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Abstract: Fast constructions from the Brownian motion and Brownian bridge are required in many applications such as 
Quasi-Monte Carlo simulations and statistical inferences on stochastic processes. The simple method for construction of discrete 
Brownian motion is a step-by-step method of computing the cumulative sum of i.i.d. normal variables. The construction of a N 

dimensional discrete Brownian motion (or a N-1 dimensional discrete Brownian bridge) that require at most O(NlogN) floating 
point operations(flops) is called fast one. Discrete Brownian motion can be also constructed using decompositions of its 
covariance matrix and the method based on eigenvalue decomposition not only shows superior performances in many 
simulations to the step-by-step method but also becomes a fast construction. Usually the discrete Brownian bridge can be 
constructed from the discrete Brownian motion using the linear relationship between them. In this paper, the inverse of the 
covariance matrix for the discrete Brownian bridge is computed. The explicit expression of eigenvalue decomposition for the 
covariance matrix is given. Using it, a fast construction of the discrete Brownian Bridge is derived. The LDU 
(Lower-Diagonal-Upper) decompositions of the covariance matrices for the discrete Brownian motion and Brownian Bridge are 
obtained, respectively. The constructions of the discrete Brownian motion and Brownian bridge derived from these 
decompositions are fast ones and have step-by-step types. It is interesting that the discrete Brownian bridge is constructed as 
the cumulative sum of normal variables. Performances of the step-by-step method and methods using LDU and eigenvalue 
decompositions are compared through simulation results on the maximum distributions of the Brownian motion and Brownian 
bridge. Finally, an inserting method for construction of discrete Brownian motion using eigenvalue decompositions which 
requires O(Nlog(logN)) flops is proposed. The new fast constructions could be significant in Quasi-Monte Carlo simulations 
require high accuracy. 

Keywords: Brownian Motion, Brownian Bridge, LDU Decomposition, Eigenvalue Decomposition, Quasi-Monte Carlo 

 

1. Introduction 

Let B={B(t); t∈[0, 1]} be a standard Brownian 
motion(simply a Brownian motion) and B(0)=0. B is an 
independent-increment process and B(t)-B(s), 0≤s≤t≤1 
follows the normal distribution with mean 0 and variance t-s, 
i.e., B(t)-B(s)~N(0, t-s). The expectation and covariance of the 
Brownian motion B={B(t); t∈[0,1]} are respectively 

EB(t)=0, Cov(B(s), B(t))=s, 0≤s≤t≤1.       (1) 

We set 

����� � ���� � �����,            (2) 

then BB={BB(t); t∈[0, 1]} is a standard Brownian 
bridge(simply a Brownian bridge). The Brownian bridge is a 
Brownian motion given B(1)=0, i.e., �� ≜ �|
����
, where ≜  means equality in distribution. The expectation and 
covariance of the Brownian bridge are respectively 

EBB(t)=0, Cov(BB(s), BB(t))= s(1-t), 0≦s≦t≦1.  (3) 
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(B(t1),…, B(tN)) and (BB(t1),…, BB(tN-1)) will be called a 
discrete Brownian motion and a discrete Brownian bridges, 
respectively for 0=t0<t1<…<tN-1<tN=1. The case that the ti are 
evenly spaced is the most important one from the practical 
point of view. Let Bk=B(t/N), k=1,…, N and BBk=BB(t/N), 
k=1,…,N-1. BN=(B1,…, BN)T is called the N dimensional 
discrete Brownian motion and BBN-1=(BB1,…, BBN-1)

T is 

called the N-1 dimensional discrete Brownian bridge. 
The simple method for construction of the discrete 

Brownian motion BN is to compute the cumulative sum of i.i.d. 
normal variables of mean zero and variance 1/N and it is called 
a step-by-step method and it uses O(N) flops. 

From (1) and (3) the covariance matrices of BN and BBN 

are 

Σ
 � ���

�
���
�
1 1 11 2 21 2 3 ⋯ 1 1 12 2 23 3 3⋮ ⋱ ⋮1 1 11 2 31 2 3 ⋯ � � 1 � � 2 � � 2� � 2 � � 1 � � 1� � 2 � � 1 � �

���
�

, 

Σ

 � ���

�
��
��
� � 1 � � 2 � � 3� � 2 2�� � 2� 2�� � 3�� � 3 2�� � 3� 3�� � 3� ⋯ 3 2 12 ∙ 3 2 ∙ 2 23 ∙ 3 3 ∙ 2 3⋮ ⋱ ⋮3 2 ∙ 3 3 ∙ 32 2 ∙ 2 3 ∙ 21 2 3 ⋯ �� � 3�3 �� � 3�2 � � 3�� � 3�2 �� � 2�2 � � 2� � 3 � � 2 � � 1�

��
��

,  

respectively. 
Both of BN and BBN-1 follow the multidimensional normal 

distribution. If the covariance matrix Σ of the normal random 
vector Z is decomposed into Σ=CC

T, samples of Z can be 
constructed by CW, where W is a standard normal vector [12].  

The methods using the decomposition of covariance matrix Σ
=CBCB
T use O(N2) flops. 

Åkesson, F and Lehoczky, J. P [1] has shown the following 
eigenvalue decomposition of ΣB. 

Σ
 � �
Λ
�
!,                (4). 

where Λ
 � "#$%�&�, … , &)� , &* � �4�,#-���# �1/2�//�2������ , �
 � ��*0�)×) , and �*0 � 2/√2� + 1,#-	�#�25 � 1�//�2� + 1�, using  

Σ
 � �
�
���
�
2 �1 0�1 2 �10 �1 2 ⋯ 0 0 00 0 00 0 0⋮ ⋱ ⋮0 0 00 0 00 0 0 ⋯ 2 �1 0�1 2 �10 �1 1 �

���
�

)×)

  (5) 

Scheicher, K [14] has shown the construction using 
eigenvalue decomposition in (4) can be computed using the 
fast sine transform, thereby using O(NlogN) flops(in the case 
of N=2K for a certain natural number). Leobacher, G [8] 
proposed useful orthogonal transforms using O(NlogN) flops. 

Wang, X and Sloan, I. H [15] and Imai, J and Tan, K. S [6] 
have pointed the importance of the proper choice of CB in the 
decomposition of ΣB for problems arising from quasi-Monte 
Carlo pricing of financial derivatives. 

Scheicher, K [14] has shown any orthogonal 
transformation of the discrete Brownian motion by 
step-by-step method give another sampling method of it in 
theoretical view of point. 

From (2), the samples of the discrete Brownian bridge 

BBN-1=(BB1,…,BBN-1)
T
 are usually constructed by the linear 

transformation of the discrete Brownian motion 
BN=(B1,…,BN)T

 as follows. 

��7 � �7 � �8/���), k=1,…, N-1     (6) 

To the best of our knowledge, there is no result of sampling 
BBN-1 by using decomposition of Σ

 . 

The method to insert discrete Brownian bridges into a 
discrete Brownian motion (called Brownian Bridge 
construction) has been considered [2, 4, 5, 9-11]. The 
inserting method is useful for sampling high dimensional 
discrete Brownian motion [8]. Larcher, G et al. [7] has 
proposed a method for finding good weights for several 
classes of functions and applied it to certain algorithms using 
the Brownian Bridge construction. In that cases inserted 
discrete Brownian bridges have been sampled by (6) from the 
discrete Brownian motion.  

The inserting method using a decomposition of Σ

  gives 
another decomposition of covariance matrix for high 
dimensional discrete Brownian motion and it is significant in 
Quasi-Monte Carlo simulations for financial derivatives. For 
a financial derivative, the efficiency of Quasi-Monte Carlo 
simulations depends crucially on the decomposition of 
covariance matrix of the discrete Brownian motion [15]. 

In this paper, the expressions of eigenvalue and LDU 
decompositions of the covariance matrices of the discrete 
Brownian motion and Brownian bridge are given and new fast 
constructions of the discrete Brownian motion and Brownian 
bridge using these decompositions are presented. It is 
suggested an inserting method for construction of discrete 
Brownian motion which requires O(Nlog(logN)) flops. The 
method is based on eigenvalue decompositions of the 
covariance matrices and the suitable dimension partition of the 
discrete Brownian motion and Brownian bridges. 
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This paper is organized as follows. In section 2, the 
inverse matrix of Σ

  is computed and the explicit 
expression of the eigenvalue decomposition of Σ

  is 
given. A new fast construction of BBN-1 using the 
decomposition is derived. In section 3, the explicit 
expressions of the LDU decompositions of Σ

and Σ
 are 
given and new fast constructions of BBN-1 and BN are 
proposed, respectively. The construction algorithms use O(N) 
flops same as the step-by-step method. In section 4, 
performances of the step-by-step method and methods using 
LDU and eigenvalue decomposition are compared by the 
simulation results on the maximum distribution of the 
Brownian motion and Brownian bridge. Finally, the fast 
construction of the high dimensional discrete Brownian 
motion using O(Nlog(logN)) flops is shown. 

2. Eigenvalue Decomposition and a 

Construction Using It 

Using Gaussian elimination method, calculate the inverse 
matrix of Σ

  such as 

Σ

�� � �
�
���
�
2 �1 0�1 2 �10 �1 2 ⋯ 0 0 00 0 00 0 0⋮ ⋱ ⋮0 0 00 0 00 0 0 ⋯ 2 �1 0�1 2 �10 �1 2 �

���
�

�)���×�)���

 (7) 

This tridiagonal matrix is different from (5) only in the 
dimension and the element of the last row and column. 

Theorem 2.1. The eigenvalue decomposition of Σ

 ��9:*0��)���×�)��� is as follows. 

Σ

 � �

Λ

�

! ,               (8) 

where Λ

 � "#$%�&�̅, … , &̅)� , &*̅ � �4�sin��#//����� , �

 � ��*̅0�)×), and �*̅0 � ?2/�sin	�2#5//��. 
Proof. The vectors �*̅ � ���̅*, … , �)̅��,*�!, i=1,…, N-1 are 

orthonormal basis of N-1 dimensional space [8]. 
Now, in the similar way to Åkesson, F and Lehoczky, J. P 

[1], prove 

Σ

���*̅ � &̅*���*̅, i=1,…, N-1.       (9) 

For the first component of the left side in (9), 

��2��̅* � ��̅*� � √2� @2 sin @�*A) B � sin @C*A) BB  

=√2� @2 sin @�*A) B � 2 sin @�*A) B cos @�*A) BB  

=2√2� sin @�*A) B @1 � cos @�*A) BB  

=4� sin� @�*A) B ∙ F�) sin @�*A) B � &̅*����̅*.  

and for the jth(2≤j≤N-2) component, 

�G��0̅��,* + 2�0̅* � �0̅H�,*I  

� √2� @2 sin @�*0A) B � sin @�*�0���A) B � sin @�*�0H��A) BB  

� √2� J2 sin J2#5/� K � 2 sin J2#5/� K cos J2#/� KK 

� 2√2� sin @�*0A) B @1 � cos @�*A) BB  

� 4� sin� @�*A) B ∙ F�) sin @�*0A) B � &̅*���0̅*.  

Finally, for the jth(j=N-1) component, 

�G��)̅��,* + 2�)̅��,*I 
� √2� @� sin @C*�)���A) B + 2 sin @�*�)���A) BB  

� √2� @2 sin @C*A) B � 2 sin @�*A) BB  

� �√2� @2 sin @�*A) B � 2 sin @�*A) B cos @�*A) BB  

� 2√2� sin @�*�)���A) B @1 � cos @�*A) BB  

� 4� sin� @�*A) B ∙ F�) sin @�*�)���A) B  

� &̅*���)̅��,*, 
where, the equality 

sin @�*0A) B � sin @�*A��*�)�0�) B � �sin @�*�)�0�A) B.  

is used.  
Now, the fast construction of the discrete Brownian bridge 

using (8) is considered. Let WN-1=(w1,…,wN-1)
T
 be a N − 1 

dimensional standard normal vector and L)�� � �M�, … , M)���! � Λ

�/�N)��, then the i
th component 

of BBN-1=(BB1,…,BBN-1)
T is as follows. 

��* � �√�)∑ sin @�7*A) B)��7�� M7, i=1,…, N-1. 

By a mapping F: RN-1→R
2N-2 defined as P,:� �0, ,�, 0, ,�, … , 0, ,)��	�!RS�)��, , � �,�, ,�, … , ,)��	�!RS)��, 

and setting 

T � �U�, U�, … , U�)���! ≔ PL)�� � �0, M�, 0, M�, … , 0, M)���, 
then 



W√� � F�)∑ sin @�7*A) B M7)��7��   

	� F�)∑ ,#- @7��*�A) B)��7�� U7 ,	i=1,…, N-1. 	
This is the 2i

th element of the discrete sine transform TDSY in 
dimension 2N−2 on the vector Y=(y1,…,y2N-2)

T. Therefore 

��)�� � √2X�YZPΛ

�/�N)��,           (10) 

where H:R2N-2→R
N-1 is a mapping defined as 
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X�:� ���, �C, … , ��)���!RS)��, 

� � ���, … , ��)���!RS�)��. 

Multiplications by H, F and Λ

�/� can be done in O(N − 1) 

flops and multiplication by TDS can be done in O((N − 1)log(N 

−1)) flops when N=2K
 for a certain natural number K [8]. So, 

the construction of BBN-1 by (10) uses O(NlogN) flops. 

3. LDU Decompositions and Constructions Using Them 

The following theorem shows the expression of the LDU decomposition of Σ

 . 
Theorem 3.1. The LDU decomposition of Σ

 � G9:*0I�)���×�)��� is as follows. 

Σ

 � [

\

]

!                                        (11) 

where \

 � diag	"

 , "

! � G"̅�, … , "̅)��I � ��2����, 2�3����, … , �� � 1����� and 

[

 � ]

 �
�
��
��
�1 � �� �a0 1 � �a0 0 1

⋯
��1�)�a �)�� ��1�)�� �)����1�)�C �)�� ��1�)�a �)����1�)�b a)�� ��1�)�C a)��⋮ ⋱ ⋮0 0 00 0 0 ⋯ 1 � )��)��0 1 �

��
��
�

  

Proof. From (7) 

���Σ

�� �
�
���
�
2 �1 0�1 2 �10 �1 2 ⋯ 0 0 00 0 00 0 0⋮ ⋱ ⋮0 0 00 0 00 0 0 ⋯ 2 �1 0�1 2 �10 �1 2 �

���
�

�)���×�)���

. 

The LDU decomposition [13] of above tridiagonal matrix is as follows. 

���Σ

�� � [c\d[c!, 

where \d � diag�"e�, … , "e)���, 

[c � ]d �
�
��
�
1 0 0�̃� 1 00 �̃a 1 ⋯ 0 00 00 0⋮ ⋱ ⋮0 0 00 0 0 ⋯ 1 0�̃��1 1�

��
�
�)���×�)���

, 

�̃* � � �gcW , # � 2, … , � � 1, 

and 

h "e� � 2,"e* � 2 � �gcWij , # � 2, … , � � 1. 

By recursive calculation, 

"e* � *H�* , # � 1, … , � � 1. 

On the other hand, using Σ

 � G[c��I!G���\d��I[c�� give 

\

 � ���\d�� � diag��2����, 2�3����, … , �� � 1���� 
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and 

[

 � G[c��I! �
�
��
�1 �̃� �̃��̃�0 1 �̃�0 0 1 ⋯ ∏ �̃7)��7�� ∏ �̃7)��7��∏ �̃7)��7�� ∏ �̃7)��7��∏ �̃7)��7�a ∏ �̃7)��7�a⋮ ⋱ ⋮0 0 00 0 0 ⋯ 1 �̃)��0 1 �

��
� �

�
��
��
�1 � �� �a0 1 � �a0 0 1

⋯
��1�)�a �)�� ��1�)�� �)����1�)�C �)�� ��1�)�a �)����1�)�b a)�� ��1�)�C a)��⋮ ⋱ ⋮0 0 00 0 0 ⋯ 1 � )��)��0 1 �

��
��
�

�)���×�)���

. 

Using (11), BBN-1=(BB1,…,BBN-1)
T
 can be constructed as follows. 

��)�� � [

\

�/�N)��. 

Now, let L)�� � �M�, … , M)���! � \

�/�N)��, where WN-1 is a N − 1 dimensional standard normal random vector then 
BBN-1=(BB1,…,BBN-1)

T=LBBVN-1 can be constructed as follows. 

��)�� � M)��, 

��* � M* � **H���*H�, i=N-2, N-3,…, 1.                             (12) 

The following theorem shows the expression for the LDU decomposition of Σ
. 
Theorem 3.2. The LDU decomposition of Σ
 � G9*0I)×) is as follows. 

Σ
 � [
\
]
! ,                                          (13) 

where \
 � diag	"
, "
! � �"�, … , ")��� � ��2����, 2�3����, … , �� � 1����, 1� and 

[
 � ]
! �
�
��
��
�1 � �� �a0 1 � �a0 0 1

⋯
��1�)�� �)�� ��1�)�� �)��1�)�a �)�� ��1�)�� �)��1�)�C a)�� ��1�)�a a)⋮ ⋱ ⋮0 0 00 0 0 ⋯ 1 � )��)��0 1 �

��
��
�

)×)

. 

This proof, being very similar to above theorem, is 
omitted. 

Using (13), BN=(B1,…,BN)T
 can be constructed as follows 

�) � [
\
�/�N). 

Now, let ]) � �l�, … , l)�! � \

�/�N), where WN is a N 

dimensional standard normal random vector, then 
BN=(B1,…,BN)T

=LBUN can be constructed as follows. 

�) � l), 

�* � l* � **H��*H�, i=N-1, N-2,…, 1.    (14) 

The construction methods of the discrete Brownian motion 
and Brownian bridge using (14) and (12) are called LDU 

decomposition methods, simply. It is easy to find that LDU 
decomposition methods are similar to the step-by-step method 
in structure and use O(N) flops. 

4. Performance Comparison and the New 

Fast Construction 

First, performances of above construction methods for 
approximation of the maximum distribution are compared. The 
cumulative distribution functions of UB=maxt∈[0,1]B(t), 
MB=maxt∈[0,1]|B(t)|, UBB=maxt∈[0,1]BB(t) and MBB=maxt∈[0,1]|BB(t)| 
are represented as follows, respectively [3]. 

m
H�n� � o�]
 ≤ n� � 2Φ�n� � 1, 

G
�n� � o�s
 ≤ n� � ∑ ��1�7tΦG�28 + 1�nI � ΦG�28 � 1�nIuv7��v , n > 0, 

m

H �n� � o�]

 ≤ n� � 1 � exp��2n�� , n > 0, 

G

�n� � o�s

 ≤ n� � 2∑ ��1�7exp	��28�n��v7��v , n > 0, 
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where Φ is the standard normal distribution function, i.e., Φ�n� � �2/���/� { exp	��|�/2�"|}�v . 

Generating R samples BNr=(B1r,…,BNr)
T, r=1,…, R and 

BBN-1,r=(BB1r,…,BBN-1,r)
T, r=1,…, R using step-by-step 

method, LDU decomposition and eigenvalue decomposition 
methods, respectively, ]
~� � max��0�) �0� , s
~� �max��0�)��0�� , ]

~ij,� � max��0�)�� ��0� and s

~ij,� � max��0�)�����0��, r=1,…, R are calculated. 

Let denote by mc
H�n� , Gd
�n� , mc

H �n�  and Gd

�n� , the 
empirical distribution functions of them, respectively. For 
three methods, norm square errors 

�∆mc�� � { �mc�n� � m�n���"n!
   

calculated using MATLAB are presented in Table 1. 

Table 1. The norm square errors of the empirical distribution functions in 

the case of N=1024, R=105, and T = 4. 

Methods �∆�d�H��  �∆�d���	 �∆�d��H �� �∆�d���� 

step-by-step 0.0176 0.0196 0.0185 0.0181 
LDU decomposition 0.0168 0.0178 0.0194 0.0187 
Eigenvalue decomposition 0.0147 0.0143 0.0172 0.0167 

Table 1 shows that the eigenvalue decomposition method 
has the smallest error in all cases and the LDU decomposition 
method is superior to the step-by-step method in 3 cases 
except of approximation of m

H . 

Finally, a method to construct the N=N1N2 dimensional 
discrete Brownian motion by inserting N1 discrete Brownian 
bridges of dimension N2-1 into a N1 dimensional discrete 
Brownian motion is considered. Let denote by 

�)j�
� � G���
�, … , �)j�
�I!, 

��)jij�0� � G����0�, … , �)����0� I!, j=1,…, N1, 

N1 dimensional discrete Brownian motion and N1 discrete 
Brownian bridges of dimension N2-1, respectively. Then, the 
N=N1N2 dimensional discrete Brownian motion 
BN=(B1,…,BN)T

 can be constructed as 

�0)� � �0�
�, j=1,…, N1,           (15) 

and for � � �5 � 1��� + 8, j=1,…,N1, k=1,…, N2-1, 

�� � )��7)� ��0���)� + 7)��0)� + �?)j��7�0�,    (16) 

where B0=0. 

Constructing �)j�
�  and ��)jij�0�
 by using the eigenvalue 

decomposition allows the above construction using (15) and 
(16) of BN use O(N1logN1+N1N2logN2) flops. If we set 
N2=logN, it turns to O(Nlog(logN)). 

5. Conclusion 

In this paper, explicit expressions of the eigenvalue and 
LDU decompositions of the covariance matrix of the discrete 

Brownian bridge have been given. And explicit expression of 
LDU decomposition of the covariance matrix of the discrete 
Brownian motion has been also given. New fast construction 
algorithms for sampling the discrete Brownian motion and 
Brownian bridge using these decompositions have been 
proposed. 

The new fast constructions using LDU decomposition can 
be useful in certain simulations. Wang, X and Sloan, I. H [15] 
noted that if a decomposition works well for a given financial 
derivative using a QMC methods, then for every other 
decomposition there is another financial derivative which can 
be priced with exactly the same result. Also Table 1 shows 
that the LDU decomposition method is superior to the 
step-by-step method in most cases of approximation of the 
maximum distribution. 

Further, the construction of the high dimensional discrete 
Brownian motion using O(N log(log N)) flops by inserting 
the discrete Brownian bridges constructed using the fast 
construction into the discrete Brownian motion have been 
presented. Inserting the discrete Brownian bridges 
constructed using different methods could provide different 
constructions of the discrete Brownian motion. For example, 
the discrete Brownian motion can be constructed 
alternatively by inserting discrete Brownian bridges 
constructed using LDU decomposition. It can be seen from 
Wang, X and Sloan, I. H [15] that every construction has a 
certain payoff function for which it is especially well suited. 
Several construction methods have been proposed and 
finding a suitable payoff function for each construction can 
be our future research. The new fast constructions will be 
useful in many Quasi-Monte Carlo simulations that require 
high accuracy. 
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