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Abstract: In this paper, we present the powerful scheme ZSISMP (Zimmermann Self Invertible Stabilizer Multiplier 

Permutation) to attack the hardness of the minimum distance search problem of BCH codes. This scheme consists in evaluating 

the minimum distance of the reduced dimension sub code fixed by a Self Invertible Stabilizer Multiplier Permutation by 

Zimmermann algorithm. The proposed scheme ZSISMP is validated on all BCH codes of known minimum distance. A 

comparison with several known powerful techniques proves its efficiency in giving more accurate results in short time. The use 

of this efficient local search had yield to determine the error correcting capability of many BCH codes of length 1023 and 4095. 
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1. Introduction 

In telecommunication and storage systems, the fundamental 

problem is the reproduction at one point exactly or 

approximately the selected data at another point. An efficient 

solution of this problem is the use of error correcting codes. 

The error correcting codes improve the reliability of such 

communication, notably on channels that are subject to noise, 

by adding redundancy in data. 

BCH codes are a family of cyclic codes, which are used in 

many applications, due to their powerful algebraic decoding 

algorithms and their error-correcting capability. The 

error-correcting capability of these codes is directly related to 

their minimum distance. However, the determination of this 

metric is difficult in general as pointed out by Charpin in [1] 

and remains an open problem in coding theory. For these 

codes, only a lower bound is known and the minimum 

distance is known only for some lengths and special cases 

[2-3-4-5-6-7-8]. In this paper, our work will focused on 

finding the minimum distance of large BCH codes.  

The remainder of this paper is organized as follows: The 

next section presents the main related works. The section 3 

presents the proposed scheme ZSISMP. The section 4 presents 

the main results. The conclusion and possible future directions 

of this research are outlined in section 5. 

2. Related Works 

Determining the minimum distance of BCH codes is an 

important, but difficult, problem. For these codes, only a lower 

bound is known but the true value is still unknown for large 

codes. For this reason, many researchers have explored 

several ways to attack the difficulty of the minimum distance 

search problem for large BCH Codes. This section 

summarizes the most important ones. 

In [9], Augot, Charpin, and Sendrier presented an algebraic 

system constructed from Newton’s identities. The existence of 

solutions to this system is a necessary condition to the 

existence of codewords of weight w in the code. The use of 

this method has finished the table of BCH codes of length 255. 

In [10], Augot and Sendrier found idempotent codewords of 

minimum weight for several primitive narrow-sense BCH 

codes.  

In [11], Canteaut and Chabaud have developed a new 

probabilistic algorithm, based on the heuristic proposed by 

Stern [12], for finding minimum-weight words in a linear code. 
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The application of the proposed algorithm on narrow-sense 

BCH Codes of length 511 has determined the true minimum 

distance of some codes, however the table of BCH codes of 

length 511 is still open. 

Zimmermann algorithm [13] is a general algorithm for 

computing the minimum distance of a linear code. It is 

implemented in GAP (package Guava) [14] over fields F2 and 

F3. It is also implemented, in Magma over any finite field. 

Zimmermann’s algorithm is explained in detail in [15]. 
The artificial intelligence Simulated Annealing presented in 

[16], Tabu Search [17], Hill-Climbing [18], Genetic 

Algorithm [18-19], Ant Colony Optimization [20], Metropolis 

Algorithm [21], was shown to be useful to attack the difficulty 

of the minimum distance search problem for BCH Codes. In 

[22], Aylaj and Belkasmi improve the classical Simulated 

Annealing presented in [16]. This improvement has yield to a 

fast convergence of the Simulated Annealing by reducing the 

number of iterations, as well as obtaining good results in 

comparison with the previous works presented in 

[17-18-19-21]. 

Unlike classical techniques based on exhaustive or partial 

enumeration of codewords, Berrou in [23] has presented an 

efficient approach based on the notion of Error Impulse 

response of a Soft-In decoder. This approach consists in 

adding to all-zero codeword a level of noise and considering 

the minimum distance as the smallest level of noise from 

which the Soft-In decoder fails in correction. The authors in 

[19], continue to improve this method, by injecting errors in 

many positions and proposed the Multiple Impulse Method. In 

[24], the authors proposed an efficient method, by applying 

the MIM method on some sub code randomly extracted from 

the considerer BCH code. The proposed method MIM-RSC, 

has allowed an efficient local search and therefore finding the 

true minimum distance of some BCH codes of length 1023 

and 2047 as well as obtaining good results in comparison with 

the previous works presented in [17-18-19-20-21-22]. 

3. The Proposed Scheme 

It is well known that for BCH (n=2
m

-1, δ) codes, the 

multiplier permutations defined on {0, 1,..., n−1} by 
k

2
µ

: 

i→2
k
i (mod n) with 1≤k≤m-1 are stabilizers. From these 

stabilizers, we take only a Self Invertible stabilizer if it exist 

and by using a mathematical tool, we find the sub code fixed 

by this involution and then we evaluate the minimum distance 

by using the famous Zimmermann algorithm. This section 

presents the proposed scheme for finding the lowest weight in 

BCH codes. 

For finding the minimum distance of BCH codes. The 

proposed scheme works as follows: 

Inputs: 

- A generator matrix G of BCH (n=2
m

-1, k, δ) 

-A self-invertible permutation σ from {µ2
i
, 1≤i ≤m} 

Begin 

d ←n-k+1 

Step 1: 

Find the sub code SC fixed by σ 

Step 2: 

Find the estimated minimum distance d of SC by using the 

Zimmermann algorithm. 

Output: 

- d as estimated minimum distance of BCH (n, k, δ) 

4. Results and Discussions 

This section presents a validation of the proposed method 

on BCH codes of known minimum distance and its application 

for finding the minimum distance of BCH codes of unknown 

minimum distance. This section presents also a comparison 

between the proposed scheme and previous work on minimum 

distance for BCH codes. 

All results have been done using a simple configuration 

machine: Intel (R) Core (TM) i3-4005U CPU @1.70GHz 

RAM 4GO and are made by running the considered algorithm 

in 1day for each code. 

4.1. Validation of the Proposed Scheme 

It is well known that the smallest primitive narrow-sense 

BCH code whose minimum distance is greater than its 

designed distance is BCH (127, 43, 29) and it is the only one 

for this length. It is known also, that All the narrow-sense 

primitive binary BCH codes of length 255 have their 

minimum distance equal to their designed distance except 

BCH (255, 63, 61), and BCH (255, 71, 59). The both last 

result have been proved in [9], by using the Newton’s 

identities. 

In order to validate the proposed method, it is applied on all 

BCH codes of known minimum distance presented in table 1. 

the obtained results show that the minimum weight found by 

the proposed method is equal to the true value of the minimum 

distance of all BCH codes of length up to 255. Therefore, the 

proposed method is validated for BCH codes of lengths up to 

255.  

4.2. Comparison of the Proposed Scheme with Zimmermann 

Algorithm 

A comparison between the proposed scheme with 

Zimmermann algorithm, on some BCH codes are made. The 

table 2 summarizes the obtained results. These results 

demonstrate that the proposed scheme outperform greatly the 

famous Zimmermann algorithm. 

4.3. Comparison of the Proposed Scheme with MIM-RSC 

Method 

The table 3 presents a comparison between the proposed 

scheme and MIM-RSC method [24]. It shows that the 

proposed scheme greatly passes the MIM-RSC method. 

4.4. Results of the Proposed Scheme for Some Large BCH 

Codes 

In order to find the minimum distance of some large BCH 

codes, the proposed scheme is applied by using a simple 

machine of the configuration given above. The obtained 
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results are given in the table 4 so that df represent the minimum 

distance found by our scheme. This table shows the height 

capacity of the proposed technique to find a minimum weight 

codeword. 

Table 1. Validation of the proposed scheme for BCH codes of length up to 255. 

BCH (n, k, δ) True value of minimum distance d (ZSISMP) BCH (n, k, δ) True value of minimum distance d (ZSISMP) 

BCH (15, 11, 3) 3 3 BCH (255, 171, 23) 23 23 

BCH (15, 7, 5) 5 5 BCH (255, 163, 25) 25 25 

BCH (15, 5, 7) 7 7 BCH (255, 155, 27) 27 27 

BCH (63, 57, 3) 3 3 BCH (255, 147, 29) 29 29 

BCH (63, 51, 5) 5 5 BCH (255, 139, 31) 31 31 

BCH (63, 45, 7) 7 7 BCH (255, 131, 37) 37 37 

BCH (63, 39, 9) 9 9 BCH (255, 123, 39) 39 39 

BCH (63, 36, 11) 11 11 BCH (255, 115, 43) 43 43 

BCH (63, 24, 15) 15 15 BCH (255, 107, 45) 45 45 

BCH (63, 18, 21) 21 21 BCH (255, 99, 47) 47 47 

BCH (63, 16, 23) 23 23 BCH (255, 91, 51) 51 51 

BCH (63, 10, 27) 27 27 BCH (255, 87, 53) 53 53 

BCH (63, 7, 31) 31 31 BCH (255, 79, 55) 55 55 

BCH (255, 247, 3) 3 3 BCH (255, 71, 59)* 61 61 

BCH (255, 239, 5) 5 5 BCH (255, 63, 61)* 63 63 

BCH (255, 231, 7) 7 7 BCH (255, 55, 63) 63 63 

BCH (255, 223, 9) 9 9 BCH (255, 47, 85) 85 85 

BCH (255, 215, 11) 11 11 BCH (255, 45, 87) 87 87 

BCH (255, 207, 13) 13 13 BCH (255, 37, 91) 91 91 

BCH (255, 199, 15) 15 15 BCH (255, 29, 95) 95 95 

BCH (255, 191, 17) 17 17 BCH (255, 21, 111) 111 111 

BCH (255, 187, 19) 19 19 BCH (255, 13, 119) 119 119 

BCH (255, 179, 21) 21 21 BCH (255, 9, 127) 127 127 

Table 2. Comparison between the proposed scheme and Zimmermann algorithm for some BCH codes of length 1023. 

BCH (n, k, δ) d (Zimmermann) Run Time of Zimmermann (s) d (ZSISMP) Total Run Time of ZSISMP (s) 

BCH (1023, 848, 37) 47 9198.411 37 474.001 

BCH (1023, 838, 39) 51 8951.867 39 705.476 

BCH (1023, 828, 41) 55 5030.891 41 7347.036 

BCH (1023, 818, 43) 61 7723.827 43 913.925 

BCH (1023, 808, 45) 63 5582.260 45 46246.594 

BCH (1023, 798, 47) 67 21379.687 47 61864.161 

Table 3. Comparison between the proposed scheme and MIM-RSC method for some BCH codes of lengths 1023. 

BCH (n, k, δ) d (MIM-RSC) d (ZSISMP) BCH (n, k, δ) d (MIM-RSC) d (ZSISMP) 

BCH (1023, 1013, 3) 3 3 BCH (1023, 953, 15) 15 15 

BCH (1023, 1003, 5) 5 5 BCH (1023, 943, 17) 17 17 

BCH (1023, 993, 7) 7 7 BCH (1023, 933, 19) 21 19 

BCH (1023, 983, 9) 9 9 BCH (1023, 923, 21) 25 21 

BCH (1023, 973, 11) 11 11 BCH (1023, 913, 23) 29 23 

BCH (1023, 963, 13) 13 13    

Table 4. True minimum weights of some BCH codes of length 1023, 4095 found by the proposed Scheme. 

BCH (n, k, δ) df RUN TIME OF STEP1 (S) Run Time of Step2 (s) Total Run Time (s) 

BCH (1023, 1013, 3) 3 47 0.405 47.405 

BCH (1023, 1003, 5) 5 32 0.561 32.561 

BCH (1023, 993, 7) 7 33 0.701 33.701 

BCH (1023, 983, 9) 9 34 0.780 34.780 

BCH (1023, 973, 11) 11 44 0.889 44.889 

BCH (1023, 963, 13) 13 38 0.748 38.748 

BCH (1023, 953, 15) 15 38 0.826 38.826 

BCH (1023, 943, 17) 17 40 0.811 40.811 

BCH (1023, 933, 19) 19 43 0.920 43.920 

BCH (1023, 923, 21) 21 46 0.935 46.935 

BCH (1023, 913, 23) 23 46 0.935 46.935 

BCH (1023, 903, 25) 25 46 0.982 46.982 

BCH (1023, 893, 27) 27 47 1.232 48.232 

BCH (1023, 883, 29) 29 51 1.809 52.809 

BCH (1023, 873, 31) 31 56 1.107 57.107 

BCH (1023, 863, 33) 33 59 13.368 72.368 



42 Issam Abderrahman Joundan et al.:  A New Powerful Scheme Based on Self Invertible Stabilizer Multiplier   

Permutation to Find the Minimum Distance for large BCH Codes 

BCH (n, k, δ) df RUN TIME OF STEP1 (S) Run Time of Step2 (s) Total Run Time (s) 

BCH (1023, 858, 35) 35 57 26.941 83.941 

BCH (1023, 848, 37) 37 64 410.001 474.001 

BCH (1023, 838, 39) 39 55 650.476 705.476 

BCH (1023, 828, 41) 41 77 7270.036 7347.036 

BCH (1023, 818, 43) 43 75 838.925 913.925 

BCH (1023, 808, 45) 45 72 46174.594 46246.594 

BCH (1023, 798, 47) 47 78 61786.161 61864.161 

BCH (4095, 4083, 3) 3 381 11.902 392.902 

BCH (4095, 4071, 5) 5 308 13.993 321.993 

BCH (4095, 4059, 7) 7 350 16.207 366.207 

BCH (4095, 4047, 9) 9 472 19.140 491.140 

BCH (4095, 4035, 11) 11 474 21.028 495.028 

BCH (4095, 4023, 13) 13 516 21.761 537.761 

BCH (4095, 4011, 15) 15 633 23.431 656.431 

BCH (4095, 3999, 17) 17 548 24.616 572.616 

BCH (4095, 3987, 19) 19 629 27.486 656.486 

BCH (4095, 3975, 21) 21 732 29.764 761.764 

 

5. Conclusion and Perspectives 

In this paper, we have proposed a new efficient scheme to 

find the minimum distance for large BCH codes. The 

experimental results show that the proposed scheme 

outperforms several known powerful techniques. In the 

perspectives, we will apply this powerful scheme to construct 

good large cyclic codes, and adapt this scheme for other linear 

codes. 
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