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Abstract: Fish bone by-products are considered as abundant and cheap sources of Hydroxyapatite (HAp). The preparation of 

HAp powders from fish bones not only contributes to improving the added value of by-products but also reduces undesirable 

impacts on the environment. In this study, nano-HAp was successfully obtained from Lates calcarifer fish bone originated 

from a seafood export company in Khanh Hoa province. After pretreatment of fish bones for removing organic matters, the 

bones were under alkaline hydrolysis at 200°C within different time intervals of 30 mins, 1 and 1.5 hours. Results of XRD and 

SEM analysis showed that the calcium formed was HAP and it possessed an average size of 50-64 nm. The values of the Ca/P 

molar ratio from 1.896 to 1.921 prove that the nano-HAp powders are B-type biological hydroxyapatites which have been 

confirmed by FTIR spectrum. In addition, the contents of heavy metals such as As, Pb, Hg, Cd are measured by emission 

spectrophotometer and detected within safety limits of regulatory requirements of Vietnam regulation and US Pharmacopeia 

for food and dietary supplement standard. These properties show that nano-HAp from Lates calcarifer fish bone are applicable 

and to be used as an input material in food and medicine field. 
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1. Introduction 

Calcium hydroxyapatite, also known as hydroxyapatite 

(HAp), is a natural calcium phosphate with high biological 

compatibility with cells and tissues [1]. The chemical formula 

of HAp is Ca10(PO4)6(OH)2, and it is the main ingredient in 

human and animal bones and teeth (up to 60-70% by weight in 

bones [2]; and 97% in teeth [3]). HAp has the Ca/P molar ratio 

similar to that in bones and teeth (Ca/P=1.67) [4, 5]. With the 

above valuable properties, HAp in the fine powder, super fine, 

porous, and film form has been studied to expand their 

applicability. HAp is currently being employed as a calcium 

supplement [6]; as surgical materials used in bone and tooth 

implants [4, 7, 8]; and as an absorbent material [9]; and in 

regeneration of cranial defects [10]. 

HAp can be obtained by two main ways: (1) synthesis 

from compounds containing calcium and phosphorus [6]; (2) 

extraction from natural sources including corals [11-13], 

cuttlefish bones [14-18], seashells from clams, oysters, snails 

[19-23], eggshell [24, 25], mammalian bone (e.g. bovine [26, 

27], camel and horse [28]), fish scales [29-32], and fish 

bones [33-36]. If HAp products are prepared by the synthetic 

method, the resulting HAp has many different shapes and 

sizes depending on the reaction conditions. A disadvantage of 

this method is that it requires purification steps to remove the 

by-products that may affect the product quality and do 

possible harm to users [37]. On the other hand, HAp 

extracted from natural sources has high purity and biological 

compatibility, so it can be substituted for artificial HAp. 

In recent years, millions of tons of fish are caught each 

year for human consumption, but only 50-60% of the total 

catch is used, and the rest is discarded [33]. Accompanying 

the increase in seafood products contributing to economic 
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development, the seafood processing industry generates a 

large number of by-products. If not handled carefully, these 

by-products will be a big challenge for the environment. 

However, these by-products are the raw materials to extract 

valuable compounds for human life. Therefore, the bones of 

many fish species have been used to separate HAp by 

different methods such as swordfish (Xiphia gladius) and 

tuna (Thunnus thynnus) [34], cod fish [35], Japanese sea 

bream [38], salmon [39], grouper [40], tilapia [41], skipjack 

tuna (Katsuwonus pelamis) [42]. 

Recently in Vietnam, there is an abundant source to extract 

HAp: seabass. Seabass is being raised by two main methods: 

farming in the mud areas or in cages at sea. These fishes are 

cultured along the coasts of Quang Ninh, Hai Phong, Thua 

Thien - Hue, Quang Nam, Da Nang, Binh Dinh, Khanh Hoa, 

Binh Thuan, Ba Ria - Vung Tau and Spratly archipelago 

(Source of Vietnam Fisheries Newspaper, 2018). The total 

production is estimated to reach 4382 tons of seabass culture 

by 2014. After the fillets are being exported to the US, 

Europe, Taiwan and South Korea (Source of Science and 

Technology Associations of Khanh Hoa province, 2014), the 

amount of fish bone by-products that is left is an abundant 

source for extracting HAp. It has been well-known that the 

extraction of HAp by the thermal calcination method is a 

traditional way [8]. Another method, the alkaline hydrolysis, 

is also a route to obtain nanostructured HAp and carbonated 

HAp without the milling process [43]. On the basis of these 

observations, in our paper, we have studied HAp isolation 

from seabass Lates calcarifer bone through the alkaline 

hydrolysis method within different time intervals of 30 mins, 

1 and 1.5 hours at 200°C. The present study is intended for 

the preparation of HAp directly from fish bone for various 

biomedical applications. 

2. Materials and Methods 

2.1. Fish Bone Treatment 

Lates calcarifer seabass bone after being filleted and head 

cut off were purchased at T and H Company Limited (Vinh 

Phuong ward, Nha Trang City, Khanh Hoa Province, Vietnam) 

in January 2021. The fish bones were then kept on ice, and 

transported to the laboratory of the institute of oceanography. 

Next, the seabass bones are boiled for 1 hour to remove the 

remaining soft tissue and washed with tap water to remove 

the remaining muscle, and this process is repeated several 

times until obtaining white bones. The bones were then dried 

at room temperature to constant mass. 

The washed bones were then boiled with 1.0% NaOH and 

acetone (the bone: solution=1:50) to remove protein, lipids, 

oils and organic impurities that still adhered. After being 

washed continuously with water until the pH was neutral, the 

bones were ground in a mortar pestle and then dried at 60°C 

for 24h to obtain powder for the next experiment. 

2.2. Alkaline Hydrolysis of Fish Bone 

The bone powder was treated under alkaline hydrolysis 

following the protocol that was developed by Venkatesan et 

al. (2015) with some modifications [39]. Briefly, the bone 

powder was heated in 2M NaOH (the bone powder: 

solution=1: 30) for 30 minutes, 1 and 1.5 hours at 200°C. 

This mixture was then filtered by a pump and rinsed 

continuously with water until the pH was neutral. The 

resulting product was dried in an oven at 60°C until constant 

mass. 

2.3. Characterisation Techniques 

The stretching frequencies of the resulting samples were 

examined by Fourier transform infrared spectroscopy (FTIR) 

(Bruker Equinox 55). The phase and crystallinity were 

evaluated using an x-ray diffractometer (D2 Pharser-Brucker). 

The resultant XRD spectra were compared with the literature 

profile from the International Centre for Diffraction Data 

(ICDD 00-009-0432) to identify the hydroxyapatite 

compound. 

The particle size and morphology of the hydroxyapatite 

compound were observed by a scanning electron microscope 

(Hitachi S-4800). The average crystal size is calculated using 

ImageJ software 1.48V with the scale bar in the image, and 

this value is expressed as the mean ± SE. 

The heavy metals such as Pb, Hg, Cd, As and the calcium 

and phosphor were measured by emission spectrophotometer 

(Agilent 7700x-LC-MS). 

3. Results and Discussion 

3.1. General Description of Nano-HAp Powder 

 

Figure 1. a) Lates calcarifer seabass bone; b) white bones after removing 

all organic matters; c) Raw fish bone powder and calcium powder samples 

obtained by alkaline hydrolysis at 200°C for different times (0.5; 1; 1.5 

hours). 
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Figure 1 depicts the outward appearance of the original 

Lates calcarifer seabass bone by-products (a); white bone 

after tissue removal (b) and calcium hydroxyapatite powder 

after heating at 200°C in different times (c). Figure 1c shows 

that the powder material before alkaline hydrolysis is fine, 

yellowish in colour; while calcium hydroxyapatite powder 

formed at 200°C in different time periods is more yellow in 

colour, smooth, odourless and tasteless. 

3.2. Stretching Frequency of HAp 

 

Figure 2. Infrared spectrum of hydroxyapatite formed under alkaline hydrolysis method at 200°C in different time periods. 

(Black: C0,5-200 is sample obtained at 200°C for 0.5 hour; Red: C1-200 is sample obtained at 200°C for 1 hour; Blue: C1,5-200 is sample obtained at 200°C 

for 1.5 hours). 

Table 1. Stretching frequency of samples formed at 200°C in different time periods. 

Samples 
0.5 hour 1 hour 1.5 hours 

Wavenumber (cm-1) 

PO3
4- 

v3 1091, 1049 1089, 1051 1091, 1051 

v1 961 962 962 

v4 633, 602, 571 632, 601, 571 633, 603, 570 

v2 473 471 471 

OH 3431, 3571 3434, 3570 3431, 3571 

CO3
2- 

1418 → 1461 1413 → 1462 1414 → 1457 

875 878 875 

2009 2010 2004 

C-H 2975 2977 2977 

 

IR spectra of samples formed under alkaline hydrolysis at 

200°C in different time periods (0.5, 1 and 1.5 hours) are 

shown in Figure 2 and Table 1. All of these spectra are 

expressing the similarity of absorption peaks at different 

functional groups of HAp Ca10(PO4)6(OH)2 including PO3
4-

 

and OH. This result is identical to previous studies on 

swordfish bones (Xiphia gladius), tuna (Thunnus thynnus) 

[34] and on salmon bones [39]. 

Specifically, the IR spectrum of sample at 200°C in 0.5 

hour (similar to that of samples at 200°C for 1 and 1.5 hours) 

shows the absorption peaks characteristic of PO3
4-

 group 

including three main regions. The first region is represented 

by the peaks of 1091, 1049 cm
−1

 corresponding to v3 

stretching mode and 961 cm
−1

 associated to v1 stretching 

mode. The second zone of phosphate ions exhibits the well-

defined peaks at 633, 602 and 571 cm
−1

 corresponding to v4 

bending mode. The third region is observed a weak 

absorption peak at 473 cm
-1

 corresponding to v2 bending 

mode. Hydroxyl stretching mode is observed on all sample 

spectra at 3571 and 3431 cm
−1

 with a very low intensity peak. 

In addition to the absorption peaks of the functional groups 

present in the structure of HAp, three vibrational bands of 

carbonate ions are observed: a) peak at 875 cm
−1

; b) peaks 

from 1418 to 1461 cm
−1

 cm and c) peak at 2009 cm
−1

. The 

absorption of CO2 in the atmosphere during the experiment is 

responsible for the formation of carbonate ions [44]. Finally, 

the presence of organic material (C-H) is detected as a very 

low intensity peaks at 2975 cm
−1

. 
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3.3. XRD Analysis 

Figures 3 to 5 show a schematic diagram of the X-ray 

diffraction of samples. Figures 3, 4, 5 (a) present the results 

of each spectrum of samples at 200° C for 3 different time 

periods of 0.5, 1, and 1.5 hours and figures 3, 4, 5 (b) insert 

XRD spectrum of samples with standard diagram of synthetic 

hydroxyapatite HAp Ca10(PO4)6(OH)2 (ICDD 00-009-0432). 

Accordingly, when comparing the schematic of samples with 

the standard pattern of HAp, these calcium samples consisted 

of HAp phase only with peaks that completely coincided 

with the standard and in previous studies [34, 45, 46]. 

However, regarding crystallinity degree of nano-HAp, these 

peaks were broad and not sharp, indicating that the 

nanoparticles were formed in small sizes. 

 

Figure 3. XRD schematic diagram of calcium sample at 200°C in 0.5 hour; b) Comparison of XRD schematic diagram of calcium sample at 200°C in 0.5 hour 

with that of HAp standard Ca10(PO4)6(OH)2. 

 

Figure 4. XRD schematic diagram of calcium sample at 200°C in 1 hour; b) Comparison of XRD schematic diagram of calcium sample at 200°C in 1 hour 

with that of HAp standard Ca10(PO4)6(OH)2. 

 

Figure 5. XRD schematic diagram of calcium sample at 200°C in 1.5 hour; b) Comparison of XRD schematic diagram of calcium sample at 200°C in 1.5 hour 

with that of HAp standard Ca10(PO4)6(OH)2. 
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3.4. SEM Analysis 

Figures 6, 7, 8 show the SEM images of nano-HAp 

powder obtained after alkaline hydrolysis at 200°C in 0.5; 1; 

1.5 hours. These SEM images at different positions and 

different magnifications showed that the calcium crystals are 

mainly flattened, messy-structured particles, which tend to 

stick together. 

Table 2. Average size in length and with (nm) of nano-HAp powder after alkaline hydrolysis at 200°C in 0.5; 1; 1.5 hours 

 Average size in length (nm) Average size in width (nm) 

C0,5-200 51.63±14.83 13.69±4.49 

C1-200 45.73±12.54 14.05±2.93 

C1,5-200 53.24±17.09 12.59±3.39 

 

Previous studies have shown that the alkaline hydrolysis 

resulted in HAp with less crystallinity producing small size 

particles [47]. In this study, image J software showed that the 

particles have an average size from 45 to 53 nm in length and 

12 to 14 nm in width (Table 2), and it has been observed that 

the alkaline hydrolysis time did not affect the average size of 

HAp. The reason is that the assemblage of nanoparticles did 

not occur during alkaline hydrolysis time. Therefore, the 

alkaline hydrolysis method is the best approach for producing 

nanostructured HAp. 

 

Figure 6. Scanning electron microscope image of HAp at 200°C in 0.5 hour at different magnifications: a) 7.9mm x30.0k; b) 7.9mm x40.0k; c) 7.9mm x80.0k; 

d) 7.9mm x120k. 

 

Figure 7. Scanning electron microscope image of HAp at 200°C in 1 hour at different magnifications: a) 7.9mm x30.0k; b) 7.9mm x40.0k; c) 7.9mm x60.0k; d) 

7.9mm x100k. 
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Figure 8. Scanning electron microscope image of HAp at 200°C in 1.5 hours at different magnifications: a) 7.9mm x30.0k; b) 7.9mm x40.0k; c) 7.9mm x80.0k; 

d) 7.9mm x100k. 

3.5. Elemental Composition 

Table 3. Elemental composition and the Ca/P molar ratios of resulted samples. 

Samples 
Elemental composition Ca/P 

molar ratios As (mg/kg) Pb (mg/kg) Hg (mg/kg) Cd (mg/kg) Ca (%) P (%) 

C0,5-200 0.110 0.160 ND ND 34.5 14.1 1.896 

C1-200 0.130 0.170 ND ND 34.9 14.2 1.905 

C1,5-200 0.080 0.090 ND ND 34.7 14 1.921 

ND: not detected 

The threshold of method detection for Cd is 0.02 mg/kg 

The threshold of method detection for Hg is 0.01 mg/kg 

Table 3 shows the evaluation of heavy metals (As, Pb, Hg, 

Cd) content (mg/kg) and elemental content of calcium and 

phosphorus (%) in HAp samples formed at 200°C in 0.5, 1 and 

1.5 hours by emission spectroscopy method. Hereby, these 

samples have the Ca/P molar ratios ranging from 1.896 to 

1.921 and these values are higher than that of human bones 

(1.67). This value is minimum when heated for at least 0.5 h 

and increases with longer heating (1 and 1.5 hours). The 

absorption of CO2 in the atmosphere during the experiment 

time and the alkaline environment during the process allowed 

the formation of carbonate ions in samples. Therefore, the 

longer the heating time was, the more carbonate ions were 

present and these ions then substituted phosphate sites leading 

to a B-type HAp. This type of carbonate apatite is a main 

constituent of the biological apatite [48]. The replacement of 

phosphate ion by carbonate ion is very important, because 

carbonated HAp has been found to be easily resorbed by living 

cells and to possess higher solubility than HAp with Ca/P ratio 

of 1.67 [49, 50]. Other authors have also observed the higher 

Ca/P ratios in biological HAp obtained from swordfish bones 

(Xiphia gladius), tuna (Thunnus thynnus) [34] and cow bones 

[51]. In addition, the presence of carbonate ions of type B HAp 

in seabass Lates calcarifer bone was confirmed by FTIR 

spectroscopy (Section 3.2). 

Table 4. Maximum accepted levels of heavy metals according to Vietnam regulation and US Pharmacopeia (USP). 

Heavy metals 

(mg/kg) 

Maximum accepted levels of 

metals (mg/kg) according to 

USP in Dietary Supplement 

Standard [52] 

Maximum accepted levels of metals according to Vietnam National Technical Regulation 

QCVN 8-2:2011/BYT regarding the maximum level of heavy metals allowed in food [53] and 

to Vietnam Decision No. 46/2007/QD-BYT on promulgation regulation of maximum level of 

biological and chemical pollution in food [54] 

As 0.15 5 

Pb 0.5 3 

Hg 1.5 0.1 

Cd 2.5 1 

 

As described in Table 3, Cd and Hg were not detected in all three HAp powders. However, Pb and As contents in 
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nano-HAp were respectively 0.09-0.170 and 0.08-0.13 mg/kg 

and these levels met the regulatory requirements of Vietnam 

regulation and US Pharmacopeia (USP) for food and dietary 

supplement standard (Table 4). 

The results of the Ca/P molar ratios and the amount within 

the safe limits of heavy metals (As, Pb, Hg, and Cd) show that 

nano-HAp powder from Lates calcarifer fish bone can be used 

as an input material for medicine and dietary supplements 

foods. However, evaluation of acute toxicity in mice and 

subchronic toxicity in rabbits of this product is required and 

this experiment is in progress in order to investigate the 

potential toxicity before mass production in large scale. 

4. Conclusion 

In our study, nano-HAp powders from Lates calcarifer 

seabass bone was successfully obtained when heated in 2M 

NaOH for 30 minutes, 1 and 1.5 hours at 200°C. The average 

size of particles are from 45 to 53 nm in length and 12 to 14 

nm in width, and the heating time did not influence the 

particle size. The Ca/P ratio ranged from 1.896 to 1.921, 

indicating that this calcium powder was B-type HAp which 

was confirmed by FTIR spectrum. In addition, the heavy 

metal content of the calcium powder is completely within the 

allowable limits for dietary supplement and medicine. 
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