, u)dΛ1·0(u). (25)

By the consistency of β̂, the continuity of Ŝ(1)
C (β, t) and Ŝ(0)

C (β, t) and their uniform convergence, respectively, to s(1)(β, t)

and s(0)(β, t), the uniform convergence of S(0)
F (β0, t) to s(0)(β0, t), as well as the boundedness of Λ1·0(t) on [0, τ ], (25) can

be written as

−n 1
2

(
β̂ − β0

)T ∫ t

0

e(β0, u)dΛ1·0(u) + op(1).

Using the first order Taylor expansion of UC(β̂) around β0 and the convergence of {−n−1∂UC(β)
/
∂βT } to Ω(β), we have(

β̂ − β0

)
= n−1Ω(β0)−1UC(β0) + op(n

−1/2) and hence, using the results in (20) and letting h(t) = −
∫ t

0
e(β, u)dΛ1·0(u),

the first term on the right-hand side of (21) becomes n−
1
2 Ω(β0)−1

n∑
i=1

[
ηi(β0) +ψi(β0) +

(
1− (ξi

/
α̃)
)
µi(β0)

]
h(t) + op(1).

To explore the second term on the right-hand side of (21), applying the first order Taylor expansion of(
1

Ŝ
(0)
C (β0, u)

− 1

S̃
(0)
C (β0, u)

)
with respect to ωj(u) around ω̃j(u) gives

(
1

Ŝ
(0)
C (β0, u)

− 1

S̃
(0)
C (β0, u)

)
= −

∑n
j=1 ρj(u)Yj(u) exp{βT0 Zj(u)}

(
ωj(u)− ω̃j(u)

)
n
(
Ŝ

(0)
C (β0, u)

)2 . (26)

Since Ŝ(0)
C (β0, t)

−1 can be shown to converge uniformly to s(0)(β0, t)
−1 and is of bounded variation, it can be written as the

sum of two monotone functions in t. Further,

{ωj(t)− ω̃j(t)}= −I(Xj < t)ω̃j(t)

∫ t

Xj

dM̄ c(u)

nπ(u)
+op(1)

and hence the second term on the right-hand side of (21) can be shown to be

n−
1
2

n∑
i=1

∫ t

0

(
1

Ŝ
(0)
C (β0, u)

− 1

S̃
(0)
C (β0, u)

)
ω̃i(u)dNi(u) = (PP1) + (PP2) + op(1),

where

(PP1) = n−
1
2

∫ t

0

[ ∫ t

0

∑n
j=1 ρj(u)Yj(u) exp{βT0 Zj(u)}ω̃j(u)I(Xj < s ≤ u)

n
(
s(0)(β0, u)

)2 ×
(
n−1

n∑
k=1

ω̃k(u)dM1
k (u)

)]
dM̄ c(s)

π(s)
,
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and

(PP2) = n−
1
2

∫ t

0

[ ∫ t

0

∑n
j=1 ρj(u)Yj(u) exp{βT0 Zj(u)}ω̃j(u)I(Xj < s ≤ u)

ns(0)(β0, u)

×
∑n
k=1 ω̃k(u)

{
Yk(u) exp{βT0 Zk(u)}dΛ1·0(u)

}
ns(0)(β0, u)

]
dM̄ c(s)

π(s)
.

Note that, by extending Lemma 1 of Lin et al. (2000) and Appendix 2 of Sun et al., (2004), (PP1) converges in probability
to 0 uniformly in t ∈ [0, τ ] and β ∈ B. On the other hand, under the regularity conditions, S̃(0)

F (β, t) uniformly converges to
s(0)(β, t) and hence

(PP2) = n−
1
2

∫ t

0

[ ∫ τ

0

∑n
j=1 ρj(u)Yj(u) exp{βT0 Zj(u)}ω̃j(u)I(Xj < s ≤ u)

ns(0)(β0, u)
dΛ1·0(u)

]
dM̄ c(s)

π(s)
.

Here also, note that
(
ρj(t)− ρ̃j

)
converges in probability to 0 uniformly in t ∈ [0, τ ] based on Lemma 7.2 and let

p∗(β0, s, t) = lim
n→∞

n−1
n∑
j=1

∫ τ

0

I(Xj < s ≤ u)

s(0)(β0, u)
ρ̃jYj(u) exp{βT0 Zj(u)}ω̃j(u)dΛ1·0(u).

Thus, the second term on the right-hand side of (21) is

n−
1
2

n∑
i=1

∫ t

0

(
1

Ŝ
(0)
C (β0, u)

− 1

S̃
(0)
C (β0, u)

)
ω̃i(u)dNi(u) = n−

1
2

n∑
i=1

∫ t

0

p∗(β0, s, t)

π(s)
dM c

i (s) + op(1).

For the third term on the right-hand side of (21), by the same arguments that followed (26), we can replace S̃(0)
C (β0, t)

−1 by its
uniform limit s(0)(β0, t)

−1. Thus, it can be shown that the third term on the right-hand side of (21) is asymptotically equivalent

to
∫ t

0

1

s(0)(β0, u)

(
n−

1
2

n∑
i=1

ω̃i(u)dM1
i (u)

)
.

For the fourth term on the right-hand side of (21), by Lemma ??, we have

n
1
2

{
S̃

(0)
F (β0, u)− S̃(0)

C (β0, u)
}

= n−
1
2

n∑
i=1

(
1− (ξi

/
α̃)
)
r

(0)
i (β0, u) + op(1)

and hence, with the uniform convergence of S̃(0)
C (β0, t)

−1 to s(0)(β0, t)
−1, the fourth term on the right-hand side of (21)

becomes

n
1
2

∫ t

0

{
S̃

(0)
F (β0, u)− S̃(0)

C (β0, u)

S̃
(0)
C (β0, u)

}
dΛ1·0(u) = n−

1
2

n∑
i=1

(
1− ξi

α̃

)∫ t

0

r
(0)
i (β0, u)

dΛ1·0(u)

s(0)(β0, u)
+ op(1).

Combining these results, we have

n
1
2

{
Λ̂1·0(β̂, t)− Λ1·0(t)

}
= n−

1
2 Ω(β0)−1

n∑
i=1

[
ηi(β0) +ψi(β0)

]
h(t)

+n−
1
2

n∑
i=1

∫ t

0

p∗(β0, s, t)

π(s)
dM c

i (s) + n−
1
2

n∑
i=1

∫ t

0

ω̃i(u)dM1
i (u)

s(0)(β0, u)

+n−
1
2

n∑
i=1

(
1− ξi

α̃

)[
Ω(β0)−1µi(β0)h(t) +

∫ t

0

r
(0)
i (β0, u)

dΛ1·0(u)

s(0)(β0, u)

]
+ op(1)

Thus, n
1
2

{
Λ̂1·0(β̂, t)− Λ1·0(t)

}
= n−

1
2

n∑
i=1

{
W1i(t) +

(
1− (ξi

/
α̃)
)
W2i(t)

}
+ op(1) where

W1i(t) = Ω(β0)−1
[
ηi(β0) +ψi(β0)

]
h(t) +

∫ t

0

p∗(β0, s, t)

π(s)
dM c

i (s) +

∫ t

0

ω̃i(u)dM1
i (u)

s(0)(β0, u)
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and

W2i(t) =

[
Ω(β0)−1µi(β0)h(t) +

∫ t

0

r
(0)
i (β0, u)

dΛ1·0(u)

s(0)(β0, u)

]
,

for i = 1, . . . , n. Further, by Lemma 7.1, n
1
2

{
Λ̂1·0(β̂, t)− Λ1·0(t)

}
converges to a mean-zero Gaussian process with covariance

matrix
ΣΛ1·0(t) = E

{
W11(t)⊗2

}
+ (1− α)α−1E

{
W21(t)⊗2

}
.

This completes the proof.
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