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Abstract: Do really reverse osmosis (RO) membranes need modification to cover their disadvantages or enhance their 
efficiency? Are there any defects in RO membranes manufacturing that require modification? These questions are discussed here 
in this short review. Through the world, there are thousands of patents, publications, and PhD theses dealing with surface 
modification and grafting of RO membranes. This growing phenomenon should attract the attention of the scientific community 
for technologic and economic reasons. Due to the increasing water pollution levels, which overpassed the RO membranes 
capacities, there is an urgent need to manufacture RO membranes, with multidisciplinary characteristics and high performance 
regarding both salts removal and fouling resistance, before sending them to the market and avoiding to think to their following 
modification. 
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1. Introduction 

Over the decades since the population and pollution are 
growing, it is going harder to satisfy humankind water 
supplies [1-4]. In many continents most of the fresh water 
flows into the sea with very little drinkable water remaining 
[5]. Transportation of water from one point to another is also 
not a very practical solution. Oceans constitute 97% of water 
on earth which is undrinkable [6]. The surface water and water 
melted from glaciers are the two main sources of potable water, 
which constitute less than 0.4% of total water [4, 7-10]. 

Several processes have been employed to increase the 
potable water supply [11-13]. Wastewater treatment has been 
accorded a good part of significance since it will not only help 
us enhance our water supply but also avoid more water 
contamination. Treated wastewater can be employed in 
irrigation, as a potable water source and in several industries 
for producing and other similar objectives. Brackish water 
which is not as contaminated as seawater can also be treated 
by this method. It is therefore vital to recycle undrinkable 
water (such as saline water and wastewater) to satisfy its 

increasing demand. Nowadays the techniques employed to 
reclaim wastewater are multistage flash distillation and 
reverse osmosis (RO) process. The distillation process is 
frequently used only in regions where energy production is 
available [4]. 

RO process has been largely used and continuous actions 
have been performed to regulate it to be very performant in 
producing convenient water without overconsuming energy 
[14-18]. To get familiarized with RO we have to know the 
basic of osmosis [19, 20]. By osmotic processes we are able to 
recuperate water from these polluted resources [21, 22]. 
Osmosis is a natural process which when regulated following 
its pressure difference characteristic can be employed in 
different applications [23]. These applications [24-26] 
comprise desalination, water and wastewater treatment, etc. 
The different configurations of osmosis are forward osmosis, 
RO and pressure retarded osmosis [4, 27-30]. 

Any osmosis process needs a membrane [31-34]. It is any 
support material capable of separating one substance from 
another: organic or inorganic, natural or synthetic [32, 35]. In 
osmosis technique different synthetic polymeric membranes 
have been examined to separate water from different aqueous 
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solutions [4, 36-39]. 
This short review tries to show the increasing interest 

accorded to surface modification of RO membranes. A long 
list of pertinent and recent references is examined. A brief 
definition of RO is given.  

2. RO 

2.1. Definition 

Osmosis is a natural process in which a solvent (water) 
travels through a semi-permeable material boundary, i.e. 
through a membrane from the side with lower solute 
(frequently salt) concentration to the higher solute 
concentration [40-42]. Water flows till there is an equilibrium 
state between the two media [43]. Equilibrium is a situation 
when the chemical potential, or the gravitational potential, on 
both media of the solution is identical [44]. The pressure 
difference between the two media of the membrane is equal to 
the natural osmotic pressure difference or osmotic gradient of 
the solution [45]. In desalination process, the salt 
concentration has to be removed, i.e. water must pass from a 
medium of high salt concentration to a low salt concentration 
[46, 47]. To attain this, pressure bigger than the osmotic 
pressure gradient between the two media is imposed to the salt 
water [48]. Therefore, water from the solution travels from 
high concentration of solute (salt) to a low concentration [49]. 
This process of imposing external hydraulic pressure is called 
RO and is widely employed in desalination, water treatment 
purposes, etc. [4, 50-53]. 

Unlike many conventional separation technologies such as 
distillation or ion exchange, RO set up is simple in design [54, 
55]. RO can simultaneously manipulate separation of organic 
as well as inorganic substances. RO is a pressure-driven 
technique [3]. Therefore, there is no chemical change or any 
heat exchange, phase change process [4, 56]. 

A RO membrane performs as the semi-permeable boundary 
to flow of solute in the RO process [57, 58]. It permits 
selective travel of a particular species like water while 
partially or completely retaining other species (solutes) [59]. 
RO can separate solute particles as small as 0.1 to 1 nm [4, 
60]. 

2.2. RO Membrane Materials 

Materials employed to produce RO membranes are function 
of the type of application for which it will be employed [61]. 
Both physical and chemical types of the polymer impose the 
membrane manufacturing [62]. An acceptable RO membrane 
has to be resistant against chemicals and microbes [63]. It has 
to be mechanically and structurally stable over a long time 
[64]. It has to possess a great selectivity for certain solutes. 
These membranes are usually hollow fiber or flat [65]. They 
are arranged in modules to provide maximum surface area per 
unit volume of the membrane [66]. The hollow membranes are 
frequently furnished in bundles and then utilized in the RO 
technique [4, 67-70]. 

The most frequently employed RO membrane materials are 

cellulose acetate, polyamide, any heterocyclic polymer, 
crosslinked water soluble polymers and polymerizable 
monomer (formed by crosslinking), polybenzimidazole, 
polyacrilonitrile, poly-piperazinamides, etc [71-75]. However, 
they are broadly classified into two groups: asymmetric 
membranes containing one polymer, and thin-film, composite 
membranes consisting of two or more polymer layers [4, 
76-82]. 

Cellulose acetate membrane is the most well-known 
asymmetric or anisotropic membrane structure discovered by 
Loeb and Sourirajan in 1960. It has a very thin solute rejecting 
layer on a coarse supporting layer [83]. The supporting layer is 
also frequently produced of the same material as that of the 
selective layer but the thickness of the selective dense layer 
imposes fluxes and rejection and the global efficiency of the 
membrane [84]. The supporting layer just provides 
mechanical strength to the membrane. These membranes are 
usually made using non-solvent-induced phase inversion or 
polymer precipitation method. Loeb and Sourirajan made the 
first asymmetric cellulose acetate membranes for RO. An 
issue with asymmetric membranes is that they are very thin, of 
~ 0.1 to 1 µm; consequently, they give largely great fluxes 
without performant rejection [4]. 

After cellulose acetate, it was the period of linear aromatic 
polyamide membrane [85]. It avoided a part of the 
disadvantages of cellulose acetate membranes [86]. At the 
first line with cellulose acetate membranes, linear aromatic 
polyamide membranes became popular. Polyamide is one of 
the most performant selective layer know until now. They 
possess a great rejection performance which can be employed 
for single state seawater desalination. However, still these 
membranes were as thin as cellulose acetate membranes (0.1 
to 1 µm) thick and great fluxes issue continued [4]. 

The thin film composite membranes were invented by 
Cadotte and his coworkers in 1970s (Figure 1) [4]. It is 
composed of a dense active layer of ~ 200 nm upon a porous 
polymer support. A non-woven fabric is fixed to provide a 
support (Figure 1). The porous support layer is usually 50 µm 
of thickness. The support layer regulates all the water flux, salt 
flux and therefore the water and salt molecules diffusion 
processes. The non-woven support fabric is ~ 120 µm thick 
and is responsible for handling the great hydraulic pressures 
during RO process (Figure 1). Consequently, the mechanical 
strength of the support fabric has to be elevated. Polysulfone, 
polycarbonate and poly (phenylene oxide) are the three 
well-known polymeric substrates available in RO industry. 
Polysulfone has the best efficiency and is largely employed 
commercially [4]. 

 

Figure 1. Structure of a thin film composite membrane [4]. 
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These membranes are produced by interfacial 
polymerization, i.e., polymerization at the interface of two 
immiscible liquids. The polymeric substrate is immersed in an 
aqueous solution of amine monomer. Then, it is immersed in 
acyl chloride monomer for the interfacial polymerization to 
happen. This conducts to the formation of very thin highly 
selective polyamide rejection layer on the polymeric substrate 
[4]. 

 

Figure 2. Formation of a thin film composite membrane [4]. 

The thin film composite membranes provide high water 
molecule diffusion velocity, very performant mechanical 
properties and stable over a large pH interval [4]. They have 
very elevated rejection. However, the fouling of thin film 
composite membranes is a very hard issue in the industrial 
applications [3, 86-91]. Different manners have been 
employed to well calculate the thin selective layer to decrease 
fouling [92-96]. Until now, there are different other issues 
attached to RO applications [4, 97-101]. 

In order to understand the issues in RO plant, we have to get 
familiarized with the working of a typical RO plant. First, the 
saline feed water is pumped to a pre-treatment stage. In this 
step, all large particles are removed which may clog the 
membrane and decrease its performance. The saline water is 
then sent at an elevated pressure using hydraulics to the 
membrane assembly where salt and other minerals are 
removed by the RO technique. After the membranes have 
finished their task, the water is separated in two streams: the 
feed water, and the brine water which is frequently discharged. 
A post-treatment is performed to stabilize the feed water [4]. 

 

Figure 3. Working of RO plant [4]. 

2.3. Problems Arising in RO Process 

Despite the thin film composite membranes have fixed a 
new level in RO process, they suffer from compaction effects 
under pressure [102-104]. If the applied hydraulic, or 
consequently the water pressure, is elevated, the polymers will 
be reoriented in a various direction that conducts to a lower 
porosity and finally influencing the membrane efficiency [4]. 

Surface or internal fouling of membranes is a very frequent 
issue [105-108]. Fouling is the precipitation of foulants on the 
membrane surface [109,110]. Foulant is any specie (solutes) 

which enters in interaction physically or chemically with the 
membrane [109]. They can be organic, inorganic, 
bio-compatible or colloidal [109, 111-113]. They strongly 
interfere with the travel of water through the membrane [114]. 
They degrade membrane efficiency and decrease its life span 
[115]. Consequently, membranes require to be changed 
usually conducting to elevated operating costs [116]. The 
great reason of fouling is the elevated pressures implicated in 
RO [4, 117-119]. RO is always opposite in direction to the 
natural water flow gradient [120]. Naturally, water flows from 
an area of low solute concentration to elevated solute 
concentration [121]. In RO, we push water out of an area of 
elevated solute concentration [122]. For this reason, a pressure, 
significantly bigger than the osmotic gradient of water, is 
needed [123]. Great hydraulic power is needed for the same 
cause [124]. This further elevates operating costs [125]. Feed 
water recovery is also restricted in RO which makes the brine 
discharge greatly concentrated [126]. This can have huge 
ecological effects on usage in coastal areas [4, 127-130]. 

2.4. Concentration Polarization as an Important Factor 

Affecting Performance of Membranes in RO Process  

In RO process, the effects of concentration polarization are 
taken into account only on the feed side of the membrane [131, 
132]. This is attributed to the fact that we take in consideration 
the mass transfer on the feed side of membrane which is 
pressurized [133]. Convective forces push the solute to pass 
from the bulk solution to the surface of the selective rejecting 
layer. Water permeates through but the solute remains on the 
surface at high concentrations. The water flux or the pressure 
with which water travels through the membrane has to be 
greater than the pressure produced because of this salt layer 
concentration. This deposition of salt on the surface which 
influences the water flux through the membrane is mentioned 
as concentration polarization rather external concentration 

polarization. This is also one of the reasons why higher 
external pressures are needed in RO [4, 134-137]. 

3. Conclusions 

This short review tried to answer to some questions such as: 
Does RO membranes manufacture need a fundamental 
reformulation to meet the treated water qualities requirements? 

RO is nowadays the number one desalination industry and it 
knows huge increase in the world market. Until now, polymeric 
membranes have overpassed the RO desalination technology. 
Until the 1980s the research focused on the optimum polymeric 
membrane materials. In following decades the efficiency of RO 
membranes has been elevated via control of membrane 
manufacture mechanisms. On the other hand, the increasing 
registered water pollution levels qualitatively and quantitatively 
have overpassed the RO membranes capacities.  

The appearance of nano-technology in membrane materials 
industry could present an interesting solution to polymeric 
materials. It is suggested that RO desalination efficiency will 
be more increased in the next few years; however, some 
challenges have to be resolved. 
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