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Abstract: COVID-19 is an epidemic virus infection that is ravaging the world today. There are no pre-existing immunity and 

People were easily infected by this virus known as severe acute respiratory syndrome coronavirus (SARS-CoV-2) which caused 

Covid-19 (CDC, 2020). According to available data, the COVID-19 virus transmits most easily amongst people who are in 

proximity, typically within some feet (6) or meters. In this paper, we present the Susceptible – Exposed – Infected-Recovered 

(SEIR) epidemic model for the dynamics of COVID-19 outbreak and its optimal control in Nigeria. SEIR is characterized by a 

system of four non-linear differential equations. We established the existence and uniqueness of solutions of these equations. 

Using Nigeria’s COVID-19 data, we computed the basic reproduction number of the system. Further, an optimal control 

approach is performed to study the effect of control measure against the spread of the virus, the control level which minimizes the 

spread and optimal value of the control which maximizes the objective function. Through the application of Pontryagin’s 

Maximum Principle, we determined how the spread of the virus could be suppressed. The investigation shows that an effective 

strategy in combating the Covid-19 epidemic is adhering to the dictates of the control measures. 

Keywords: SEIR Model, COVID-19, Pontryagin Maximum Principle, Basic Reproduction Number, Optimal Control 

 

1. Introduction 

The globe is currently experiencing COVID-19 (Corona 

virus disease 2019), the fifth pandemic since the 1918 flu 

pandemic [1]. This new coronavirus has been linked to 

millions of infections worldwide and more than 2 million 

fatalities. The mortality rate differs from nation to nation [2]. 

The initial report from a cluster of unique human pneumonia 

cases was detected in Wuhan City, China, in late December 

2019, and experts have been tracking the infectious outbreak 

since late 2019 [3]. The first day of December 2019 was noted 

as the earliest symptom start date [4]. 

A Susceptible-Exposed-Infectious-Removed (SEIR) model 

was formulated and we went to describe the spread of the virus 

[5]. The SEIR model has many versions, and mathematical 

treatments were found, in the following studies; the 

mathematics of infectious diseases in [6], Mathematical Tools 

for understanding Disease Dynamics in [7], Mathematical 

epidemiology: past, present, and future in [8]. Their goal was 

to compute the number of individuals infected, recovered and 

dead. The difference between this model and the vaccination 

control model [10] is that the number of vaccinated 

individuals per day is constrained to be less than the 

susceptible population while the Contact rate epidemic control 

of COVID-19 in [10], the control input is the ratio of the 

vaccinated individuals per day to the average born population 

per day. 

Adewole et al. in [24] investigated the dynamics of 

COVID-19. Their model was calibrated using information 

obtained from the Nigeria Centre for Disease Control, and 

Pontryagin's Maximum Principle was used to generate 

numerical simulations, which were then used to investigate 

various optimal control strategies involving both single and 

multiple controls in Nigeria. The optimum management of a 

single intervention input variable for an ordinary differential 

equation (ODE) model was examined [25]. In this work, we 

shall optimize the prescribed social distancing control order in 

Nigeria. 
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Fabric face masks, one of the control methods used to 

prevent the dissemination of Covid-19, are not always 100% 

successful [26], and there have been some instances of abuse 

and inadequate use of the fabric face mask [27]. The three 

control techniques (hand sanitizer usage, COVID-19 patient 

treatment, and active screening with testing and prevention 

against recurrence and reinfection of persons who have 

recovered from COVID-19) must be carefully implemented if 

COVID-19 is to be successfully eradicated in Nigeria [28]. 

The incidence of reinfection and recurrence in persons who 

have recovered from COVID-19 will be determined in this 

investigation. 

In 2021, Xu, et al modified the SIR model with Shield 

immunity as proposed by Weitz J, et al in 2020, which was 

aimed at limiting the transmission of COVID-19. The model 

used in Control strategies for COVID-19 epidemic with 

vaccination, shield immunity and quarantine was modified 

from an SIR model [11] considered a corresponding SEIR 

model with shield immunity control. 

This study aims to modifying the model established by 

Carcione et al in [5] known as Susceptible – Exposed – 

Infectious-Removed (SEIR) that explains the dissemination of 

the Covid-19 by examining the incidence of contamination 

and recurring of people who already have survived from 

Covid-19 infections. We adopt the social distancing order and 

Covid-19 vaccine, checkmating the number of people in the 

population need to be vaccinated and what happens if the 

deployed covid-19 vaccine (AstraZeneca/Oxford made by the 

Serum Institute of India) in Nigeria is not 100% effective. 

2. Data Source 

The COVID-19 data report is publicly available on Nigeria 

Centre for Disease Control (NCDC, 2020). 

 

Figure 1. Nigeria confirmed cases of covid-19 on 04/04/2021. 

Figure 1 shows the distribution of the disease across the 

towns in Nigeria. Lagos and Abuja ranked very high on the 

infection scale [13-15]. The collected COVID-19 data 

represents the dynamics of the disease before the enforcement 

of intervention strategies [16]. 

2.1. Properties of the Model 

The well-known COVID-19 

Susceptible-Infected-Recovered (SIR) model [9] has been 

modified to SEIR model with four compartments namely S ,

E , I  and R . The name of these compartments represents 

the state variables or the number of people in each 

compartment at time t. Thus, ( )S t , ( )E t , ( )I t  and ( )R t  

denote the susceptible, exposed, infectious and recovered 

population at time t. The susceptible populations are those 

persons who can contract the disease once they are in contact 

with an infectious person. The exposed populations are those 

that are infected but are not yet infectious. The infectious ones 

are those who contracted the disease and can infect others. The 

recovered group refers to those that have recovered from 

infection and cannot infect others unless re-infected [16 - 18]. 

The four compartments make up the entire population of the 
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country, Nigeria. 

The dynamics of the state variables in the system have been 

formulated as non-linear ordinary differential equations in 

form of Initial Value Problem (IVP) with seven unknown 

parameters. The following is the representation of the 

parameters. 1 :a  The rate at which individuals contract the 

disease (transmission rate). 2 :a The rate at which the exposed 

individuals show symptoms of the disease (progression rate). 

3 :a  The rate at which infectious persons recover from the 

disease (recovery rate). 5 :a  The rate at which recovered 

persons become susceptible again (immunity rate). 6 :a  The 

birth rate of persons included in the data set. 7 :a The rate at 

which persons die due to natural factors (natural death rate). 

The total number of fixed people in the population at time t  

is given by ( ) ( ) ( ) ( )N S t E t I t R t= + + + . The initial values of 

( ), ( ), ( )S t E t I t and ( )R t  are denoted by 0 0 0, ,S E I  and 0R  

respectively. The dead population as a function of time is

( ) (0) ( )D t N N t= − . The basic assumptions of this study are 

given below. 

2.2. SEIR Model Assumptions 

1) We assume that all the state variables and parameters are 

positive. 

2) It is assumed that every person in our population is 

susceptible to COVID-19 attack. 

3) The infected and susceptible are assumed to mix 

homogeneously. 

4) Some recovered individuals could go back to the 

susceptible class. 

5) No pre-existing immunity (everyone in Nigeria is 

susceptible to the virus). 

6) The total population N remains constant as we assume 

that birth rate and natural death rate are equal. 

7) All persons in the population have the same probability to 

contract the disease irrespective of age or health status. 

3. Mathematical Formulation of the 

Model 

In this model the total population size, N, is considered 

closed as birth and death (death induced by the virus) rates are 

assumed equal. The total population is divided into four 

classes as shown below with Susceptible ( )S , Exposed ( )E , 

Infected ( )I and Recovered ( )R  compartments. The model 

diagram is shown below. 

 

Figure 2. Model diagram for the four compartments. 

From figure 2, the susceptible people ( )S  will move to the 

exposed compartment ( )E updating the number of exposed 

person to 1 .a SI  Out of this exposed ones, 2a E  individuals 

will move from E compartment to the infectious 

compartment ( )I . From the infectious compartment, 3a I

persons move to the recovery group. 

COVID-19 SEIR Model without Control parameter 

Using the model diagram, we derived the following system 

of ordinary differential equations. 

6 1 5 7 0, (0) 0,
dS SI

N R S S S
dt N

α α α α= − + − = >  

1 2 7 0( ) , (0) 0,
dE SI

E E E
dt N

α α α= − + = >  

2 3 4 7 0( ) , (0) 0
dI

E I I I and
dt

α α α α= − + + = >  

3 5 7( ) , (0) 0.
dR

I R R
dt

α α α= − + >  

Considering the varying population, ( ),N t  and the 

proportions of each compartment of individuals in the 

population namely / , / , /s S N e E N i I N= = =  and 

/ ,r R N=  we obtain the state variables , ,s e i  and r . These 

variables satisfy the following system of differential 

equations. 

6 1 5 7 0, (0) 0,
ds

si r s s s
dt

α α α α= − + − = >       (1) 

1 2 7 0( ) , (0) 0,
de

si e e e
dt

α α α= − + = >        (2) 

2 3 4 7 0( ) , (0) 0,
di

e i i i
dt

α α α α= − + + = >       (3) 
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3 5 7 0( ) , (0) 0
dr

i r r r
dt

α α α= − + = >       (4) 

Here, ( ) ( ) ( ) ( ) ( ) 1N t s t e t i t r t= + + + =  for all [0, ]t T∈  

and T is the total time of investigation. 

Existence and uniqueness of solution 

The conditions under which the system (1 – 4) has solution 

is outlined in the following theorem. 

Theorem 3.0 (Existence and uniqueness) 

Assume that the functions 6 1 5 7si r sα α α α− + −

1 2 7, ( ) ,si eα α α− + 2 3 4 7( )e iα α α α− + +  and 

3 5 7( )i rα α α− + and their partial derivatives with respect to 

,  ,  ,  s e i r  are continuous in a rectangle 

,  , , , .az t bz cz s e i r dz< < < <  Then for any 0 ( , )t az bz∈  

and 0 0 0 0, , , ( , ),s e i r cz dz∈  the system 1 to 4 has a unique 

solution valid on some open interval ( , )az bz  containing 0.t  

Proof. Let ( ) [ ( ), ( ), ( ), ( )], ( , )y t s t e t i t r t t az bz= ∈ and 

( ), ( ), ( ), ( ) ( , ).s t e t i t r t cz dz∈ Then 0 0 0 0( , , , ).
dy

s e i r
dt

=  

Define a function h  as 

( ( ))h y t = ( 6 1 5 7si r sα α α α− + − 1 2 7, ( ) ,si eα α α− +

2 3 4 7( )e iα α α α− + + , 3 5 7( )i rα α α− + ). Let 0 ( , )t az bz∈
and

0 0 0 0 0 0 0 0 0 0( ) ( ( ), ( ), ( ), ( )) ( , , , ) ( , )y t s t e t i t r t s e i r y cz dz= = = ∈
. By the assumption, we know that ( ( ))h y t  and its partial 

derivatives ( ( ))yh y t  are continuous in the rectangle 

, .az t bz d y dz< < < <  [20], the initial value problem 

0 0( ( )), ( )
dy

h y t y t y
dt

= = has a unique solution valid on some 

open interval containing 0.t  

Linearization of the SEIR Model 

Set 

* * * *
1 2 3 4, , , .x s s x e e x i i x r r= − = − = − = −  

1 2 3 4, , , ,f s f e f i f r= = = =ɺɺ ɺ ɺ At ( ), , , ,s e i rɺɺ ɺ ɺ  we have 

1 1 1 1
1 1 2 3 4

f f f f
x x x x x

s e i r

∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂
ɺ  

2 2 2 2
2 1 2 3 4

f f f f
x x x x x

s e i r

∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂
ɺ  

3 3 3 3
3 1 2 3 4

f f f f
x x x x x

s e i r

∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂
ɺ  

4 4 4 4
4 1 2 3 4

f f f f
x x x x x

s e i r

∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂
ɺ  

* *
1 1 1 7 1 1 3 5 4x i x x s x xα α α α= − − − +ɺ  

* *
2 1 1 2 7 2 1 3( )x i x a x s xα α α= − + −ɺ  

3 2 2 3 4 7 3( )x x a a xα α= − + +ɺ  

4 3 3 5 7 4( )x x a xα α= − +ɺ  

* *
1 7 1 51 1

* *
2 21 2 7 1

3 32 3 4 7

4 43 5 7

0

( ) 0

0 ( ) 0

0 0 ( )

 − − −   
    
 − +   =     − + +        − +    

ɺ

ɺ

ɺ

ɺ

i sx x

x xi s

x xa

x x

α α α α

α α α α
α α α

α α α

 

4. Determination of the Basic 

Reproduction Number 

The basic reproduction number, 0 ,R of the model is 

determined by employing the results of the next-generation 

matrix [21] and the first four differential equations. Let 

( , , , ),x s e i r= ( )f x  be the rate of appearance of new infection 

and ( )v x  be the rate of transfer of individuals from all other 

sources into the compartment and transfer of individuals out of 

the compartment, then we have model 1 to 4, written as 

1

0

;
0

0

i

si
f

α
 
 
 =
 
  
 

1 7 5 6

2 7

3 4 7 2

5 7 3

( )

( )

( )

i

si s r

a e
v

a i e

a r i

α α α α
α
α α α
α α

+ − − 
 + =
 + + −
  + − 

 

As infected compartments are only e  and i  then F  and 
V  are the Jacobian matrices of order 2 2×  as defined as 

defined in Mathematical Tools for understanding Disease 

Dynamics [7] and the values of F  and V  for the new 

infection terms and the transmission terms are given 

respectively as 

10

0 0
F

α 
=  
 

and
2 7

2 3 4 7

0
.V

α α
α α α α

+ 
=   − + + 

 

2 7 3 4 7( )( )V α α α α α= + + +  

3 4 7

2 2 7

0
V

α α α
α α α

+ + 
=  + 

 

2 71

2

2 7 3 4 7 3 4 7

1
0

1

( )( )

V
V

V

α α
α

α α α α α α α α

−

 
 + = =
 
 + + + + + 

 

1 2 1
1

2 7 3 4 7 7 3( )( ) ( )

0 0

K FV

α α α
α α α α α α α−

 
 + + += =  
 
 

 

Hence, the basic reproduction number 0R  for the 
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COVID-19 model (3a – 3d) is obtained by calculating the 

spectral radius of the matrix 1FV − as: 

1 2
0

2 7 3 4 7

.
( )( )

R
α α

α α α α α
=

+ + +
         (5) 

The following are the estimate of the unknown parameters. 

1 2 3

4 5 6 7

0

0.70746202,  0.1876435,   0.31817251,        

0.002942,   0.00000049234,  0.0001,    

0.70746202 0.1876435

(0.1876435 0.0001)(0.31817251 0.002942 0.0001)

2.2012866.

= = =
= = = =

×=
+ + +

=

R

α α α
α α α α

 

1 2 0.70746202 0.1876435 0.132748α α = × = represents the 

product of the disease transmission and disease progression 

rates. 

2 7 3 4 7

1

( )( )

1

(0.1876435 0.0001)(0.31817251 0.002942 0.0001)

0.06030594

+ + +

=
+ + +

=

α α α α α

shows how long people are sick. 

0 2.2012866R =  shows there is high rate of contagiousness 

of the infectious agent in the population, i.e one infected 

person is expected to infect, on the average, over two new 

persons. 

4.1. Fitting Data to the Model 

In this paper, we apply the method of non-linear least square 

which depends on nonlinearity of the residual. The non-linear 

problems are generally used in the iterative method of 

refinement in which the given data is fit to the model using the 

following procedure. Consider the data set

0 1{ , , . . ., }T TG y y y=  where 62T =  and 

( ), , , , 't t t t t ty s e i r d=  is the vector of the observed values at 

time t  for the variables , , ,s e i r  and additional variable .d  

where ( ). ' denotes transpose. Given the unknown parameters

( )1 2 3 4 5 7, , , , 'ϑ α α α α α α= , the prediction model, ( )ty ϑ
∧

, 

becomes 

1 7 5 1 1 1 1 7 1

1 1 1 1 2 7 1

1 2 1 3 4 7 1

1 3 1 5 7 1

1 4 1

( )

( ) ( )

( )

t t t t t

t t t t

t t t t

t t t

t t

s r s i s

e s i e

y t e i

r i r

d i

α α α α
α α α

ϑ α α α α
α α α
α

− − − − −

− − − −∧

− − −

− − −

− −

+ + − − 
 + − + 
 = + − + +
 

− − + 
 + 

 

Where 
0 ( )y ϑ

∧
 is a zero vector. The quadratic cost is given 

by 

2

0

( ) 0.5 ( )

T

T t t

t

Q y yϑ ϑ
∧

=

= −∑ with .  as the Euclidean 

norm. The least-squares estimator is defined by the minimum 

of :TQ
6

arg min ( )L TQ
ϑ

ϑ ϑ
∈ℜ

=
 

Where ( )1 2 7, , . . .,Lϑ α α α=  is the estimated parameters. 

A curve fitting module, lmfit, implements this process 

numerically in python programming language. The first 62 

daily data points of infectious people was selected for the 

fitting process prior to the peak of the infectious period. This 

data is given in the form { }0 0 1 1 62 62( , ), ( , ), . . . ( , )t Y t Y t Y  and 

the SEIR model results appeared in the form

{ }0 0 1 1 62 62( , ), ( , ), . . . ( , )t I t I t I . 

4.2. Fitting Error Residue 

The fit error or residual is denoted by ires for 

.62...,2,1,0=i Given n = 62 as total observations, we found 

the sum of squares error (SSE), mean square error (MSE) and 

root mean square error (RMSE) using 

nSSEMSEresSSE
i

i
i

/,
63

0

2 =∑=
=

=
 and MSERMSE =  

respectively. Thereafter, we computed the R-squared and 

Adjusted R-squared of the fitted parameters. 

5. Optimal Control 

Here, we modify the SEIR model by introducing a control 

( )u t  which stands for all the control measures, especially, the 

social distancing order in Nigeria, to the system (1 - 4) as 

given below. 

COVID-19 SEIR Model with Control parameter 

6 1 5 7 0(1 ) , (0) 0,
ds

a a si u a r a s s s
dt

= − − + − = >     (6) 

1 2 7 0(1 ) ( ) , (0) 0,
de

a si u a a e e e
dt

= − − + = >       (7) 

2 3 4 7 0( ) , (0) 0,
di

a e a a a i i i
dt

= − + + = >        (8) 

3 5 7 0( ) , (0) 0
dr

a i a a r r r
dt

= − + = >         (9) 

Where the control ( )u t  is between 0 and max 1U <  or 

max0 .u U≤ ≤  

The essence is to reduce the contact rate among the 

susceptible population and the infectious population. Thus, 

the term 1 (1 )a si u−  was introduced. 

It follows from the existence and uniqueness of solution (1 - 

4) that (6 -9) has a solution too. 

5.1. Optimal Control Problem 

The optimal control problem is to find the control level 

which minimizes the spread of COVID-19 in Nigeria and its 

controlling costs. Thus, we seek the optimal value *u  of the 

control u along time t  such that the associated state 
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trajectories *, *, *s e i  and *r  are solutions of the above 

model equations and *(.)u  maximizes the objective 

functional defined by 

( )2

0
( (.)) ( ) ( ) ( ) .

T

J u s t i t u t dt= − −∫          (10) 

Subject to (6 - 9) 

The integrand contains the fraction of susceptible 

individuals (s) and infectious people along with the severity of 

the side effects, 2 ,u  of the control measures. The control u  

belongs to the bounded control set 

{ }: 0 1, [0, ] .U u u t T= ≤ < ∈           (11) 

Where max0 u u≤ ≤ for some max 1.u <  

5.2. Characterization of the Optimal Control 

To derive the necessary conditions for the optimal control, 

we apply Pontryagin’s maximum principle [22, 23] to the 

Hamiltonian ( H ) where 

1 6 1 5 7 2 1 2 7^ 2 ( (1 ) ) ( (1 ) ( ) )H s i u si u r s si u eλ α α α α λ α α α= − − + − − + − + − − + +

3 2 3 4 7 4 3 5 7( ( ) ) ( ( ) ).e i i rλ α α α α λ α α α− + + + − +  

Where jλ  for 1, 2, . . ., 4j = denote the adjoint variables 

associated to the state variables , ,s e i  and .r  

Theorem 4. Given an optimal control *u and solutions 

*, *, *, *s e i r  of the control system (6 – 9) that maximizes 

( *)J u  over ,U  there existsadjoint variables jλ  satisfying 

j H

t t

λ∂ ∂= −
∂ ∂

 

With the transversality conditions 

( ) 0, , , , .j T j s e i rλ = =  

The optimality condition is given by 

0.u

H
H

u

∂= =
∂

 

Furthermore, we have the optimal control 

( )( )( )max 1 1 2* min , max 0, 0.5 ( )u u siα λ λ= − . 

Proof: 

Using the Hamiltonian, we obtain the adjoint variables 

, ,s e iλ λ λ and rλ  by solving the system 

, ,s e i

H H H

s e i
λ λ λ∂ ∂ ∂= − = − = −

∂ ∂ ∂
ɺ ɺ ɺ and r

H

r
λ ∂= −

∂
ɺ  

Where 

.
d

dt

λλ =ɺ  

Thus, 

{ } { }1 7 11 (1 ) (1 ) , ( ) 0= − + − + − − =ɺ
s s e si u i u Tλ λ α α λ α λ  (12) 

2 7 2( ) ,e s iλ λ α α λ α= + −ɺ ( ) 0e Tλ =  (13) 

{ } { }1 1 3 7 31 (1 ) (1 ) ( ) ,i s e i rs u s uλ λ α λ α λ α α λ α= + − − − + + −ɺ

( ) 0i Tλ =                    (14) 

5 5 7( ),r s rλ λ α λ α α= − + +ɺ ( ) 0r Tλ =        (15) 

The following optimal control *u  is derived from the 

stationary condition 0uH = , using the properties from the 

control space. 

1 1 2

max

0, 0.

* 0.5 ( ), 0.

, 0

u

u

u

if H

u si if H

U if H

α λ λ
<

= − =
 >

        (16) 

Thus, the optimal control of the optimization problem (6 – 9) 

and (10) can be characterized as 

( )( )( )max 1 1 2* min , max 0, 0.5 ( )u u siα λ λ= −  in compact 

form.          (17) 

To provide numerical simulations of the state and adjoint 

equations, we employ a numerical approach known as 

Forward-Backward Sweep method. We wrote a MATLAB 

script for the implementation of the method through 

Runge-Kutta fourth order method. The basic algorithm is 

stated below. 

5.3. Forward-Backward Sweep Method 

Step 1. State the estimated initial value problem parameters. 

State the time range from 0 0t =  to final time T . Choose the 

number of discretization points, the maximum control value 

( max )u  and step size h. 

Step 2. Choose initial state values using the data initial 

values. Set the stopping criteria. 

Step 3. Solve the state equations forward in time and the 

adjoint equations backward in time simultaneously using 

Runge-Kutta 4
th

 Order method. 

Step 4. Update the variables in each iteration until the 

desired solution prescription is obtained. 

Step 5. Check for convergence if the stopping criterion is 

met. If the solution is not optimal, go to step 2 and repeat the 

process. Otherwise choose the obtained solutions. 

Step 6 Simulate the solution and compare with the real data. 

5.4. Runge-Kutta 4
th

 Order Method 

Consider a step size h  and the general state
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( , ( ))
dy

g t y t
dt

= . An approximation ( )y t h+  is defined as 

( )1 2 3 4( ) ( ) 2 2
6

h
y t h y t k k k k+ ≈ + + + +  where 

1 ( , ( )),k g t y t=
2 1( , ( ) ),

2 2

h h
k g t y t k= + +

3 2( , ( ) ),
2 2

h h
k g t y t k= + +  and 4 3( , ( ) )k g t h y t hk= + + . The 

initial conditions are the same as those used for parameter 

fitting. We considered the effect of { }max 0.1, 0.2, 0.3u =  on 

the state trajectories. 

6. Results 

Table 1. Summary of estimated Parameter values. 

Parameters Value Reference 

1α  0.70746202 Data fitting 

2α  0.18764358 Data fitting 

3α  0.31817251 Data fitting 

4α  0.002942 Data fitting 

5α  0.00000049243 Data fitting 

6α  0.0001 Data fitting 

7α  0.0001 Data fitting 

Using the estimated parameters, initial state values, 

{ }0 max0, 365,  0.1, 0.2, 0.3t T u= = = , and population total N 

= 195,874,740 we got the following results. 

 

Figure 3. Optimal states at various level of the control. 

The number of infected people decreases as control level 

increases. I_0, I_1, I_2 and I_3 denotes number of infected 

persons at control levels of max 0, 0.1, 0.2u =  and 0.3 

respectively. Same notation goes for other state variables. The 

control, if adhered to will reduce the infectious rate as shown 

above. More control yields better result. 

 

Figure 4. Number of infected persons at different levels of control. 

Figure 4 highlights the decreasing trend of the infected 

individuals due to control levels. max 0.1UI = denotes infected 

individuals when max 0.1.u =  

 

Figure 5. Three control levels that maximized the objective function. 

01 02,U U and 03U  denote the control trajectories when 

max max0.1, 0.2u u= =  and max 0.3u =  respectively. 

 

Figure 6. Three objective function values at the given control levels. 
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01 02,J J  and 03J  denote the objective function 

trajectories when max max0.1, 0.2u u= =  and max 0.3u =  

respectively. Fitting a polynomial to the obtained control 

values when max 0.1u = , with R-squared=0.999459, gives 

2 3

7 4 10 5

12 6 16 7

( ) 0.1; 0, 0 223

( ) 27.3378 0.00621019 0.0000678564

3.32837 10 8.68489 10

1.17721 10 6.54737 10 ;

0, 223 365.

− −

− −

= > ≤ ≤

= − +

− × + ×

− × + ×
= < ≤

u

u

u t H t and

u t t t

t t

t t

H t

 

7. Conclusion 

This paper provides a study on numerical methods to 

explain how modeling and optimal control of COVID-19 

dynamics could be very informative to researchers and 

Government’s health policy makers. The SEIR results are 

close to what is obtained in real life cases. The SEIR results 

have shown that an increase in control measure against the 

disease will produce a decrease in the number of infected 

individuals and ultimately a reduction in the number of deaths 

induced by Covid-19 infection and it equally follows that 

administration covid-19 is more effective in combating the 

Covid-19 epidemic in Nigeria. The overall result shows the 

effectiveness of optimal control theory in medicine. We 

believe that this paper will be very useful to National Centre of 

Disease Control (NCDC) and other health policy makers. 
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