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Abstract: In this paper, the authors prove some existence results of solutions for a new class of generalized quasi-variational 

inequalities (GQVI) for pseudo-monotone type III operators and strongly pseudo-monotone type III operators defined on non-

compact sets in locally convex Hausdorff topological vector spaces. In obtaining these results on GQVI for pseudo-monotone 

type III operators, we shall use Chowdhury and Tan’s generalized version [1] of Ky Fan’s minimax inequality [2] as the main 

tool. 
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1. Introduction 

Let � be a non-empty set, and 2� be the family of all non-

empty subsets of �. Let � be a topological vector space. We 

shall denote by �∗  the continuous dual of � , by 〈�, 	〉 the 

pairing between �∗  and �  for � ∈ �∗  and 	 ∈ �  and by �
〈�, 	〉 the real part of 〈�, 	〉. Given the maps �: � → 2� 

and �:� → 2�∗ , the generalized quasi-variational inequality 

problem (GQVI) is to find a point �� ∈ �(��)  and a point �� ∈ �(��) such that �
〈��, �� − 	〉 ≤ 0 for all 	 ∈ �(��). The 

GQVI was introduced by Chan and Pang [3] in 1982 when � 

is finite dimensional and by Shih and Tan [4] in 1985 when � 

is infinite dimensional. 

In [5] we established some existence theorems of 

generalized variational inequalities and generalized 

complementarity problems in topological vector spaces for 

pseudo-monotone type III operators defined as follows: 

Definition 1.1. Let �  be a topological vector space, �  a 

non-empty subset of �  and �: � → 2�∗ a map. If ℎ: � → ℝ , 

then � is said to be an ℎ-pseudo-monotone (respectively, a 

strongly ℎ -pseudo-monotone) type III operator if for each 

	, � ∈ �  and every net �����∈  in �  converging to � 

(respectively, weakly to �) with 

lim sup�∈ [inf*∈+(,-) �
〈., �� − 	〉 + ℎ(��) − ℎ(	)] ≤ 0, 

we have 

lim sup�∈ [ inf*∈+(,-)�
〈., �� − �〉 + ℎ(��) − ℎ(�)]
≥ inf2∈+(,)�
〈�, � − 	〉 + ℎ(�) − ℎ(	). 

� is said to be a pseudo-monotone (respectively, a strongly 

pseudo-monotone) type III operator if T is an h-pseudo-

monotone type III (respectively, a strongly h-pseudo-

monotone type III) operator with ℎ ≡ 0. 
The above operators were originally named ℎ -hemi-

continuous (respectively, strong ℎ -hemi-continuous) 

operators in [5]. Later, in [6], we re-named these operators 

pseudo-monotone type III operators. 

The following result in [5] justified the validity of a set-

valued pseudo-monotone (respectively, strongly pseudo-

monotone) type III operator. 
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Proposition 1.1. Let � be a non-empty compact subset of a 

topological vector space �  and �: � → 2�∗  an upper semi-

continuous mapping from the relative weak topology on � to 

the strong topology on �∗, such that each �(	) is a strongly 

compact subset of �∗. Then � is both a pseudo-monotone and 

a strongly pseudo-monotone type III operator. 

If � is single-valued and continuous, the compactness of � 

is not required and the following result was obtained in [5]: 

Proposition 1.2. Let � be a non-empty bounded subset of a 

topological vector space �  and �: � → �∗  a continuous 

mapping from the relative weak topology on � to the strong 

topology on �∗ . Then �  is both a pseudo-monotone and a 

strongly pseudo-monotone type III operator. 

In this paper, we shall first obtain some general theorems 

on solutions for a new class of generalized quasi-variational 

inequalities for pseudo-monotone type III operators and 

strongly pseudo-monotone type III operators defined on non-

compact sets in topological vector spaces. In obtaining these 

results, we shall mainly use the following generalized version 

of Ky Fan’s minimax inequality [2] due to M.S.R. 

Chowdhury and K.-K Tan [1]. 

Theorem 1.3. Let � be a topological vector space, � be a 

non-empty convex subset of � , ℎ: � → ℝ  be lower semi-

continuous on 56(7)  for each 7 ∈ ℱ(�) , and 9: � × � →ℝ ∪ �−∞,+∞� be such that 

(a) for each 7 ∈ ℱ(�)  and each fixed 	 ∈ 56(7) , � ↦9(	, �) is lower semi-continuous on 56(7); 
(b) for each 7 ∈ ℱ(�) and each � ∈ 56(7), min>∈? [9(	, �) +ℎ(�) − ℎ(	)] ≤ 0; 

(c) for each 7 ∈ ℱ(�)  and each 	, � ∈ 56(7) , every net �����∈  in �  converging to �  with 9(@	 +(1 − @)�, ��) + ℎ(��) − ℎ(@	 + (1 − @)�) ≤ 0  for all B ∈ Γ  and all @ ∈ [0,1] , we have 9(	, �) + ℎ(�) −ℎ(	) ≤ 0; 

(d) there exist a non-empty closed and compact subset D of �  and 	E ∈ D  such that 9(	E, �) + ℎ(�) − ℎ(	E) > 0 

for all � ∈ �\D. 

Then there exists �� ∈ D  such that 9(	, ��) + ℎ(��) −ℎ(	) ≤ 0 for all 	 ∈ �. 

2. Preliminaries 

Let � be a topological vector space over Φ. Then, for each 	E ∈ � , each non-empty subset 7  of �  and each I > 0, let J(	E; I) ∶= �� ∈ �∗: |〈�, 	E〉| < I�  and P(7; I)∶= �� ∈ �∗: sup>∈?|〈�, 	〉| < I�. 
Let Q〈�∗, �〉 be the topology on �∗ generated by the family �J(	; I): 	 ∈ �	and	I > 0�  as a subbase for the 

neighborhood system at 0 and U〈�∗, �〉 be the topology on �∗ 
generated by the family �P(7; I): 7 is a non-empty bounded 

subset of � and I > 0� as a base for the neighborhood system 

at 0. We note that �∗ , when equipped with the topology Q〈�∗, �〉 or the topology U〈�∗, �〉, becomes a locally convex 

Hausdorff topological vector space. Furthermore, for a net �����∈  in �∗  and for � ∈ �∗ , (i) �� → �  in Q〈�∗, �〉 if and 

only if 〈�� , 	〉 → 〈�, 	〉  for each 	 ∈ �  and (ii) �� → �  in U〈�∗, �〉 if and only if 〈�� , 	〉 → 〈�, 	〉 uniformly for 	 ∈ 7 

for each non-empty bounded subset 7  of � . The topology 

Q〈�∗, �〉  (respectively, U〈�∗, �〉 ) is called the weak*-

topology (respectively, the strong topology) on �∗. 
If �  is a topological space and �P�: B ∈ V�  is an open 

cover for �, then a partition of unity subordinated to the open 

cover �P�: B ∈ V�  is a family �W�: B ∈ V�  of continuous 

real-valued functions W�: � → [0,1] such that 

(a) W�(�) = 0 for all � ∈ �\P�, 

(b) �support W�: B ∈ V� is locally finite and 

(c) ∑ W�(�) = 1�∈V  for each � ∈ �. 

We shall first state the following result which is Lemma 1 

of Shih and Tan in [4, pp.334-335]: 

Lemma 2.1. Let � be a non-empty subset of a Hausdorff 

topological vector space � and �: � → 2� be an upper semi-

continuous map such that �(	) is a bounded subset of � for 

each 	 ∈ �. Then for each continuous linear functional Y on �, the map 9Z: � → ℝ defined by 9Z(�) = sup>∈[(,) �
〈Y, 	〉 
is upper semi-continuous; i.e. for each \ ∈ ℝ , the set ]� ∈ �: 9Z(�) = sup>∈[(,) �
〈Y, 	〉 < \^ is open in �. 

The following result is Lemma 3 of Takahashi in [7, p.177] 

(see also Lemma 3 in [8, pp.68-85]): 

Lemma 2.2. Let � and _ be topological spaces, 9: � → ℝ 

be non-negative and continuous and `: _ → ℝ  be lower 

semi-continuous. Then the map a:� × _ → ℝ , defined by a(	, �) = 9(	)`(�)  for all (	, �) ∈ � × _ , is lower semi-

continuous. 

We shall need the following Kneser’s minimax theorem in 

[9, pp.2418-2420] (see also [10, pp.40-41]): 

Theorem 2.3. Let �  be a non-empty convex subset of a 

vector space and _ be a non-empty compact convex subset of 

a Hausdorff topological vector space. Suppose that 9  is a 

real-valued function on � × _ such that for each fixed 	 ∈ �, 

the map � ↦ 9(	, �), i.e. 9(	,∙) , is lower semi-continuous 

and convex on _  and for each fixed � ∈ _ , the map 	 ↦9(	, �), i.e. 9(∙, �) is concave on �. Then 

min,∈c sup>∈� 9(	, �) = sup>∈�min,∈c 9(	, �). 
The following result is Lemma 3 in [1]: 

Lemma 2.4. Let � be a Hausdorff topological vector space, 7 ∈ ℱ(�) , � = 56(7) , and �: � → 2�∗  be upper semi-

continuous from �  to the weak*-topology on �∗  such that �(	)  is weak*-compact. Let 9: � × � → ℝ  be defined by 9(	, �) = inf2∈+(,) �
〈�, � − 	〉  for all 	, � ∈ � . Then for 

each fixed 	 ∈ �, � ↦ 9(	, �) is lower semi-continuous on �. 

3. Generalized Quasi-Variational 

Inequalities of Pseudo-Monotone Type 

III and Strongly Pseudo-Monotone 

Type III Operators 

In this section, we shall obtain some general existence 

theorems for the solutions to the generalized quasi-

variational inequalities for pseudo-monotone type III 

operators and strongly pseudo-monotone type III operators 

on non-compact sets. 

We shall first establish the following result: 

Theorem 3.1. Let �  be a locally convex Hausdorff 
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topological vector space, �  be a non-empty paracompact 

convex and bounded subset of �  and ℎ: � → ℝ  be convex 

with ℎ(�) bounded. Let �: � → 2� be upper semi-continuous 

such that each �(	) is compact convex and �: � → 2�∗ be an ℎ-pseudo-monotone type III (respectively, strongly h-pseudo-

monotone type III) operator and be upper semi-continuous 

from 56(7) to the weak*-topology on �∗ for each 7 ∈ ℱ(�) 
and �(�) is strongly bounded. Also, for each 	 ∈ �, �(	) is 

weak*-compact convex. Suppose that the set 

Σ = �� ∈ �: sup>∈[(,)[ inf2∈+(,)�
〈�, � − 	〉 + ℎ(�) − ℎ(	)] > 0� 
is open in � and the following conditions are satisfied: 

(a) for each 7 ∈ ℱ(�) and each 	, � ∈ 56(7) and any net �����∈  in �  converging to � , we have lim	 sup�[inf*∈+(,-) �
〈., �� − 	〉 + ℎ(��) − ℎ(	)] ≤0  whenever lim	 sup�[inf*∈+(,-) �
〈., �� − �〉 +ℎ(��) − ℎ(�)] ≤ 0, and 

(b) lim	 sup�[inf2∈+(,-) �
〈�, �� − 	〉 + ℎ(��) −ℎ(	)] ≥ inf2∈+(,) �
〈�, � − 	〉 + ℎ(�) − ℎ(	)  

whenever lim	 sup�[inf2∈+(,-) �
〈�, �� − �〉 +ℎ(��) − ℎ(�)] ≥ inf2∈+(,) �
〈�, � − 	〉 + ℎ(�) −ℎ(	). 
Suppose further that there exists a non-empty compact 

subset D  of �  and a point 	E ∈ �  such that 	E ∈ D ∩ �(�) 
and inf2∈+(,) �
〈�, � − 	E〉 + ℎ(�) − ℎ(	E) > 0  for all � ∈ �\D. Then there exists a point �� ∈ D such that 

(i) �� ∈ �(��) and 

(ii) there exists a point �� ∈ �(��)  with �
〈��, �� − 	〉 ≤ℎ(	) − ℎ(��) for all 	 ∈ �(��). 
Proof. We shall complete the proof in three steps as 

follows: 

Step 1. There exists a point �� ∈ � such that �� ∈ �(��) and 

sup>∈[(,�)[inf2∈+(,�) �
〈�, �� − 	〉 + ℎ(��) − ℎ(	)] ≤ 0. 

Suppose the contrary. Then for each � ∈ � , either � ∉�(�) or there exists 	 ∈ �(�) such that inf2∈+(,) �
〈�, � −	〉 + ℎ(�) − ℎ(	) > 0 ; that is, for each � ∈ � , either � ∉ �(�) or � ∈ Σ. If � ∉ �(�), then by a separation theorem 

for convex sets in locally convex Hausdorff topological 

vector spaces, there exists Y ∈ �∗  such that �
〈Y, �〉 −sup>∈[(,) �
〈Y, 	〉 > 0. For each � ∈ �, set 

g(�) ∶= sup>∈[(,)[inf2∈+(,) �
〈�, � − 	〉 + ℎ(�) − ℎ(	)]. 
Let hE ∶= �� ∈ �|g(�) > 0� = Σ and for each Y ∈ �∗, set 

hZ ∶= �� ∈ �: �
〈Y, �〉 − sup>∈[(,) �
〈Y, 	〉 > 0. 

Then � = hE ∪ ⋃ hZZ∈�∗ . Since each hZ  is open in �  by 

Lemma 2.1 and hE  is open in �  by hypothesis, {hE, hZ: Y ∈�∗� is an open covering for �. Since � is paracompact, there 

is a continuous partition of unity { WE, WZ: Y ∈ �∗�  for � 

subordinated to the open cover {hE, hZ: Y ∈ �∗�  (see, for 

example, Theorem VIII.4.2 of Dugundji in [11]), i.e. for each Y ∈ �∗ , WZ: � → [0,1]  and WE: � → [0,1]  are continuous 

functions such that for each Y ∈ �∗ , WZ(�) = 0  for all 

� ∈ �\hZ  and WE(�) = 0  for all � ∈ �\hE  and �support	WE, support	WZ:	Y ∈ �∗�  is locally finite and WE(�) + ∑ WZ(�) = 1Z∈�∗  for each � ∈ �. Note that for each 7 ∈ ℱ(�), ℎ is continuous on 56(7) (see e.g. [12, Corollary 

10.1.1, p.83]). Define m: � × � → ℝ by 

m(	, �) = WE(�) n min2∈+(,)�
〈�, � − 	〉 + ℎ(�) − ℎ(	)o
+p WZ(�)�
〈Y, � − 	〉Z∈�∗  

for each 	, � ∈ �. Then we have the following: 

(i) Since � is Hausdorff, for each 7 ∈ ℱ(�) and each fixed 	 ∈ 56(7), the map 

� ↦ min2∈+(,)�
〈�, � − 	〉 + ℎ(�) − ℎ(	) 
is continuous on 56(7) by Lemma 2.3 and the fact that ℎ is 

continuous on 56(7) and therefore the map 

� ↦ WE(�)qmin2∈+(,) �
〈�, � − 	〉 + ℎ(�) − ℎ(	)r  
is lower semi-continuous on 56(7) by Lemma 2.2. Also, for 

each fixed 	 ∈ �, 

� ↦ ∑ WZ(�)�
〈Y, � − 	〉Z∈�∗   

is continuous on �. Hence, for each 7 ∈ ℱ(�) and each fixed 	 ∈ 56(7) , the map � ↦ m(	, �)  is lower semi-continuous 

on 56(7). 
(ii) For each 7 ∈ ℱ(�)  and for each � ∈ 56(7) , min>∈? m(	, �) ≤ 0. If this were false, then there exists 

some 7 = �	s, … , 	u� ∈ ℱ(�) and some � ∈ 56(7), say � = ∑ \v	vuvws  with ∑ \vuvws = 1 , such that minsxvxu m(	v , �) > 0. Then for each y = 1,… , z, 

WE(�)qmin2∈+(,) �
〈�, � − 	v〉 + ℎ(�) − ℎ(	v)r +∑ WZ(�)�
〈Y, � − 	v〉Z∈�∗ > 0, 

so that 

0 = m(�, �) 	= WE(�) { min2∈+(,)�
 〈�, � −p\v	v
u

vws
〉 + ℎ(�)

− ℎ |p\v	v
u

vws
}~

+p WZ(�)�
 〈Y, � −p\v	v
u

vws
〉Z∈�∗

≥p\v �WE(�) n min2∈+(,)�
〈�, � − 	v〉
u

vws+ ℎ(�) − ℎ(	v)�
+p WZ(�)�
〈Y, � − 	v〉Z∈�∗ � > 0, 
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which is a contradiction. 

(iii) Suppose that A ∈ ℱ(X) , and �y���∈  is a net in X 

converging to y  with ϕ(tx + (1 − t)y, y�) ≤ 0  for all α ∈ Γ and all t ∈ [0,1]. 
Case 1: WE(�) = 0. 

Since WE  is continuous and �� → � , we have WE(��) →WE(�) = 0 . Note that WE(��) ≥ 0  for each B ∈ Γ  and WE(��) → 0. Since �(�) is strongly bounded and �����∈  is a 

bounded set, it follows that 

lim	 sup� �WE(��)qmin2∈+(,-) �
〈�, �� − 	〉 + ℎ(��) −
ℎ(	)]� = 0.                         (2.1) 

Also, we have 

WE(�)qmin2∈+(,) �
〈�, � − 	〉 + ℎ(�) − ℎ(	)r = 0. 

Thus it follows that 

lim sup� �WE(��)qmin2∈+(,-) �
〈�, �� − 	〉 + ℎ(��) −
ℎ(	)]� + ∑ WZ(�)�
〈Y, � − 	〉Z∈�∗ =

WE(�)qmin2∈+(,) �
〈�, � − 	〉 + ℎ(�) − ℎ(	)r +∑ WZ(�)�
〈Y, � − 	〉Z∈�∗ .                (2.2) 

When @ = 1, we have m(	, ��) ≤ 0 for all B ∈ Γ, i.e. 

WE(��)qmin2∈+(,-) �
〈�, �� − 	〉 + ℎ(��) − ℎ(	)r +∑ WZ(��)�
〈Y, �� − 	〉Z∈�∗ ≤ 0           (2.3) 

for all B ∈ Γ. Therefore, by (2.3), we have 

lim sup� �WE(��) n min2∈+(,-)�
〈�, �� − 	〉 + ℎ(��) − ℎ(	)o�
+ lim inf� �p WZ(��)�
〈Y, �� − 	〉Z∈�∗ �
≤ lim sup� �WE(��) n min2∈+(,-)�
〈�, �� − 	〉
+ ℎ(��) − ℎ(	)��
+p WZ(��)�
〈Y, �� − 	〉Z∈�∗ ≤ 0 

and so 

lim	 sup� �WE(��)qmin2∈+(,-) �
〈�, �� − 	〉 + ℎ(��) −
ℎ(	)]� + ∑ WZ(�)�
〈Y, � − 	〉Z∈�∗ ≤ 0.      (2.4) 

Hence, by (2.2) and (2.4), we have m(	, �) ≤ 0. 

Case 2. WE(�) > 0. 

Since WE(��) → WE(�) , there exists \ ∈ Γ  such that WE(��) > 0 for all B ≥ \. 

When @ = 0, we have m(�, ��) ≤ 0 for all B ∈ Γ, i.e. 

WE(��)qmin2∈+(,-) �
〈�, �� − �〉 + ℎ(��) − ℎ(�)r +

∑ WZ(��)�
〈Y, �� − �〉Z∈�∗ ≤ 0  

for all B ∈ Γ. 

Thus 

lim	 sup�qWE(��)qmin2∈+(,-) �
〈�, �� − �〉 + ℎ(��) −ℎ(�)] + ∑ WZ(��)�
〈Y, �� − �〉Z∈�∗ r ≤ 0.	     (2.5) 

Hence 

lim sup� �WE(��)qmin2∈+(,-) �
〈�, �� − �〉 + ℎ(��) −
ℎ(�)]� + lim inf�q∑ WZ(��)�
〈Y, �� − �〉Z∈�∗ r ≤

lim sup�qWE(��)qmin2∈+(,-) �
〈�, �� − �〉 + ℎ(��) −ℎ(�)] + ∑ WZ(��)�
〈Y, �� − �〉Z∈�∗ r ≤ 0	�by	(2.5)�.   
Since lim inf�q∑ WZ(��)�
〈Y, �� − �〉Z∈�∗ r = 0, we have 

lim sup� �WE(��)qmin2∈+(,-) �
〈�, �� − �〉 + ℎ(��) −
ℎ(�)]� ≤ 0.          (2.6) 

Since WE(��) > 0 for all B ≥ \, it follows that 

WE(�)lim sup�qmin2∈+(,-) �
〈�, �� − �〉 + ℎ(��) −ℎ(�)]= lim sup� �WE(��)qmin2∈+(,-) �
〈�, �� − �〉 +
ℎ(��) − ℎ(�)]�.    (2.7) 

Since WE(�) > 0, by (2.6) and (2.7) we have 

lim sup� n min2∈+(,-)�
〈�, �� − �〉 + ℎ(��) − ℎ(�)o ≤ 0. 
Then, by hypothesis (a), we have 

lim sup� n min2∈+(,-)�
〈�, �� − 	〉 + ℎ(��) − ℎ(	)o ≤ 0. 
Since � is a pseudo-monotone type III operator, we have 

lim sup�qmin2∈+(,-) �
〈�, �� − �〉 + ℎ(��) − ℎ(�)r ≥min2∈+(,) �
〈�, � − 	〉 + ℎ(�) − ℎ(	). 
Then, by hypothesis (b), we have 

lim sup�qmin2∈+(,-) �
〈�, �� − 	〉 + ℎ(��) − ℎ(	)r ≥min2∈+(,) �
〈�, � − 	〉 + ℎ(�) − ℎ(	). 
Since WE(�) > 0, we have 

WE(�)lim sup�qmin2∈+(,-) �
〈�, �� − 	〉 + ℎ(��) −ℎ(	)] ≥ WE(�)qmin2∈+(,) �
〈�, � − 	〉 + ℎ(�) − ℎ(	)r  (2.8) 

Thus, 
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WE(�)lim sup� n min2∈+(,-)�
〈�, �� − 	〉 + ℎ(��) − ℎ(	)o
+p WZ(�)�
〈Y, �Z∈�∗
− 	〉 ≥ WE(�) n min2∈+(,)�
〈�, � − 	〉 + ℎ(�)
− ℎ(	)� +p WZ(�)�
〈Y, � − 	〉Z∈�∗ . 

Again, when @ = 1, we have m(	, ��) ≤ 0 for all B ∈ Γ, i.e. 

WE(��) n min2∈+(,-)�
〈�, �� − 	〉 + ℎ(��) − ℎ(	)o
+p WZ(��)�
〈Y, �� − 	〉 ≤ 0Z∈�∗  

for all B ∈ Γ. 

Thus 

0 ≥ lim sup�qWE(��)qmin2∈+(,-) �
〈�, �� − 	〉 + ℎ(��) −ℎ(	)] + ∑ WZ(��)�
〈Y, �� − 	〉Z∈�∗ r ≥
lim sup� �WE(��)qmin2∈+(,-) �
〈�, �� − 	〉 + ℎ(��) −

ℎ(	)]� + lim inf� q∑ WZ(��)�
〈Y, �� − 	〉Z∈�∗ r =
WE(�)qlim sup�qmin2∈+(,-) �
〈�, �� − 	〉 + ℎ(��) −ℎ(	)]r + ∑ WZ(�)�
〈Y, � − 	〉Z∈�∗ ≥WE(�)qmin2∈+(,) �
〈�, � − 	〉 + ℎ(�) − ℎ(	)r +∑ WZ(�)�
〈Y, � − 	〉Z∈�∗ 	(by	(2.8)).          (2.9) 

Hence, we have m(	, �) ≤ 0. 

(iv) By hypothesis, there exists a non-empty compact (and 

therefore closed) subset K of X and a point xE ∈ X such 

that xE ∈ K ∩ S(y)  and inf�∈�(�) Re〈w, y − xE〉 +h(y) − h(xE) > 0 for all y ∈ X\K. 

Thus, for each � ∈ �\D , sup>∈[(,) inf2∈+(,)[�
〈�, � −	〉 + ℎ(�) − ℎ(	)] > 0 . Hence, � ∈ hE  and WE(�)qinf2∈+(,) �
〈�, � − 	E〉 + ℎ(�) − ℎ(	E)r > 0  for all � ∈ �\D ; also, �
〈Y, � − 	E〉 > 0  whenever WZ(�) > 0  for Y ∈ �∗. 
Consequently, 

m(	E, �) = WE(�)qinf2∈+(,) �
〈�, � − 	E〉 + ℎ(�) − ℎ(	E)r
+p WZ(�)�
〈Y, � − 	E〉Z∈�∗ > 0 

for all � ∈ �\D. 

Thus, the hypothesis of (d) of Theorem 1.3 is satisfied 

trivially. (If � is a strongly ℎ-quasi-pseudo-monotone type III 

operator, we equip �  with the weak topology.) Thus m 

satisfies all the hypotheses of Theorem 1.3. Hence, by 

Theorem 1.3, there exists a point �� ∈ D such that m(	, ��) ≤0 for all 	 ∈ �, i.e. 

WE(��)qmin2∈+(,�) �
〈�, �� − 	〉 + ℎ(��) − ℎ(	)r +∑ WZ(��)�
〈Y, �� − 	〉Z∈�∗ ≤ 0             (2.10) 

for all 	 ∈ �. 

If WE(��) > 0, then �� ∈ hE = Σ, so that g(��) > 0. Choose 	� ∈ �(��) ⊂ � such that 

inf2∈+(,�) �
〈�, �� − 	�〉 + ℎ(��) − ℎ(	�) ≥ �(,�)
� > 0. 

Then it follows that 

WE(��)qinf2∈+(,�) �
〈�, �� − 	�〉 + ℎ(��) − ℎ(	�)r > 0. 

If WZ(��) > 0 for some Y ∈ �∗, then �� ∈ hZ and hence 

�
〈Y, ��〉 > sup>∈[(,�)�
〈Y, 	〉 ≥ �
〈Y, 	�〉 
and so �
〈Y, �� − 	�〉 > 0. Then we see that WZ(��)�
〈Y, �� −	�〉 > 0 whenever WZ(��) > 0 for Y ∈ �∗ . Since WE(��) > 0 or WZ(��) > 0 for some Y ∈ �∗, it follows that 

m(	,� ��) = WE(��)qinf2∈+(,�) �
〈�, �� − 	�〉 + ℎ(��) − ℎ(	�)r +∑ WZ(��)�
〈Y, �� − 	�〉Z∈�∗ > 0, 

which contradicts (2.10). This contradiction proves Step 1. 

Hence we have shown that there exists a point �� ∈ � such 

that �� ∈ �(��) and 

sup>∈[(,�)[inf2∈+(,�) �
〈�, �� − 	〉 + ℎ(��) − ℎ(	)] ≤ 0. 

Step 2. We need to show that there exists a point �� ∈ �(��) 
such that �
〈��, �� − 	〉 + ℎ(��) − ℎ(	) ≤ 0 for all 	 ∈ �(��). 

From Step 1, we have 

sup>∈[(,�)[inf2∈+(,�) �
〈�, �� − 	〉 + ℎ(��) − ℎ(	)] ≤ 0, (2.11) 

where �(��)  is a weak*-compact convex subset of the 

Hausdorff topological vector space �∗ and �(��) is a convex 

subset of �. 

Now, we define 9: �(��) × �(��) → ℝ  by 9(	. �) =�
〈�, �� − 	〉 + ℎ(��) − ℎ(	)  for each 	 ∈ �(��)  and � ∈�(��) . Then, for each fixed 	 ∈ �(��) , the mapping � ↦9(	, �)  is convex and continuous on �(��)  and, for each 

fixed � ∈ �(��) , the mapping 	 ↦ 9(	, �)  is concave on �(��) . So, we can apply Kneser’s Minimax Theorem 

(Theorem 2.3) and obtain the following: 

min2∈+(,�) sup>∈[(,�)[�
〈�, �� − 	〉 + ℎ(��) − ℎ(	)] =
sup>∈[(,�) � min2∈+(,�)[�
〈�, �� − 	〉 + ℎ(��) − ℎ(	)]�. 

Hence, by (2.11), we obtain 

min2∈+(,�) sup>∈[(,�)[�
〈�, �� − 	〉 + ℎ(��) − ℎ(	)] ≤ 0. 

Since �(��) is compact, there exists �� ∈ �(��) such that 

�
〈��, �� − 	〉 + ℎ(��) − ℎ(	) ≤ 0 

for all 	 ∈ �(��). This completes the proof. ∎ 

   

When �  is compact, we obtain the following immediate 

consequence of Theorem 3.1: 
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Theorem 3.2. Let �  be a locally convex Hausdorff 

topological vector space, � be a non-empty compact convex 

subset of � and ℎ: � → ℝ be convex with ℎ(�) bounded. Let �: � → 2�  be upper semi-continuous such that each �(	) is 

closed convex and �: � → 2�∗  be an ℎ -pseudo-monotone 

type III (respectively, a strongly ℎ-pseudo-monotone type III) 

operator and be upper semi-continuous from 56(7)  to the 

weak*-topology on �∗  for each 7 ∈ ℱ(�)  and �(�)  is 

strongly bounded. Also, for each 	 ∈ � , �(	)  is weak*-

compact convex. Suppose that the set 

Σ = �� ∈ �: sup>∈[(,)[ inf2∈+(,)�
〈�, � − 	〉 + ℎ(�) − ℎ(	)] > 0� 
is open in � and the following conditions are satisfied: 

(a) For each 7 ∈ ℱ(�) , each 	, � ∈ 56(7) , and any net �����∈  in � converging to �, we have 

(b) lim	 sup� n inf*∈+(,-)�
〈., �� − 	〉 + ℎ(��) − ℎ(	)o ≤ 0 , 

whenever lim	 sup� n inf*∈+(,-)�
〈., �� − �〉 + ℎ(��) − ℎ(�)o ≤0,  

and 

(c) lim	 sup� n inf2∈+(,-)�
〈�, �� − 	〉 + ℎ(��) − ℎ(	)o ≥inf2∈+(,)�
〈�, � − 	〉 + ℎ(�) − ℎ(	) , whenever lim	 sup� n inf2∈+(,-)�
〈�, �� − �〉 + ℎ(��) − ℎ(�)o ≥inf2∈+(,)�
〈�, � − 	〉 + ℎ(�) − ℎ(	). 
Then there exists a point �� ∈ � such that 

(i) �� ∈ �(��) and 

(ii) there exists a point �� ∈ �(��)  with �
〈��, �� − 	〉 ≤ℎ(	) − ℎ(��) for all 	 ∈ �(��). 
Note that if the map �: � → 2� is, in addition, lower semi-

continuous and for each � ∈ Σ, � is upper semi-continuous at � in �, then the set Σ in Theorem 3.1 is always open in � and 

we obtain the following theorem: 

Theorem 3.3. Let �  be a locally convex Hausdorff 

topological vector space, �  be a non-empty paracompact 

convex and bounded subset of �  and ℎ: � → ℝ  be convex 

with ℎ(�) bounded. Let �: � → 2�  be continuous such that 

each �(	)  is compact convex, �: � → 2�∗  be an ℎ -pseudo-

monotone type III (respectively, strongly ℎ-pseudo-monotone 

type III) operator which is upper semi-continuous from 56(7) to the weak*-topology on �∗ for each 7 ∈ ℱ(�), with �(�) strongly bounded. Also, for each 	 ∈ �, �(	) is weak*-

compact convex. Suppose that for each � ∈ Σ = �� ∈�: sup>∈[(,)[inf2∈+(,) �
〈�, � − 	〉 + ℎ(�) − ℎ(	)] > 0�, � 

is upper semi-continuous at � from the relative topology on � 

to the strong topology on �∗ and the following conditions are 

satisfied: 

(a) For each 7 ∈ ℱ(�) , each 	, � ∈ 56(7) , and any net �����∈  in �  converging to � , we have 

lim	 sup� n inf*∈+(,-)�
〈., �� − 	〉 + ℎ(��) − ℎ(	)o ≤ 0 , 

whenever lim	 sup� n inf*∈+(,-)�
〈., �� − �〉 + ℎ(��) −
ℎ(�)� ≤ 0, and 

(b) lim	 sup� n inf2∈+(,-)�
〈�, �� − 	〉 + ℎ(��) − ℎ(	)o ≥
inf2∈+(,)�
〈�, � − 	〉 + ℎ(�) − ℎ(	) , whenever 

lim	 sup� n inf2∈+(,-)�
〈�, �� − �〉 + ℎ(��) − ℎ(�)o ≥
inf2∈+(,)�
〈�, � − 	〉 + ℎ(�) − ℎ(	). 

Suppose further that there exists a non-empty compact 

subset D  of �  and a point 	E ∈ �  such that 	E ∈ D ∩ �(�) 
and inf2∈+(,)�
〈�, � − 	E〉 + ℎ(�) − ℎ(	E) > 0  for all � ∈ �\D. 

Then there exists a point �� ∈ D such that 

(i) �� ∈ �(��) and 

(ii) there exists a point �� ∈ �(��)  with �
〈��, �� − 	〉 ≤ℎ(	) − ℎ(��) for all 	 ∈ �(��). 
The proof is similar to the proof of Theorem 3.1 in [13]. 

But for completeness, we shall include the detailed proof 

here. 

Proof. The proof will follow from Theorem 3.1 if we can 

show that the set 

Σ = �� ∈ �: sup>∈[(,)[ inf2∈+(,)�
〈�, � − 	〉 + ℎ(�) − ℎ(	)] > 0� 
is open in �. To show that Σ is open in �, we start as follows: 

Let �E ∈ Σ be an arbitrary point. We show that there exists 

an open neighborhood �E of �E in � such that �E ⊂ Σ. Now, 

by definition of Σ, there exists a point 	E in �(�E) with 

inf2∈+(,�)�
〈�, �E − 	E〉 + ℎ(�E) − ℎ(	E) > 0. 

Let 

B ∶= inf2∈+(,�)�
〈�, �E − 	E〉 + ℎ(�E) − ℎ(	E). 
Thus, B > 0. Again, let 

J ∶= ]� ∈ �∗: sup ¡, ¢∈�|〈�, £s − £�〉| < B/6^. 
Then J is a strongly open neighborhood of 0 in �∗ and so Ps ∶= �(�E) +J  is an open neighborhood of �(�E) in �∗ . 

Since � is upper semi-continuous at �E, there exists an open 

neighborhood �s  of �E  in �  such that �(�) ⊂ Ps  for all 

� ∈ �s . Since the mapping 	 ↦ inf2∈+(,�)�
〈�, 	E − 	〉 +
ℎ(	E) − ℎ(	)  is continuous at 	E , there exists an open 

neighborhood hs of 	E in � such that 

¦ inf2∈+(,�)�
〈�, 	E − 	〉 + ℎ(	E) − ℎ(	)¦ < B/6 

for all 	 ∈ hs. 

Since 	E ∈ hs ∩ �(�E) ≠ ∅  and �  is lower semi-

continuous at �E, there exists an open neighborhood �� of �E 

in �  such that �(�) ∩ hs ≠ ∅  for all � ∈ �� . Since the 

mapping � ↦ inf2∈+(,�)�
〈�, � − �E〉 + ℎ(�) − ℎ(�E)  is 

continuous at �E, there exists an open neighborhood �© of �E 

in � such that 

¦ inf2∈+(,�)�
〈�, � − �E〉 + ℎ(�) − ℎ(�E)¦ < B/6 

for all � ∈ �©. 

Let �E ∶= �s ∩ �� ∩ �©. Then �E is an open neighborhood 

of �E in � such that for each �s ∈ �E, we have the following: 
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(a) �(�s) ∩ hs ≠ ∅  as �s ∈ �� ; so, we can choose any 	s ∈ �(�s) ∩ hs. 

(b) ¦ inf2∈+(,�)�
〈�, �s − �E〉 + ℎ(�s) − ℎ(�E)¦ < B/6  as 

�s ∈ �©. 

(c) �(�s) ⊂ Ps = �(�E) +J as �s ∈ �s. 

(d) ¦ inf2∈+(,�)�
〈�, 	E − 	s〉 + ℎ(	E) − ℎ(	s)¦ < B/6  as 

	s ∈ hs. 

Hence, we can obtain the following by omitting the details: 

inf2∈+(,¡)�
〈�, �s − 	s〉 + ℎ(�s) − ℎ(	s) 
≥ inf2∈+(,�)ª« �
〈�, �s − 	s〉 + ℎ(�s) − ℎ(	s)  by (5) 
≥ inf2∈+(,�) �
〈�, �s − 	s〉 + ℎ(�s) − ℎ(	s)

+ inf2∈« �
〈�, �s − 	s〉 
≥ inf2∈+(,�) �
〈�, �s − �E〉 + ℎ(�s) − ℎ(�E) 
+ inf2∈+(,�) �
〈�, �E − 	E〉 + ℎ(�E) − ℎ(	E) 
+ inf2∈+(,�) �
〈�, 	E − 	s〉 + ℎ(	E) − ℎ(	s) 
+ inf2∈« �
〈�, �s − 	s〉 ≥ − B

6 + B − B
6 − B

6 = B
2 > 0. 

Consequently, we have 

sup
>∈[(,¡)

[ inf2∈+(,¡) �
〈�, �s − 	〉 + ℎ(�s) − ℎ(	)] > 0 

since 	s ∈ �(�s). Hence, �s ∈ Σ for all �s ∈ �E . Therefore, 

�E ∈ �E ⊂ Σ. But �E  was arbitrary. Consequently, Σ is open 

in �. Thus, all the hypotheses of Theorem 3.1 are satisfied. 

Hence, the conclusion follows from Theorem 3.1. This 

completes the proof. ∎ 

When � is compact, we obtain the following theorem: 

Theorem 3.4. Let �  be a locally convex Hausdorff 

topological vector space, � be a non-empty compact convex 

subset of � and ℎ: � → ℝ be convex with ℎ(�) bounded. Let 

�: � → 2�  be continuous such that each �(	)  is closed 

convex, �: � → 2�∗
 be an ℎ -pseudo-monotone type III 

(respectively, strongly ℎ-pseudo-monotone type III) operator 

which is upper semi-continuous from 56(7)  to the weak*-

topology on �∗  for each 7 ∈ ℱ(�) , with �(�)  strongly 

bounded. Also, for each 	 ∈ � , �(	)  is weak*-compact 

convex. Suppose that for each 

� ∈ Σ = {� ∈ �: sup>∈[(,)[inf2∈+(,) �
〈�, � − 	〉 + ℎ(�) −
ℎ(	)] > 0}, � is upper semi-continuous at � from the relative 

topology on � to the strong topology on �∗ and the following 

conditions are satisfied: 

(a) For each 7 ∈ ℱ(�) , each 	, � ∈ 56(7) , and any net 
{��}�∈  in �  converging to � , we have 

lim sup� n inf*∈+(,-)�
〈., �� − 	〉 + ℎ(��) − ℎ(	)o ≤ 0  

whenever lim sup� n inf*∈+(,-)�
〈., �� − �〉 + ℎ(��) −
ℎ(�)� ≤ 0, and 

(b) lim sup� n inf2∈+(,-)�
〈�, �� − 	〉 + ℎ(��) − ℎ(	)o ≥
inf2∈+(,)�
〈�, � − 	〉 + ℎ(�) − ℎ(	)  whenever 

lim sup� n inf2∈+(,-)�
〈�, �� − �〉 + ℎ(��) − ℎ(�)o ≥
inf2∈+(,)�
〈�, � − 	〉 + ℎ(�) − ℎ(	). 

Then there exists a point �� ∈ � such that 

(i) �� ∈ �( ��) and 

(ii) there exists a point �� ∈ �(��)  with �
〈��, �� − 	 〉 ≤
ℎ(	) − ℎ(��) for all 	 ∈ �(��). 

Remark 3.5. (1) Theorems 3.1, 3.2, 3.3 and 3.4 of this 

paper are further extensions of the results obtained in [4] on 

generalized quasi-variational inequalities of pseudo-

monotone type III and strongly pseudo-monotone type III 

operators. 

(2) In 1985, Shih and Tan ([4]) obtained results on 

generalized quasi-variational inequalities in locally convex 

topological vector spaces and their results were obtained on 

compact sets where the set-valued mappings were either 

lower semi-continuous or upper semi-continuous. Our 

present paper is another extension of the original work in [4] 

using pseudo-monotone type III and strongly pseudo-

monotone type III operators on non-compact sets. 
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