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Abstract: Runtime verification is looking for violations of the properties of the system functioning. Finding and describing 

the system properties that indicate behavioural disorders is a complex and labour-intensive process that needs to be automated. 

This article describes how system properties can be determined automatically during the correct functioning. Inspection of the 

combinations of fulfilled properties makes it possible to detect more system problems. Three methods of handling property 

combinations are offered. The methods are based on the examination of the input sequences and output results. In order to 

increase the volume of the properties of the system under consideration, only the possible pairs of properties are analysed. 

Pairs are formed from the output properties, as well as from the input conditions and output properties, and the maximum 

possible number of property pairs is evaluated. The available property pairs are captured during the operation. Impossible 

combinations of properties that never occur during the execution highlight situations that are not possible during proper 

functioning. Capture of impossible property pairs during verification indicates system problems. During the experiment, five 

types of disorders and three detection methods were considered. Experimental results show that there is no single best method 

for detecting disorders. Therefore, it is appropriate at the same time to use several methods to detect disorders. The experiment 

shows how much of the disorders can detect the proposed approach. 
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1. Introduction 

The system design is based on a specification that 

describes the operations as a function of all possible input 

data. Verification and testing verifies whether only the 

possible situations are received. Runtime verification checks 

the occurrence of described impossible situations. Impossible 

situations allow us to see the system from a different 

perspective. Impossible and possible situations represent a set 

of all existing situations. Runtime verification of situations 

that are impossible allows additional increase of system 

reliability. Inspection may be performed during service or 

before. 

Verification is based on inspection of the expected results 

when the input stimuli are known in advance. A verification 

test case indicates the expected results for the selected input 

stimuli. The runtime verification decides the correctness of 

functioning during the execution. Input stimuli and the 

expected results are not known in advance. The decision 

about the correctness of functioning is taken on the basis of 

the characteristics (properties) of the results obtained. 

The goal of runtime verification is to increase the 

reliability of existing systems. Software system reliability is 

increased in various ways. The key is to carry out thorough 

verification and testing. Automatic test generation faces the 

problem of how to determine the expected reaction (the 

oracle problem) using the test data. One way to do this is to 

independently design and implement two versions of the 

programs. Comparison of the results of the two program 

versions can be used instead of using separate oracle. The 

probability that bugs will be the same in both program 

versions is limited. A results mismatch with the same input 

data shows that there is an error in one of the versions. But it 

does not solve problems due to errors in the specification. 

Two independently derived specifications can also be 

considered. 

Duplication of work is very expensive. Therefore, instead 

of using version of the application, a model of properties that 

have to be fulfilled for all the input data can be generated. 

The independent creation of such a model can be less labour 
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intensive compared to the creation of other versions. 

Drawing up a model of properties that allow the detection of 

program bugs may require considerable of effort as well. The 

question of whether such a property model that can expose 

all the bugs in the program can be created remains open. The 

property model makes it possible to automate test generation, 

to use randomly generated data, and to carry out runtime 

verification. 

Design errors, software bugs, hardware defects, and human 

contingency condition system failure. Failure detection is 

based on the description of the correct functioning. Ageing 

defects in hardware and software changes can occur during 

operation. In this case, incorrect functioning can be captured 

during a service. 

Input data that are used during runtime verification are not 

known in advance. Evaluation of the results is based on the 

expected results to be calculated. Determining the correct 

expected results mainly consumes resources during runtime 

verification, but these calculations can be carried out in 

parallel with the main execution calculations. 

Verification and runtime verification become similar if the 

behavioural model determines the correctness of results. 

Working input stimuli are used during runtime verification, 

while artificial input stimuli can be used during verification. 

The calculation time and the necessary computer resources 

are very important for the runtime verification, because 

correctness of results is carried out in real time. Correctness 

of results is carried out after each step and may be executed 

in parallel with the next step. Parallelization is not possible if 

the decision should be taken into account before the next 

step. Therefore, correctness of results time is a critical 

parameter and the minimization of the time taken by the 

decision is a very important goal with regard to runtime 

verification. 

An exact behaviour model like the finite-state machine 

[FSM] model enables one to obtain and compare the output 

results. A simplified behavioural model makes it possible to 

check only some properties like possible transitions between 

states or possible consistency of events in the execution. 

Impossible transitions between states or impossible 

consistency in the execution of the events indicates a failure. 

The possible transitions between states or possible execution 

sequences of events must be calculated and made available in 

advance. If this is not feasible, the possible transitions 

between states and the execution sequences of events can be 

registered in service until saturation is obtained. In this case, 

the answer to the question of how much a simplified analysis 

reduces the probability of detection of problems is very 

important. 

Simplification of the exact behaviour model is also 

possible by indicating undefined output values (such as x) 

when the model cannot accurately define them. Only 

precisely defined values are compared during verification. 

Such a principle may allow the detection of more failures 

compared with inspection only of impossible properties. In 

addition, the establishment of such a model may be simpler. 

The internal states are not always available during service, 

nor is other internal information. There is always a target for 

verification using only input and output data. Rating input 

sequences like integrated units partially compensate for the 

loss of information about the inner states. 

In general, it is difficult to identify distinct properties of 

results so that the malfunction can be detected. Not all 

problems lead to nonfulfillment of such properties. 

Examination of combinations of properties allows the 

detection of more failures. A combination of properties can 

indicate failure, but when taken in isolation, properties do not 

indicate failure. The objective of the study is to find the 

combination of properties that captures failures during 

execution. We are considering a situation in which we do not 

have a functioning model and the potential properties are 

extracted using a program in the working environment. 

The main drawback of this method is that nonfulfillment 

of properties extracted using a program in the working 

environment does not guarantee system malfunction. It may 

be that usage has highlighted a new property. Basically, this 

is just a warning that the results must be carefully analysed. 

A possible combination of properties is supplemented if the 

analysis indicates the absence of failure. 

2. Related Work 

Verification of the system that is being developed includes 

an assessment with respect to the specification. Validation 

involves an inspection system in relation to the user's needs. 

Testing provides quality assurance regarding the system. 

Runtime verification examines the fulfilment of properties 

during execution. 

Runtime verification can rely on a behavioural model or a 

property model. The behavioural model provides the 

expected output results. Comparison of the expected results 

and the results obtained during service makes it possible to 

detect disturbances. 

Detection of system failures requires additional resources. 

Input data are used at run time. In general, a sequence of 

input stimuli comprises input data. A model of behaviour can 

determine the expected reaction of the input data. Simulation 

of the input data can be carried out in parallel with the real 

execution. This is demonstrated in Figure 1. The duration of 

the service does not change if the simulation is faster than the 

actual implementation.  

 

Figure 1. Runtime verification with behavioural model. 

The probability of detecting system malfunction increases 
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if a behavioural model is created independently from the 

specification. In this case, it is less likely that the 

specification and behaviour model will have the same 

mistakes. The implemented system or behaviour model may 

have a mistake when the results do not match. 

Comparison of the simulation and execution results 

enables us to detect system malfunctions but lengthens the 

duration of data processing. The comparison will not affect 

the duration of functioning of the system if it is carried out in 

parallel with the processing of the following input data. 

Verification should not last longer than the processing of 

input data. In this case, the solution of the verification action 

will be available later. This is demonstrated in Figure 2. 

 

Figure 2. Parallel execution of verification and of processing of the input 

data. 

Possession of the internal state of the system increases 

the problem-detection capabilities. However, monitoring 

of the system’s internal states may affect its performance. 

An answer to the question of how much internal state 

tracking increases the detection of problems would be 

very helpful. 

The exact behaviour of the system model is difficult to 

describe. Simplification of the model facilitates this work. An 

undefined value is indicated when the model cannot 

accurately determine the output values. The comparison of 

non-simulated values is not carried out. In this case, the 

detection of certain system failures may be lost. A 

compromise between model simplicity and non-detection of 

problems during runtime verification is necessary.  

 

Figure 3. Runtime verification with model of properties. 

Runtime verification with the model of properties is 

shown in Figure 3. Properties are obtained from the 

operational results and compared with the model of 

properties. Nonfulfillment of any properties indicates the 

presence of a failure in the system. Flair states that 

comparison of the results with the behavioural model 

should allow the detection of more system failures than 

comparison of the results with the model of the properties. 

The answer to the question of how many more failures 

would be detected would be helpful in any case. The 

property model raises many doubts about its usefulness due 

to lack of validity experiments. 

Runtime verification checks whether the behaviour of the 

system complies with properties derived from the 

specification [1]. A model of properties taking into account 

the wishes of the user or other aspects of the ontology can 

highlight specification errors as well. 

The properties are the basis for determining whether the 

system is compatible with the required behaviour. Properties 

can be expressed in the form of temporal logic [2] or in the 

form of finite automata [3]. Security properties are easier to 

express using automata rather than a logic-based formalism 

[4]. Linear temporal logic [5] allows the creation of 

properties, which links the events and their sorting. 

Possibilities of formal descriptions of properties have already 

been explored well. Property violations are detected by the 

monitor, which analyses the results and finds discrepancies 

between the observed and expected system behaviours. 

Runtime monitors are often derived directly from the 

properties, and properties are often simply written by the 

designer [6]. 

Runtime verification requires additional resources during 

execution and this may affect the functioning of the system. 

Fragmentation of additional costs in relation to place and 

time can reduce the overall impact on the runtime 

verification as claimed in [7]. Recently, much attention has 

been paid to comparing runtime verification tools [8]. 

However, there is currently insufficient attention to the 

automatic determination of properties during execution. 

Stochastic models [9] and stream processing applications 

[10] is a promising trend in solving runtime verification 

problems. 

Runtime verification can increase the system reliability, 

but consumers always want to know how much it can 

improve by and how much it will cost. The answers to these 

questions are the hardest ones. 

3. Conditions and Properties 

Input stimuli are fed into the inputs, and output results are 

obtained during execution of the object. The output results of 

each stimulus satisfy or do not satisfy some properties. The 

situation can be displayed as a vector p = <p1, p2,..., pi,..., 

pm >, where pi = 1 when the property is fulfilled and pi = 0 

when the property is not fulfilled. Similarly, the input stimuli 

can fulfil some of the data conditions, whereas some data 

conditions cannot be fulfilled. This can be represented by 

another vector C = <c1, c2,..., ci,..., cn >, where ci = 1 when 

the condition is fulfilled and ci = 0 if the condition is not 

fulfilled. Vectors C and P describe the situation after the 

execution of the input stimulus. 
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What indicates system failure? In the simplest case, 

nonfulfillment of at least one of the properties indicates 

system failure. Often system failure is defined as 

nonfulfillment of several properties or as nonfulfillment of 

properties when another property is fulfilled. In this case, 

there is talk about the combination of fulfilled properties. 

Combinations of fulfilled properties enable the identification 

of more system failures. Similarly, we can talk about 

combinations of fulfilled input conditions. Combinations of 

fulfilled input conditions give more options and flexibility in 

describing the occurrence of system failures.  

Input data can have at most 2
n
 combinations of fulfilled 

conditions. The output results can have at most 2
m

 

combinations of fulfilments of properties. Object behaviour 

can limit the amount of combinations of fulfilled properties 

and some combinations will be unavailable. Monitoring of 

shall be impossible combinations of properties on the object 

output indicates malfunctions. Let us say that we have a set F 

of possible combinations of properties and a set U of 

impossible combinations of properties, where |F| + |U| = 2
m
. 

Only the combinations of the set F are obtained during 

correct operation. A malfunctioning case, instead of the 

expected combinations of the set F, may be another 

combination of sets F and U. Obtaining combinations of the 

set U unambiguously shows that malfunctioning has 

occurred. This feature can be used for identification of 

problems in system execution.  

Each combination of input conditions is related to set 

combinations of possible properties of outputs. Possession of 

such information enables the detection of more failures. A 

failure that is replacing a combination of the set F with a 

different combination of the set F can be found in this case. 

Similarly, the functional environment of the object may 

limit the amount of combinations of input conditions. 

Linking the input conditions and output properties creates 

preconditions for obtaining more invalid situations that 

indicate a failure. 

Let us consider a small example. Let us say that the 

relevant function has input data of four numeric variables and 

that three numerical variables are obtained at the output after 

the execution of the function. All variables can be both 

positive and negative. If it is known that a certain output 

variable can only be positive, then the output variable taking 

a negative value, indicates system failure. Such a strict 

property may seldom be valid. A situation that takes output 

variables that can be both positive and negative separately is 

more likely to occur, but let us say that a situation in which 

the first variable is positive, the second negative, and third 

again positive cannot occur. Therefore, examination of the 

property combinations is more flexible. 

The following describes the properties p1, p2, and p3 of 

outputs, which have the value of 1 when the property is 

fulfilled and the value 0 otherwise. Accordingly, the value of 

1 marks the fulfilment of the conditions c1, c2, c3, and c4 of 

inputs and the value 0 otherwise. Possible combinations of 

fulfilled conditions and properties are shown in Table 1, as an 

example. In general, different properties can be obtained 

under the same input conditions. This is demonstrated in 

rows 8 and 9. 

Table 1 shows that the set F = {000, 001, 010, 100, 110} 

has five possible property combinations and the set U = {011, 

101, 111} has three impossible combinations of properties. 

Combinations of properties of the set U compose the 

identification function of errors. 

Table 1. Possible combinations of conditions and properties. 

No. c1 c2 c3 c4 p1 p2 p3 

1 0 0 0 0 0 0 1 

2 0 0 0 1 0 0 1 

3 0 0 1 0 0 0 1 

4 0 0 1 1 0 0 1 

5 0 1 0 0 0 0 0 

6 0 1 0 1 0 0 0 

7 0 1 1 0 0 0 0 

8 0 1 1 1 0 1 0 

9 0 1 1 1 0 0 0 

10 1 0 0 0 0 0 0 

11 1 0 0 1 0 0 0 

12 1 0 1 0 0 0 0 

13 1 0 1 1 0 0 0 

14 1 1 0 0 0 0 0 

15 1 1 0 1 0 0 0 

16 1 1 1 0 1 0 0 

17 1 1 1 1 1 1 0 

 

We will consider how the sets F and U can be used in 

practice for verification during the execution. During 

verification, it is necessary to determine what conditions the 

input data fulfil and what properties the results obtained fulfil 

and to determine whether the properties of the obtained 

results are possible according to the table of combinations of 

conditions and properties. How can a table of conditions and 

possible properties be obtained? In general, it follows from 

the specification. However, in practice it is impossible to 

write out all possible combinations of conditions and 

properties. This can be find during a long operation of the 

correctly functioning system. However, a table of possible 

conditions and properties can be overwhelming. It is possible 

to reduce it by listing only possible combinations of 
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properties (F set). The inverse of the set U should be used for 

verification. This simplification can significantly reduce the 

verification accuracy, because there is a loss of connection to 

the combinations of input conditions. In general, the set U 

can be empty and cannot be used in such cases. Another 

problem is that the set U can be enormous and in practice, it 

cannot be listed as well. In this case, it is necessary to look 

for processing techniques of the set U that are acceptable in 

practice. Finding the set U can require a lot of resources as 

well. In addition, it is still necessary to answer the question 

of what part of the failures causes the appearance of 

combinations of the set U. We will try to discuss this. 

Functional disturbances can greatly change the output 

properties in different ways. One way of analysing the 

situation includes changing the table that describes the 

conditions and properties with the corresponding logic circuit 

and its fault studies. A stuck-at fault imitates system disorder. 

This is done only for demonstration purposes. Table 1 

becomes similar to the truth table when line 9 is discarded. 

Properties assigned to outputs and conditions assigned to the 

inputs allow us to get the logical functions of outputs (p1 = 

c1c2c3; p2 = c2c3c4; p3 =�1���	�2����. A synthesized circuit is 

shown in Figure. 4. For demonstration purposes, we will 

consider how stuck-at faults of the synthesized circuit affect 

outputs. Eleven stuck-at faults of the synthesized circuits are 

listed in Table 2. The third column shows how stuck-at faults 

are changing the properties of outputs. Fault c1 (1) ≡ 1 

corresponds to the fixing of a value as one in the input of 

element (1), which is connected to the input c1. In case of 

this fault, the sample circuit behaviour changes as though the 

value of the input vector conditions c1 value were always 

equal to one. In Table 1, we can see how the properties of the 

output changes after the amendment of condition c1 always 

to one. The output values 000 change to the values 100 (010 

→ 110) for the fault c1 (1) ≡ 1. Similarly, the output property 

values 000 change to values of 100 (000 → 110) at the input 

condition values c1c2c3c4 = 1010 and 1011 (lines 12 and 

13). We see that only two faults (c2 (2) ≡ 1, p3 (3) ≡ 1) cause 

combinations of the set U (highlighted) and other faults only 

cause combinations of the set F. Detection of these failures 

requires information about the possible properties of outputs 

for the relevant input conditions. In this case, it is necessary 

to consider the combinations of pairs of input conditions and 

output properties. The number of possible combinations of 

pairs is equal to 2
m+n

.  

 

Figure 4. Synthesized circuit according to Table 1. 

Table 2. Influence of stuck-at faults on the output results. 

No. Faults Output changes OO options IO options 

1 c1 (1) ≡ 1 000→100 010→110  c1↔ p1 (01) 

2 c2 (1) ≡ 1 000→100 000→110  c2↔ p1 (01) 

3 c3 (1) ≡ 1 000→100 000→110  c3↔ p1 (01) 

4 p1 (1) ≡ 0 100→000 110→010   

5 c2 (2) ≡ 1 000→110 001→011 (p2, p3) – ( 11) c2↔ p2 (01) 

6 c3 (2) ≡ 1 000→010 000→110  c3↔ p2 (01) 

7 c4 (2) ≡ 1 000→010 100→110  c4↔ p2 (01) 

8 p2 (2) ≡ 0 010→000 110→100   

9 c1 (3) ≡ 1 001→000 001→010   

10 c2 (3) ≡ 1 001→000 001→010   

11 p3 (3) ≡ 1 
000→001 010→011 (p2, p3) – ( 11) c1↔ p3 (11) 

100→101 110→111 (p1, p3) – (11) c2↔ p3 ( 11) 
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Processing of large sets of combinations is practically 

impossible. To simplify the calculations, we can restrict 

ourselves to checking only the amount of all possible pairs of 

set. The scope of pairs of a set of N elements is equal to N (N – 

1)/2. Here is the estimated symmetry of the element pairs. The 

pairs of elements (e1, e2) and (e2, e1) denote the same 

information. Each pair of elements of the sets has four options 

for the fulfilment of the conditions or properties: 00, 01, 10, 

and 11. Notation 00 shows that the condition or property is not 

fulfilled by both elements. Similarly, the notation 01 indicates 

that the condition or property of the first element is not 

fulfilled and that of the second element is fulfilled.  

A set of N elements can have up to 2 ** N possible 

combinations. The number of possible combinations 

decreases to 4 * N (N – 1)/2 = 2* N (N–1) if we restrict 

ourselves to examining not all combinations, but merely 

examining the combinations of element pairs. Expression 2 * 

N (N – 1) shows that, in practice, real-size sets can be 

processed in this case. However what impact this has on the 

accuracy of the examination must be assessed. This 

simplification only makes sense when it is impossible to treat 

all possible combinations. 

Table 3 shows combinations pairs of outputs, which are 

found from Table 1. Symmetrical pairs like (p2, p1) and pairs 

with yourself like (p1, p1) are not listed. We find all four 

possible embodiment properties (00, 01, 10, 11) in columns 

p1 and p2 of Table 1. Columns p1 and p3 do not have the 

combination (11) where both properties have been satisfied. 

Unavailable combinations are shown in bold (red). 

Combination (11) indicates an inpossible situation. The 

fourth column of Table 2 shows that in this case we can 

detect only two faults. 

Table 3. Combinations of pairs of fulfilled output properties. 

 p1 p2 p3 

p1  00 01 10 11 00 01 10 11 

p2   00 01 10 11 

p3    

Similarly, we can consider pairs of inputs and outputs. The 

results are shown in Table 4, and the detection of stuck-at faults 

is shown in the last column of Table 2. We see that in this case, 

four faults remain unidentified. In any case, the question is 

always whether input/output pairs detect all defects, which 

detect the output/output pairs. Otherwise, it is appropriate to use 

both output/input pairs and output/output pairs. 

Table 4. Combinations of pairs of fulfilled input/output properties. 

 p1 p2 p3 

c1 00 10 11 01 00 01 10 11 00 01 10 11 

c2 00 10 11 01 00 10 11 01 00 01 10 11 

c3 00 10 11 01 00 10 11 01 00 01 10 11 

c4 00 01 10 11 00 10 11 01 00 01 10 11 

The case study showed that the unavailable combinations 

of properties of pairs between the outputs and between the 

inputs and outputs allow some possible failures of the system 

to be detected. 

4. Input Sequences 

So far, we determined, in a simplified fashion, that the 

output properties depend only on the input conditions. In 

reality, the examined object can have internal states and the 

output reactions are dependent on the previous state and on 

previously filled input stimuli. It is therefore necessary to 

examine the sequences of input stimuli and output reactions. 

The sequence is of fixed length and is composed of a clock 

cycle t = 1, 2, 3,..., T. The initialization stimulus is at the 

beginning of the sequence. The reactions of different stimuli 

can be examined separately and can vary greatly in different 

clock cycles of the sequence. This makes it possible to obtain 

more combinations of properties that are unavailable and thus 

to increase the chances that disorders can be identified. 

The input sequence can be displayed as a matrix S = || st,j 

||T, n + m, where st,j = 1 when j <= n corresponds to the fulfilled 

input conditions at clock cycle t and st,j = 1 when n < j <= n + 

m corresponds to the fulfilled output properties at clock cycle 

t. Otherwise st,j = 0. An example matrix is illustrated in 

Figure 5. 

 

Figure 5. Matrix S example. 

The pairs of output sequence properties can be represented 

by a matrix Z = ||zk,d ||2*m*T,2*m, where zk,d = 1, k = 2 * j + st,j + 

n + t * 2 * m, and d = 2 * i + st,i + n, where t = 0, 1, 2,... T, j = 

0,..., m – 1, i = j + 1,..., m. This description is formally 

correct but difficult to understand. The calculation procedure 

is more clearly demonstrated in Figure 6. Procedure SPP of 

making matrix Z demonstrates a calculation algorithm for the 

values of output sequence property pairs. 

 

Figure 6. Procedure SPP of making matrix Z. 

The external loop of the variable t examines all rows of 

matrix S and each cycle forms a part of the value of the matrix 

Z. The property pairs of line t are examined during internal 

cycles. All possible j and i pairs where i > j are analysed. The 
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indices k and d of matrix Z are calculated for each pair. There 

are four possible property pairs combinations of the matrix S: 

00, 10, 01,1. Depending on the property pairs, the indexes k 

and d designate one of the adjacent cells (2 * j + s [t] [j + n], 2 

* i + s [t], [i + n]), where one is recorded. The second index of 

matrix S has increased in size by n, since only outputs are 

examined. In this way, each combination of a property pair has 

a separate cell of the matrix Z. The k index is shifted by the 

amount 2 * t * m so that the values of the various rows are 

written into different matrix areas. 

The matrix Z formed in accordance with the matrix S is 

shown in Figure 7. The matrix has four sections corresponding 

to the line t of matrix S. Each property has two rows and two 

columns in all parts. One row or column is intended for the 

case when the property is not fulfilled (zero value), and the 

next row or column is for the case when the property is 

fulfilled (one value). Let us say that we have a pair of 

properties (p1 = 0, p2 = 1) of the matrix S and line t = 0. Four 

cells are at the intersection of rows and columns of these 

properties in the matrix Z. Accordingly, we assign one of them 

a value of one. The meaning is indicated for all possible pairs 

of properties. All values are initially zero. Cells in which the 

values are not preceded by procedure are marked with an 

asterisk. The first two lines and the first three columns of the 

matrix Z are shown for demonstration purposes. 

 

Figure 7. Matrix Z example. 

Different input sequences occupy different cells of matrix 

Z. A sample matrix can occupy a maximum of 12 × 4 = 48 

cells. According to the rules of formation, cells just above the 

diagonal can be occupied.  

The ones in the sample matrix Z are indicated in 

accordance with the input sequence of the matrix S. The 

other input sequence can add new ones in the cells of the 

matrix Z. The matrix Z is filled with the maximum number of 

ones after consideration of all possible input sequences. The 

remaining zeros indicate impossible combinations of 

properties. 

The zeros of matrix Z only show likely impossible 

combinations of properties if not all possible input sequences 

are examined. The probability of impossible combinations of 

properties is higher when more input sequences are 

examined. 

5. The Assessment Criteria of the Input 

Sequence 

Input stimuli determine the output response. The maximal 

number of pairs of output properties is equal to 4 * m * (m – 

1)/2. Disorders of runtime can be identified only if not all 

pairs of properties are available at the output. Only 

impossible pairs of properties may identify the failure. The 

probability of identification of failure is proportional to the 

number of pairs of properties that are impossible. It is 

therefore appropriate to seek to evaluate more such 

situations. 

 

Figure 8. Procedure APP of making matrix Z. 

The number of situations is enhanced if the property pairs 

of adjacent stimuli of the output sequences are considered. 

Properties of the adjacent stimuli may have the variations 00, 

01, 10, and 11, and property pairs will already have 4 × 4 = 

16 variations. The calculation procedure is shown in Figure 

8. Compared with the SPP procedure for the external cycle, T 

– 1 lines are analysed, because only adjacent rows are 

considered. The indices k and d are increased by the amounts 

sk and sd, whose values are calculated using the matrix S 

outputs so that every situation can be described into different 
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cells. The values of sk and sd are equal to zero if the matrix S 

corresponding cells are also equal to 00. If the matrix S 

corresponding cells are equal to 01, the values of sk and sd 

are equal to 1. If the corresponding cells are considered equal 

to 10, the values of sk and sd are equal to 2. The values of sk 

and sd are equal to 3 if the corresponding cells are considered 

equal to 11. The maximal number of cells to be filled in is 

equal to ((m * (m – 1))/2) * 16 * (T – 1) 

The fragment of matrix Z at t = 0 is shown in Figure. 9. 

The "Properties" tag is shortened to "Prop." in the table. 

Property p1 is equal to zero when t = 0 and equal to one 

when t = 1 in the analysed matrix S. This corresponds to the 

case of t = 0 and j = 0 in the APP calculation procedure that 

calculates the value of sk equal to 1; accordingly, the 

property p2 is equal to one when t = 0 and equal to zero when 

t = 1 in the analysed matrix S. This corresponds to the case of 

t = 0 and j = 0, i = 1 of the APP calculation procedure that 

calculates the value of sd equal to 2. Thus, the appearance of 

the index k = 1 and the index d = 6 of the matrix Z records 

ones in the appropriate cell. Indices k = 1 and d = 9 are 

determined by a pair of properties p1 and p3 and indices of k 

= 6 and d = 9 are determined by a pair of properties p2 and 

p3. In this way, three ones are recorded in the matrix Z. 

 

Figure 9. Fragment of matrix Z when t = 0. 

 

Figure 10. The procedure AIPP of making matrix Z of adjacent input 

condition and output property pairs. 

Examination of pairs of input conditions and output 

properties can be another way to evaluate the input sequence. 

The modified filling procedure for matrix Z is shown in 

Figure 10. In this case, pairs of all input conditions and all 

output properties are considered. The maximum number of 

cells to be filled is equal to n * m * 16 * (T – 1). 

The fragment of matrix Z at t = 0 is shown in Figure. 11. 

In this case, the whole matrix may already be filled. The 16 

cells are desiccated to a pair of conditions and properties. For 

instances where t = 0, just one box is filled. 

 

Figure 11. Fragment of matrix Z filled by procedure AIPP. 

The APP and AIPP procedures form the matrix Z of 

possible pairs. A system failure can be detected if it causes an 

impossible pair. Sometimes, the failure can lead to a change 

of one possible combination of properties to another possible 

combination of properties. Such a situation will not be 

noticeable. Every possible option pair may recur several 

times during the execution of the input sequence. It is 
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therefore possible to find the maximum number of 

repetitions. A system failure is indicated if the maximum 

number of repetitions is exceeded. This allows us to detect 

failures that are not triggering impossible pairs. The 

formation of such a matrix is shown in Figure 12. 

 

Figure 12. The procedure AMPP of making matrix Z for the maximum 

number of repetitions of output property pairs. 

Like the APP procedure, the AMPP procedure presented 

forms a matrix Z with the difference that the property 

points are summed for all the stimuli of the input 

sequence. The maximum values of matrix Z are written 

into the matrix M. 

How can all the possible property pairs be found? Matrix Z 

is sequentially supplemented by the new input sequences 

during system execution. Filling the matrix Z during a long 

run can find all possible pairs of properties. However, the 

experiment cannot guarantee that all possible pairs of 

properties will be found. When the input sequences are 

analysed for a longer time, the likelihood that possible 

property pairs will be found increases. In practice, it may be 

considered that all of the property pairs have already been 

identified if the matrix Z is saturated with additions. Zero 

values of matrix Z indicate impossible property pairs and 

they can be used to identify failures. 

Problem detection at runtime depends on the method of 

capturing problems and upon the magnitude of the input 

sequences analysed. Functional failures might be seen if this 

influences the results. It is important to answer the question 

of how many problems a capture method can detect. How 

many impossible pairs of matrix Z will allow the detection of 

failures? To answer these questions, we carried out an 

experiment. 

6. Experiments 

Circuit B14 is a VIPER processor and all combinations of 

signal values of inputs and outputs are available. Impossible 

combinations of signal values can occur only when the clock 

cycles of the input sequence are evaluated. Internal states and 

order of stimuli in the input sequence determine the possible 

output values. An input sequence consists of 31 input stimuli. 

Circuit B14 has 34 inputs, 54 outputs, and 507 lines of 

VHDL code. A synthesized circuit has 3461 gates, 247 

triggers, and 27,592 stuck-at faults. 

The maximal number of output values of pairs is equal to 

((54 * 53)/2) * 16 = 22896. The maximal number of pairs of 

input/output values is equal to (34 * 54) * 16 = 29376. 

Random input sequences were generated for the purpose of 

having the most complete matrix Z according to the 

procedures APP and AIPP until the filling in procedure was 

exhausted. The maximum filling quantities for each clock 

cycle are shown in Table 5. Matrix parts corresponding to the 

first clock cycle are at the least filled, and at the same time, 

they have the greatest number of pairs of values that should 

be impossible. Changing the internal state, every second 

clock cycle also has an impact. 

The maximum number of possible pairs of output values 

for all pairs of clock cycles is equal to 686,880 and 

comprehensive random generation has found 390,038 pairs 

of output, representing 56.8%. In this case, 296,842 pairs of 

output values should be impossible and should enable the 

capture of the system failures. Similarly, the maximum 

number of possible input/output pairs of values for all clock 

cycles is equal to 881,280 and comprehensive random 

generation found 638,439 pairs of input/output, representing 

72.4%. In this case, 242841 input/output value pairs should 

be impossible and should make it possible to capture the 

system failures. 

Table 5. Maximum number of cells filled in during each clock cycle. 

Clock cycles Maximum number of output pairs (APP) Maximum number of input/output pairs (AIPP) Sum of the maximum values (MPP) 

1 1431 3564 6216 

2 1431 7074 5349 

3 2846 10073 9118 

4 6506 15344 8992 

5 9517 19631 8762 

6 9441 19379 8543 

7 16845 27651 8362 

8 10687 19378 8054 

9 18380 27695 7848 
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Clock cycles Maximum number of output pairs (APP) Maximum number of input/output pairs (AIPP) Sum of the maximum values (MPP) 

10 10687 19382 7608 

11 19407 27904 7422 

12 10687 19386 7150 

13 19504 27560 6969 

14 10687 19240 6685 

15 19565 27560 6502 

16 10687 19240 6107 

17 19565 27560 5387 

18 10687 19240 4747 

19 19565 27560 3917 

20 10687 19240 6049 

21 19537 27560 5448 

22 10687 19454 5211 

23 19560 27842 4343 

24 10687 19522 4216 

25 19564 27560 4074 

26 10687 19240 3983 

27 19565 27560 3858 

28 10687 19240 3707 

29 19565 27560 3576 

30 10687 19240 3421 

 

A verification sequence of 100006 input stimuli that had 

been grouped into sequences who have 31 stimuli (a total of 

3226 sequences) was randomly generated for the 

experiments. Several dozen mutations (distortions) of the 

VHDL description, the introduction of additional features, 

and the insertion of stuck-at faults were analysed. Distortions 

imitate the system failure. The results are shown in Table 6. 

The second line shows distortions that alter the conditions of 

VHDL operators. The third line shows distortions that reverse 

the branches of CASE operators. The results of the insertion of 

additional circuit functions are presented in the fourth row. The 

last two lines are intended for insertion of stuck-at faults. 

The average number of output value changes after the 

distortion is shown in the second column. The percentage of 

detected distortions is indicated in parentheses. 

The system disorders are very different. The number of 

disorders can be enormous. Examination of all disorders is 

impossible. The number and types of disorders found during 

the experiment are far from covering all possible system 

disorders. Therefore, observations made in accordance with 

the results of the experiment cannot be categorical and 

generalizations should only be made with some caution.  

The numbers listed in Table 6 show how many impossible 

properties detect distortion (disorder) on average. The 

percentages in brackets show how many disorders have been 

detected from all of the examined. The maximum percentage is 

indicated in the second column because were considered just 

such distortions, which change the output values. First of all, it 

should be noted that a large proportion of the disorders are not 

detected when the impossible combinations of properties are 

evaluated, although such disorders cause changes in the output 

values (second column). Therefore, each specific problem 

always has to have an assessment of the extent to which 

impossible properties can detect disorders.  

The distortions that related to design errors are the most 

difficult to detected. This is consistent with mutations of the 

software, when the conditions of the source are changed (the 

second and third rows of the Table 6). The addition of the 

extra features is detected best, indicating the possibilities of 

detection of unauthorized changes to the code (fourth row). 

Hardware problems (stuck-at faults) are also detected 

relatively well (the last two lines). 

Table 6. The results of an experimental study. 

Failures The average number of conflicting output 

values 

The average number of impossible pairs of 

adjacent output values (APP) 

Amendment of comparison conditions 7561 (100%) 0 (0%) 

Swapping of branches (CASE) 3606 (100%0 23 (3%) 

Insertion of additional functions 12560 (100%) 7442 (83%) 

Stuck-at faults ≡ 0 10177 (100%) 2949 (71%) 

Stuck-at faults ≡ 1 22121 (100%) 511 (54%) 

Table 6. Continued. 

Failures 
The average number of impossible pairs of 

adjacent input/output values (AIPP) 

The average number of adjacent output values 

in excess of the maximum value (MPP) 

Amendment of comparison conditions 0 (0%) 49 (6%) 

Swapping of branches (CASE) 0 (0%) 14 (2%) 

Insertion of additional functions 8938 (70%) 788 (91%) 

Stuck-at faults ≡ 0 141 (9%) 346 (66%) 

Stuck-at faults ≡ 1 780 (44%) 132 (39%) 
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The results of the experiment (Table 6) are scattered, 

which prevents the formation of unambiguous assertions. It 

does not indicate that one of the techniques dealing with the 

detection of disorders is superior to the others because there 

were such disorders detected by only one technique. In 

general, input/output pairs (the fourth column) detect fewer 

disorders, but it must be remembered that the present case 

has not restricted the combinations of input conditions. With 

such restrictions, the situation might change. The maximum 

value method (last column) harder saturated with the 

formation of matrix Z but captures more different disorders. 

7. Conclusions 

Runtime verification is based on inspection of the output 

results. The system failures alter the values of results. 

Comparison of the results obtained with the expected results 

allows the detection of failures. The expected results may be 

determined on the basis of the behavioural model. Otherwise, 

runtime verification is based on properties. Properties that 

cannot be fulfilled in any one of the input sequences are 

referred to as impossible properties. The capture of 

impossible properties during service shows possible system 

failures. Only some failures may be detected during the 

inspections of impossible properties. Examination of 

combinations of properties increases the capability to detect 

system failures during service. 

During service or during the generation of random input 

sequences, all possible combinations of properties are 

recorded until the process becomes saturated. The number of 

possible combinations of properties can be enormous, and 

their treatment requires the use of simplified methods. 

Combinations of properties that do not occur can be 

considered as impossible combinations of properties and can 

be used for runtime verification. Determination of impossible 

combinations of properties during service allows us to 

highlight such impossible combinations of properties that are 

clearly not visible from the specification. The experimental 

results cannot guarantee that combination of properties that 

should be impossible are indeed impossible. This can be 

interpreted as a warning. Without a system failure, an 

impossible combination of properties can be changed to the 

possible combination.  

Three methods of marking the possible combinations of 

properties are proposed. One method examines the 

combinations of the output values of adjacent stimuli of the 

sequence. Another method examines the combinations of 

input and output values. The third method assesses the 

maximum number of combinations of output values. The 

capabilities of the proposed marking methods are assessed by 

examining circuit B14 of the ITC benchmark suite. VHDL 

mutations and stuck-at faults have been considered as 

potential system failures. Many failures that change the 

output results are not monitored by examining impossible 

combinations of properties. This shows that the runtime 

verification in respect of the properties must have 

information on how many disruptions in the system can be 

detected.  

The scattering of experimental results shows that none of 

the three marking methods has any obvious advantage. It is 

appropriate to use all three of the proposed marking 

techniques together during runtime verification. 

This article is based upon work from COST Action ARVI 

IC1402, supported by COST (European Cooperation in 

Science and Technology). 
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