

American Journal of Computer Science and Technology
2018; 1(2): 44-54

http://www.sciencepublishinggroup.com/j/ajcst

doi: 10.11648/j.ajcst.20180102.12

The Examination of Shall Be Impossible Situations for
Verification During Execution

Rimantas Seinauskas

Software Department, Informatic Faculty, Kaunas University of Technology, Kaunas, Lithuania

Email address:

To cite this article:
Rimantas Seinauskas. The Examination of Shall Be Impossible Situations for Verification During Execution. American Journal of Computer

Science and Technology. Vol. 1, No. 2, 2018, pp. 44-54. doi: 10.11648/j.ajcst.20180102.12

Received: February 18, 2018; Accepted: March 5, 2018; Published: March 23, 2018

Abstract: Runtime verification is looking for violations of the properties of the system functioning. Finding and describing

the system properties that indicate behavioural disorders is a complex and labour-intensive process that needs to be automated.

This article describes how system properties can be determined automatically during the correct functioning. Inspection of the

combinations of fulfilled properties makes it possible to detect more system problems. Three methods of handling property

combinations are offered. The methods are based on the examination of the input sequences and output results. In order to

increase the volume of the properties of the system under consideration, only the possible pairs of properties are analysed.

Pairs are formed from the output properties, as well as from the input conditions and output properties, and the maximum

possible number of property pairs is evaluated. The available property pairs are captured during the operation. Impossible

combinations of properties that never occur during the execution highlight situations that are not possible during proper

functioning. Capture of impossible property pairs during verification indicates system problems. During the experiment, five

types of disorders and three detection methods were considered. Experimental results show that there is no single best method

for detecting disorders. Therefore, it is appropriate at the same time to use several methods to detect disorders. The experiment

shows how much of the disorders can detect the proposed approach.

Keywords: Runtime Verification, System Properties, Capturing of Properties, Inspection of Proper Functioning

1. Introduction

The system design is based on a specification that

describes the operations as a function of all possible input

data. Verification and testing verifies whether only the

possible situations are received. Runtime verification checks

the occurrence of described impossible situations. Impossible

situations allow us to see the system from a different

perspective. Impossible and possible situations represent a set

of all existing situations. Runtime verification of situations

that are impossible allows additional increase of system

reliability. Inspection may be performed during service or

before.

Verification is based on inspection of the expected results

when the input stimuli are known in advance. A verification

test case indicates the expected results for the selected input

stimuli. The runtime verification decides the correctness of

functioning during the execution. Input stimuli and the

expected results are not known in advance. The decision

about the correctness of functioning is taken on the basis of

the characteristics (properties) of the results obtained.

The goal of runtime verification is to increase the

reliability of existing systems. Software system reliability is

increased in various ways. The key is to carry out thorough

verification and testing. Automatic test generation faces the

problem of how to determine the expected reaction (the

oracle problem) using the test data. One way to do this is to

independently design and implement two versions of the

programs. Comparison of the results of the two program

versions can be used instead of using separate oracle. The

probability that bugs will be the same in both program

versions is limited. A results mismatch with the same input

data shows that there is an error in one of the versions. But it

does not solve problems due to errors in the specification.

Two independently derived specifications can also be

considered.

Duplication of work is very expensive. Therefore, instead

of using version of the application, a model of properties that

have to be fulfilled for all the input data can be generated.

The independent creation of such a model can be less labour

 American Journal of Computer Science and Technology 2018; 1(2): 44-54 45

intensive compared to the creation of other versions.

Drawing up a model of properties that allow the detection of

program bugs may require considerable of effort as well. The

question of whether such a property model that can expose

all the bugs in the program can be created remains open. The

property model makes it possible to automate test generation,

to use randomly generated data, and to carry out runtime

verification.

Design errors, software bugs, hardware defects, and human

contingency condition system failure. Failure detection is

based on the description of the correct functioning. Ageing

defects in hardware and software changes can occur during

operation. In this case, incorrect functioning can be captured

during a service.

Input data that are used during runtime verification are not

known in advance. Evaluation of the results is based on the

expected results to be calculated. Determining the correct

expected results mainly consumes resources during runtime

verification, but these calculations can be carried out in

parallel with the main execution calculations.

Verification and runtime verification become similar if the

behavioural model determines the correctness of results.

Working input stimuli are used during runtime verification,

while artificial input stimuli can be used during verification.

The calculation time and the necessary computer resources

are very important for the runtime verification, because

correctness of results is carried out in real time. Correctness

of results is carried out after each step and may be executed

in parallel with the next step. Parallelization is not possible if

the decision should be taken into account before the next

step. Therefore, correctness of results time is a critical

parameter and the minimization of the time taken by the

decision is a very important goal with regard to runtime

verification.

An exact behaviour model like the finite-state machine

[FSM] model enables one to obtain and compare the output

results. A simplified behavioural model makes it possible to

check only some properties like possible transitions between

states or possible consistency of events in the execution.

Impossible transitions between states or impossible

consistency in the execution of the events indicates a failure.

The possible transitions between states or possible execution

sequences of events must be calculated and made available in

advance. If this is not feasible, the possible transitions

between states and the execution sequences of events can be

registered in service until saturation is obtained. In this case,

the answer to the question of how much a simplified analysis

reduces the probability of detection of problems is very

important.

Simplification of the exact behaviour model is also

possible by indicating undefined output values (such as x)

when the model cannot accurately define them. Only

precisely defined values are compared during verification.

Such a principle may allow the detection of more failures

compared with inspection only of impossible properties. In

addition, the establishment of such a model may be simpler.

The internal states are not always available during service,

nor is other internal information. There is always a target for

verification using only input and output data. Rating input

sequences like integrated units partially compensate for the

loss of information about the inner states.

In general, it is difficult to identify distinct properties of

results so that the malfunction can be detected. Not all

problems lead to nonfulfillment of such properties.

Examination of combinations of properties allows the

detection of more failures. A combination of properties can

indicate failure, but when taken in isolation, properties do not

indicate failure. The objective of the study is to find the

combination of properties that captures failures during

execution. We are considering a situation in which we do not

have a functioning model and the potential properties are

extracted using a program in the working environment.

The main drawback of this method is that nonfulfillment

of properties extracted using a program in the working

environment does not guarantee system malfunction. It may

be that usage has highlighted a new property. Basically, this

is just a warning that the results must be carefully analysed.

A possible combination of properties is supplemented if the

analysis indicates the absence of failure.

2. Related Work

Verification of the system that is being developed includes

an assessment with respect to the specification. Validation

involves an inspection system in relation to the user's needs.

Testing provides quality assurance regarding the system.

Runtime verification examines the fulfilment of properties

during execution.

Runtime verification can rely on a behavioural model or a

property model. The behavioural model provides the

expected output results. Comparison of the expected results

and the results obtained during service makes it possible to

detect disturbances.

Detection of system failures requires additional resources.

Input data are used at run time. In general, a sequence of

input stimuli comprises input data. A model of behaviour can

determine the expected reaction of the input data. Simulation

of the input data can be carried out in parallel with the real

execution. This is demonstrated in Figure 1. The duration of

the service does not change if the simulation is faster than the

actual implementation.

Figure 1. Runtime verification with behavioural model.

The probability of detecting system malfunction increases

46 Rimantas Seinauskas: The Examination of Shall Be Impossible Situations for Verification During Execution

if a behavioural model is created independently from the

specification. In this case, it is less likely that the

specification and behaviour model will have the same

mistakes. The implemented system or behaviour model may

have a mistake when the results do not match.

Comparison of the simulation and execution results

enables us to detect system malfunctions but lengthens the

duration of data processing. The comparison will not affect

the duration of functioning of the system if it is carried out in

parallel with the processing of the following input data.

Verification should not last longer than the processing of

input data. In this case, the solution of the verification action

will be available later. This is demonstrated in Figure 2.

Figure 2. Parallel execution of verification and of processing of the input

data.

Possession of the internal state of the system increases

the problem-detection capabilities. However, monitoring

of the system’s internal states may affect its performance.

An answer to the question of how much internal state

tracking increases the detection of problems would be

very helpful.

The exact behaviour of the system model is difficult to

describe. Simplification of the model facilitates this work. An

undefined value is indicated when the model cannot

accurately determine the output values. The comparison of

non-simulated values is not carried out. In this case, the

detection of certain system failures may be lost. A

compromise between model simplicity and non-detection of

problems during runtime verification is necessary.

Figure 3. Runtime verification with model of properties.

Runtime verification with the model of properties is

shown in Figure 3. Properties are obtained from the

operational results and compared with the model of

properties. Nonfulfillment of any properties indicates the

presence of a failure in the system. Flair states that

comparison of the results with the behavioural model

should allow the detection of more system failures than

comparison of the results with the model of the properties.

The answer to the question of how many more failures

would be detected would be helpful in any case. The

property model raises many doubts about its usefulness due

to lack of validity experiments.

Runtime verification checks whether the behaviour of the

system complies with properties derived from the

specification [1]. A model of properties taking into account

the wishes of the user or other aspects of the ontology can

highlight specification errors as well.

The properties are the basis for determining whether the

system is compatible with the required behaviour. Properties

can be expressed in the form of temporal logic [2] or in the

form of finite automata [3]. Security properties are easier to

express using automata rather than a logic-based formalism

[4]. Linear temporal logic [5] allows the creation of

properties, which links the events and their sorting.

Possibilities of formal descriptions of properties have already

been explored well. Property violations are detected by the

monitor, which analyses the results and finds discrepancies

between the observed and expected system behaviours.

Runtime monitors are often derived directly from the

properties, and properties are often simply written by the

designer [6].

Runtime verification requires additional resources during

execution and this may affect the functioning of the system.

Fragmentation of additional costs in relation to place and

time can reduce the overall impact on the runtime

verification as claimed in [7]. Recently, much attention has

been paid to comparing runtime verification tools [8].

However, there is currently insufficient attention to the

automatic determination of properties during execution.

Stochastic models [9] and stream processing applications

[10] is a promising trend in solving runtime verification

problems.

Runtime verification can increase the system reliability,

but consumers always want to know how much it can

improve by and how much it will cost. The answers to these

questions are the hardest ones.

3. Conditions and Properties

Input stimuli are fed into the inputs, and output results are

obtained during execution of the object. The output results of

each stimulus satisfy or do not satisfy some properties. The

situation can be displayed as a vector p = <p1, p2,..., pi,...,

pm >, where pi = 1 when the property is fulfilled and pi = 0

when the property is not fulfilled. Similarly, the input stimuli

can fulfil some of the data conditions, whereas some data

conditions cannot be fulfilled. This can be represented by

another vector C = <c1, c2,..., ci,..., cn >, where ci = 1 when

the condition is fulfilled and ci = 0 if the condition is not

fulfilled. Vectors C and P describe the situation after the

execution of the input stimulus.

 American Journal of Computer Science and Technology 2018; 1(2): 44-54 47

What indicates system failure? In the simplest case,

nonfulfillment of at least one of the properties indicates

system failure. Often system failure is defined as

nonfulfillment of several properties or as nonfulfillment of

properties when another property is fulfilled. In this case,

there is talk about the combination of fulfilled properties.

Combinations of fulfilled properties enable the identification

of more system failures. Similarly, we can talk about

combinations of fulfilled input conditions. Combinations of

fulfilled input conditions give more options and flexibility in

describing the occurrence of system failures.

Input data can have at most 2
n
 combinations of fulfilled

conditions. The output results can have at most 2
m

combinations of fulfilments of properties. Object behaviour

can limit the amount of combinations of fulfilled properties

and some combinations will be unavailable. Monitoring of

shall be impossible combinations of properties on the object

output indicates malfunctions. Let us say that we have a set F

of possible combinations of properties and a set U of

impossible combinations of properties, where |F| + |U| = 2
m
.

Only the combinations of the set F are obtained during

correct operation. A malfunctioning case, instead of the

expected combinations of the set F, may be another

combination of sets F and U. Obtaining combinations of the

set U unambiguously shows that malfunctioning has

occurred. This feature can be used for identification of

problems in system execution.

Each combination of input conditions is related to set

combinations of possible properties of outputs. Possession of

such information enables the detection of more failures. A

failure that is replacing a combination of the set F with a

different combination of the set F can be found in this case.

Similarly, the functional environment of the object may

limit the amount of combinations of input conditions.

Linking the input conditions and output properties creates

preconditions for obtaining more invalid situations that

indicate a failure.

Let us consider a small example. Let us say that the

relevant function has input data of four numeric variables and

that three numerical variables are obtained at the output after

the execution of the function. All variables can be both

positive and negative. If it is known that a certain output

variable can only be positive, then the output variable taking

a negative value, indicates system failure. Such a strict

property may seldom be valid. A situation that takes output

variables that can be both positive and negative separately is

more likely to occur, but let us say that a situation in which

the first variable is positive, the second negative, and third

again positive cannot occur. Therefore, examination of the

property combinations is more flexible.

The following describes the properties p1, p2, and p3 of

outputs, which have the value of 1 when the property is

fulfilled and the value 0 otherwise. Accordingly, the value of

1 marks the fulfilment of the conditions c1, c2, c3, and c4 of

inputs and the value 0 otherwise. Possible combinations of

fulfilled conditions and properties are shown in Table 1, as an

example. In general, different properties can be obtained

under the same input conditions. This is demonstrated in

rows 8 and 9.

Table 1 shows that the set F = {000, 001, 010, 100, 110}

has five possible property combinations and the set U = {011,

101, 111} has three impossible combinations of properties.

Combinations of properties of the set U compose the

identification function of errors.

Table 1. Possible combinations of conditions and properties.

No. c1 c2 c3 c4 p1 p2 p3

1 0 0 0 0 0 0 1

2 0 0 0 1 0 0 1

3 0 0 1 0 0 0 1

4 0 0 1 1 0 0 1

5 0 1 0 0 0 0 0

6 0 1 0 1 0 0 0

7 0 1 1 0 0 0 0

8 0 1 1 1 0 1 0

9 0 1 1 1 0 0 0

10 1 0 0 0 0 0 0

11 1 0 0 1 0 0 0

12 1 0 1 0 0 0 0

13 1 0 1 1 0 0 0

14 1 1 0 0 0 0 0

15 1 1 0 1 0 0 0

16 1 1 1 0 1 0 0

17 1 1 1 1 1 1 0

We will consider how the sets F and U can be used in

practice for verification during the execution. During

verification, it is necessary to determine what conditions the

input data fulfil and what properties the results obtained fulfil

and to determine whether the properties of the obtained

results are possible according to the table of combinations of

conditions and properties. How can a table of conditions and

possible properties be obtained? In general, it follows from

the specification. However, in practice it is impossible to

write out all possible combinations of conditions and

properties. This can be find during a long operation of the

correctly functioning system. However, a table of possible

conditions and properties can be overwhelming. It is possible

to reduce it by listing only possible combinations of

48 Rimantas Seinauskas: The Examination of Shall Be Impossible Situations for Verification During Execution

properties (F set). The inverse of the set U should be used for

verification. This simplification can significantly reduce the

verification accuracy, because there is a loss of connection to

the combinations of input conditions. In general, the set U

can be empty and cannot be used in such cases. Another

problem is that the set U can be enormous and in practice, it

cannot be listed as well. In this case, it is necessary to look

for processing techniques of the set U that are acceptable in

practice. Finding the set U can require a lot of resources as

well. In addition, it is still necessary to answer the question

of what part of the failures causes the appearance of

combinations of the set U. We will try to discuss this.

Functional disturbances can greatly change the output

properties in different ways. One way of analysing the

situation includes changing the table that describes the

conditions and properties with the corresponding logic circuit

and its fault studies. A stuck-at fault imitates system disorder.

This is done only for demonstration purposes. Table 1

becomes similar to the truth table when line 9 is discarded.

Properties assigned to outputs and conditions assigned to the

inputs allow us to get the logical functions of outputs (p1 =

c1c2c3; p2 = c2c3c4; p3 =�1���	�2����. A synthesized circuit is

shown in Figure. 4. For demonstration purposes, we will

consider how stuck-at faults of the synthesized circuit affect

outputs. Eleven stuck-at faults of the synthesized circuits are

listed in Table 2. The third column shows how stuck-at faults

are changing the properties of outputs. Fault c1 (1) ≡ 1

corresponds to the fixing of a value as one in the input of

element (1), which is connected to the input c1. In case of

this fault, the sample circuit behaviour changes as though the

value of the input vector conditions c1 value were always

equal to one. In Table 1, we can see how the properties of the

output changes after the amendment of condition c1 always

to one. The output values 000 change to the values 100 (010

→ 110) for the fault c1 (1) ≡ 1. Similarly, the output property

values 000 change to values of 100 (000 → 110) at the input

condition values c1c2c3c4 = 1010 and 1011 (lines 12 and

13). We see that only two faults (c2 (2) ≡ 1, p3 (3) ≡ 1) cause

combinations of the set U (highlighted) and other faults only

cause combinations of the set F. Detection of these failures

requires information about the possible properties of outputs

for the relevant input conditions. In this case, it is necessary

to consider the combinations of pairs of input conditions and

output properties. The number of possible combinations of

pairs is equal to 2
m+n

.

Figure 4. Synthesized circuit according to Table 1.

Table 2. Influence of stuck-at faults on the output results.

No. Faults Output changes OO options IO options

1 c1 (1) ≡ 1 000→100 010→110 c1↔ p1 (01)

2 c2 (1) ≡ 1 000→100 000→110 c2↔ p1 (01)

3 c3 (1) ≡ 1 000→100 000→110 c3↔ p1 (01)

4 p1 (1) ≡ 0 100→000 110→010

5 c2 (2) ≡ 1 000→110 001→011 (p2, p3) – (11) c2↔ p2 (01)

6 c3 (2) ≡ 1 000→010 000→110 c3↔ p2 (01)

7 c4 (2) ≡ 1 000→010 100→110 c4↔ p2 (01)

8 p2 (2) ≡ 0 010→000 110→100

9 c1 (3) ≡ 1 001→000 001→010

10 c2 (3) ≡ 1 001→000 001→010

11 p3 (3) ≡ 1
000→001 010→011 (p2, p3) – (11) c1↔ p3 (11)

100→101 110→111 (p1, p3) – (11) c2↔ p3 (11)

 American Journal of Computer Science and Technology 2018; 1(2): 44-54 49

Processing of large sets of combinations is practically

impossible. To simplify the calculations, we can restrict

ourselves to checking only the amount of all possible pairs of

set. The scope of pairs of a set of N elements is equal to N (N –

1)/2. Here is the estimated symmetry of the element pairs. The

pairs of elements (e1, e2) and (e2, e1) denote the same

information. Each pair of elements of the sets has four options

for the fulfilment of the conditions or properties: 00, 01, 10,

and 11. Notation 00 shows that the condition or property is not

fulfilled by both elements. Similarly, the notation 01 indicates

that the condition or property of the first element is not

fulfilled and that of the second element is fulfilled.

A set of N elements can have up to 2 ** N possible

combinations. The number of possible combinations

decreases to 4 * N (N – 1)/2 = 2* N (N–1) if we restrict

ourselves to examining not all combinations, but merely

examining the combinations of element pairs. Expression 2 *

N (N – 1) shows that, in practice, real-size sets can be

processed in this case. However what impact this has on the

accuracy of the examination must be assessed. This

simplification only makes sense when it is impossible to treat

all possible combinations.

Table 3 shows combinations pairs of outputs, which are

found from Table 1. Symmetrical pairs like (p2, p1) and pairs

with yourself like (p1, p1) are not listed. We find all four

possible embodiment properties (00, 01, 10, 11) in columns

p1 and p2 of Table 1. Columns p1 and p3 do not have the

combination (11) where both properties have been satisfied.

Unavailable combinations are shown in bold (red).

Combination (11) indicates an inpossible situation. The

fourth column of Table 2 shows that in this case we can

detect only two faults.

Table 3. Combinations of pairs of fulfilled output properties.

 p1 p2 p3

p1 00 01 10 11 00 01 10 11

p2 00 01 10 11

p3

Similarly, we can consider pairs of inputs and outputs. The

results are shown in Table 4, and the detection of stuck-at faults

is shown in the last column of Table 2. We see that in this case,

four faults remain unidentified. In any case, the question is

always whether input/output pairs detect all defects, which

detect the output/output pairs. Otherwise, it is appropriate to use

both output/input pairs and output/output pairs.

Table 4. Combinations of pairs of fulfilled input/output properties.

 p1 p2 p3

c1 00 10 11 01 00 01 10 11 00 01 10 11

c2 00 10 11 01 00 10 11 01 00 01 10 11

c3 00 10 11 01 00 10 11 01 00 01 10 11

c4 00 01 10 11 00 10 11 01 00 01 10 11

The case study showed that the unavailable combinations

of properties of pairs between the outputs and between the

inputs and outputs allow some possible failures of the system

to be detected.

4. Input Sequences

So far, we determined, in a simplified fashion, that the

output properties depend only on the input conditions. In

reality, the examined object can have internal states and the

output reactions are dependent on the previous state and on

previously filled input stimuli. It is therefore necessary to

examine the sequences of input stimuli and output reactions.

The sequence is of fixed length and is composed of a clock

cycle t = 1, 2, 3,..., T. The initialization stimulus is at the

beginning of the sequence. The reactions of different stimuli

can be examined separately and can vary greatly in different

clock cycles of the sequence. This makes it possible to obtain

more combinations of properties that are unavailable and thus

to increase the chances that disorders can be identified.

The input sequence can be displayed as a matrix S = || st,j

||T, n + m, where st,j = 1 when j <= n corresponds to the fulfilled

input conditions at clock cycle t and st,j = 1 when n < j <= n +

m corresponds to the fulfilled output properties at clock cycle

t. Otherwise st,j = 0. An example matrix is illustrated in

Figure 5.

Figure 5. Matrix S example.

The pairs of output sequence properties can be represented

by a matrix Z = ||zk,d ||2*m*T,2*m, where zk,d = 1, k = 2 * j + st,j +

n + t * 2 * m, and d = 2 * i + st,i + n, where t = 0, 1, 2,... T, j =

0,..., m – 1, i = j + 1,..., m. This description is formally

correct but difficult to understand. The calculation procedure

is more clearly demonstrated in Figure 6. Procedure SPP of

making matrix Z demonstrates a calculation algorithm for the

values of output sequence property pairs.

Figure 6. Procedure SPP of making matrix Z.

The external loop of the variable t examines all rows of

matrix S and each cycle forms a part of the value of the matrix

Z. The property pairs of line t are examined during internal

cycles. All possible j and i pairs where i > j are analysed. The

50 Rimantas Seinauskas: The Examination of Shall Be Impossible Situations for Verification During Execution

indices k and d of matrix Z are calculated for each pair. There

are four possible property pairs combinations of the matrix S:

00, 10, 01,1. Depending on the property pairs, the indexes k

and d designate one of the adjacent cells (2 * j + s [t] [j + n], 2

* i + s [t], [i + n]), where one is recorded. The second index of

matrix S has increased in size by n, since only outputs are

examined. In this way, each combination of a property pair has

a separate cell of the matrix Z. The k index is shifted by the

amount 2 * t * m so that the values of the various rows are

written into different matrix areas.

The matrix Z formed in accordance with the matrix S is

shown in Figure 7. The matrix has four sections corresponding

to the line t of matrix S. Each property has two rows and two

columns in all parts. One row or column is intended for the

case when the property is not fulfilled (zero value), and the

next row or column is for the case when the property is

fulfilled (one value). Let us say that we have a pair of

properties (p1 = 0, p2 = 1) of the matrix S and line t = 0. Four

cells are at the intersection of rows and columns of these

properties in the matrix Z. Accordingly, we assign one of them

a value of one. The meaning is indicated for all possible pairs

of properties. All values are initially zero. Cells in which the

values are not preceded by procedure are marked with an

asterisk. The first two lines and the first three columns of the

matrix Z are shown for demonstration purposes.

Figure 7. Matrix Z example.

Different input sequences occupy different cells of matrix

Z. A sample matrix can occupy a maximum of 12 × 4 = 48

cells. According to the rules of formation, cells just above the

diagonal can be occupied.

The ones in the sample matrix Z are indicated in

accordance with the input sequence of the matrix S. The

other input sequence can add new ones in the cells of the

matrix Z. The matrix Z is filled with the maximum number of

ones after consideration of all possible input sequences. The

remaining zeros indicate impossible combinations of

properties.

The zeros of matrix Z only show likely impossible

combinations of properties if not all possible input sequences

are examined. The probability of impossible combinations of

properties is higher when more input sequences are

examined.

5. The Assessment Criteria of the Input

Sequence

Input stimuli determine the output response. The maximal

number of pairs of output properties is equal to 4 * m * (m –

1)/2. Disorders of runtime can be identified only if not all

pairs of properties are available at the output. Only

impossible pairs of properties may identify the failure. The

probability of identification of failure is proportional to the

number of pairs of properties that are impossible. It is

therefore appropriate to seek to evaluate more such

situations.

Figure 8. Procedure APP of making matrix Z.

The number of situations is enhanced if the property pairs

of adjacent stimuli of the output sequences are considered.

Properties of the adjacent stimuli may have the variations 00,

01, 10, and 11, and property pairs will already have 4 × 4 =

16 variations. The calculation procedure is shown in Figure

8. Compared with the SPP procedure for the external cycle, T

– 1 lines are analysed, because only adjacent rows are

considered. The indices k and d are increased by the amounts

sk and sd, whose values are calculated using the matrix S

outputs so that every situation can be described into different

 American Journal of Computer Science and Technology 2018; 1(2): 44-54 51

cells. The values of sk and sd are equal to zero if the matrix S

corresponding cells are also equal to 00. If the matrix S

corresponding cells are equal to 01, the values of sk and sd

are equal to 1. If the corresponding cells are considered equal

to 10, the values of sk and sd are equal to 2. The values of sk

and sd are equal to 3 if the corresponding cells are considered

equal to 11. The maximal number of cells to be filled in is

equal to ((m * (m – 1))/2) * 16 * (T – 1)

The fragment of matrix Z at t = 0 is shown in Figure. 9.

The "Properties" tag is shortened to "Prop." in the table.

Property p1 is equal to zero when t = 0 and equal to one

when t = 1 in the analysed matrix S. This corresponds to the

case of t = 0 and j = 0 in the APP calculation procedure that

calculates the value of sk equal to 1; accordingly, the

property p2 is equal to one when t = 0 and equal to zero when

t = 1 in the analysed matrix S. This corresponds to the case of

t = 0 and j = 0, i = 1 of the APP calculation procedure that

calculates the value of sd equal to 2. Thus, the appearance of

the index k = 1 and the index d = 6 of the matrix Z records

ones in the appropriate cell. Indices k = 1 and d = 9 are

determined by a pair of properties p1 and p3 and indices of k

= 6 and d = 9 are determined by a pair of properties p2 and

p3. In this way, three ones are recorded in the matrix Z.

Figure 9. Fragment of matrix Z when t = 0.

Figure 10. The procedure AIPP of making matrix Z of adjacent input

condition and output property pairs.

Examination of pairs of input conditions and output

properties can be another way to evaluate the input sequence.

The modified filling procedure for matrix Z is shown in

Figure 10. In this case, pairs of all input conditions and all

output properties are considered. The maximum number of

cells to be filled is equal to n * m * 16 * (T – 1).

The fragment of matrix Z at t = 0 is shown in Figure. 11.

In this case, the whole matrix may already be filled. The 16

cells are desiccated to a pair of conditions and properties. For

instances where t = 0, just one box is filled.

Figure 11. Fragment of matrix Z filled by procedure AIPP.

The APP and AIPP procedures form the matrix Z of

possible pairs. A system failure can be detected if it causes an

impossible pair. Sometimes, the failure can lead to a change

of one possible combination of properties to another possible

combination of properties. Such a situation will not be

noticeable. Every possible option pair may recur several

times during the execution of the input sequence. It is

52 Rimantas Seinauskas: The Examination of Shall Be Impossible Situations for Verification During Execution

therefore possible to find the maximum number of

repetitions. A system failure is indicated if the maximum

number of repetitions is exceeded. This allows us to detect

failures that are not triggering impossible pairs. The

formation of such a matrix is shown in Figure 12.

Figure 12. The procedure AMPP of making matrix Z for the maximum

number of repetitions of output property pairs.

Like the APP procedure, the AMPP procedure presented

forms a matrix Z with the difference that the property

points are summed for all the stimuli of the input

sequence. The maximum values of matrix Z are written

into the matrix M.

How can all the possible property pairs be found? Matrix Z

is sequentially supplemented by the new input sequences

during system execution. Filling the matrix Z during a long

run can find all possible pairs of properties. However, the

experiment cannot guarantee that all possible pairs of

properties will be found. When the input sequences are

analysed for a longer time, the likelihood that possible

property pairs will be found increases. In practice, it may be

considered that all of the property pairs have already been

identified if the matrix Z is saturated with additions. Zero

values of matrix Z indicate impossible property pairs and

they can be used to identify failures.

Problem detection at runtime depends on the method of

capturing problems and upon the magnitude of the input

sequences analysed. Functional failures might be seen if this

influences the results. It is important to answer the question

of how many problems a capture method can detect. How

many impossible pairs of matrix Z will allow the detection of

failures? To answer these questions, we carried out an

experiment.

6. Experiments

Circuit B14 is a VIPER processor and all combinations of

signal values of inputs and outputs are available. Impossible

combinations of signal values can occur only when the clock

cycles of the input sequence are evaluated. Internal states and

order of stimuli in the input sequence determine the possible

output values. An input sequence consists of 31 input stimuli.

Circuit B14 has 34 inputs, 54 outputs, and 507 lines of

VHDL code. A synthesized circuit has 3461 gates, 247

triggers, and 27,592 stuck-at faults.

The maximal number of output values of pairs is equal to

((54 * 53)/2) * 16 = 22896. The maximal number of pairs of

input/output values is equal to (34 * 54) * 16 = 29376.

Random input sequences were generated for the purpose of

having the most complete matrix Z according to the

procedures APP and AIPP until the filling in procedure was

exhausted. The maximum filling quantities for each clock

cycle are shown in Table 5. Matrix parts corresponding to the

first clock cycle are at the least filled, and at the same time,

they have the greatest number of pairs of values that should

be impossible. Changing the internal state, every second

clock cycle also has an impact.

The maximum number of possible pairs of output values

for all pairs of clock cycles is equal to 686,880 and

comprehensive random generation has found 390,038 pairs

of output, representing 56.8%. In this case, 296,842 pairs of

output values should be impossible and should enable the

capture of the system failures. Similarly, the maximum

number of possible input/output pairs of values for all clock

cycles is equal to 881,280 and comprehensive random

generation found 638,439 pairs of input/output, representing

72.4%. In this case, 242841 input/output value pairs should

be impossible and should make it possible to capture the

system failures.

Table 5. Maximum number of cells filled in during each clock cycle.

Clock cycles Maximum number of output pairs (APP) Maximum number of input/output pairs (AIPP) Sum of the maximum values (MPP)

1 1431 3564 6216

2 1431 7074 5349

3 2846 10073 9118

4 6506 15344 8992

5 9517 19631 8762

6 9441 19379 8543

7 16845 27651 8362

8 10687 19378 8054

9 18380 27695 7848

 American Journal of Computer Science and Technology 2018; 1(2): 44-54 53

Clock cycles Maximum number of output pairs (APP) Maximum number of input/output pairs (AIPP) Sum of the maximum values (MPP)

10 10687 19382 7608

11 19407 27904 7422

12 10687 19386 7150

13 19504 27560 6969

14 10687 19240 6685

15 19565 27560 6502

16 10687 19240 6107

17 19565 27560 5387

18 10687 19240 4747

19 19565 27560 3917

20 10687 19240 6049

21 19537 27560 5448

22 10687 19454 5211

23 19560 27842 4343

24 10687 19522 4216

25 19564 27560 4074

26 10687 19240 3983

27 19565 27560 3858

28 10687 19240 3707

29 19565 27560 3576

30 10687 19240 3421

A verification sequence of 100006 input stimuli that had

been grouped into sequences who have 31 stimuli (a total of

3226 sequences) was randomly generated for the

experiments. Several dozen mutations (distortions) of the

VHDL description, the introduction of additional features,

and the insertion of stuck-at faults were analysed. Distortions

imitate the system failure. The results are shown in Table 6.

The second line shows distortions that alter the conditions of

VHDL operators. The third line shows distortions that reverse

the branches of CASE operators. The results of the insertion of

additional circuit functions are presented in the fourth row. The

last two lines are intended for insertion of stuck-at faults.

The average number of output value changes after the

distortion is shown in the second column. The percentage of

detected distortions is indicated in parentheses.

The system disorders are very different. The number of

disorders can be enormous. Examination of all disorders is

impossible. The number and types of disorders found during

the experiment are far from covering all possible system

disorders. Therefore, observations made in accordance with

the results of the experiment cannot be categorical and

generalizations should only be made with some caution.

The numbers listed in Table 6 show how many impossible

properties detect distortion (disorder) on average. The

percentages in brackets show how many disorders have been

detected from all of the examined. The maximum percentage is

indicated in the second column because were considered just

such distortions, which change the output values. First of all, it

should be noted that a large proportion of the disorders are not

detected when the impossible combinations of properties are

evaluated, although such disorders cause changes in the output

values (second column). Therefore, each specific problem

always has to have an assessment of the extent to which

impossible properties can detect disorders.

The distortions that related to design errors are the most

difficult to detected. This is consistent with mutations of the

software, when the conditions of the source are changed (the

second and third rows of the Table 6). The addition of the

extra features is detected best, indicating the possibilities of

detection of unauthorized changes to the code (fourth row).

Hardware problems (stuck-at faults) are also detected

relatively well (the last two lines).

Table 6. The results of an experimental study.

Failures The average number of conflicting output

values

The average number of impossible pairs of

adjacent output values (APP)

Amendment of comparison conditions 7561 (100%) 0 (0%)

Swapping of branches (CASE) 3606 (100%0 23 (3%)

Insertion of additional functions 12560 (100%) 7442 (83%)

Stuck-at faults ≡ 0 10177 (100%) 2949 (71%)

Stuck-at faults ≡ 1 22121 (100%) 511 (54%)

Table 6. Continued.

Failures
The average number of impossible pairs of

adjacent input/output values (AIPP)

The average number of adjacent output values

in excess of the maximum value (MPP)

Amendment of comparison conditions 0 (0%) 49 (6%)

Swapping of branches (CASE) 0 (0%) 14 (2%)

Insertion of additional functions 8938 (70%) 788 (91%)

Stuck-at faults ≡ 0 141 (9%) 346 (66%)

Stuck-at faults ≡ 1 780 (44%) 132 (39%)

54 Rimantas Seinauskas: The Examination of Shall Be Impossible Situations for Verification During Execution

The results of the experiment (Table 6) are scattered,

which prevents the formation of unambiguous assertions. It

does not indicate that one of the techniques dealing with the

detection of disorders is superior to the others because there

were such disorders detected by only one technique. In

general, input/output pairs (the fourth column) detect fewer

disorders, but it must be remembered that the present case

has not restricted the combinations of input conditions. With

such restrictions, the situation might change. The maximum

value method (last column) harder saturated with the

formation of matrix Z but captures more different disorders.

7. Conclusions

Runtime verification is based on inspection of the output

results. The system failures alter the values of results.

Comparison of the results obtained with the expected results

allows the detection of failures. The expected results may be

determined on the basis of the behavioural model. Otherwise,

runtime verification is based on properties. Properties that

cannot be fulfilled in any one of the input sequences are

referred to as impossible properties. The capture of

impossible properties during service shows possible system

failures. Only some failures may be detected during the

inspections of impossible properties. Examination of

combinations of properties increases the capability to detect

system failures during service.

During service or during the generation of random input

sequences, all possible combinations of properties are

recorded until the process becomes saturated. The number of

possible combinations of properties can be enormous, and

their treatment requires the use of simplified methods.

Combinations of properties that do not occur can be

considered as impossible combinations of properties and can

be used for runtime verification. Determination of impossible

combinations of properties during service allows us to

highlight such impossible combinations of properties that are

clearly not visible from the specification. The experimental

results cannot guarantee that combination of properties that

should be impossible are indeed impossible. This can be

interpreted as a warning. Without a system failure, an

impossible combination of properties can be changed to the

possible combination.

Three methods of marking the possible combinations of

properties are proposed. One method examines the

combinations of the output values of adjacent stimuli of the

sequence. Another method examines the combinations of

input and output values. The third method assesses the

maximum number of combinations of output values. The

capabilities of the proposed marking methods are assessed by

examining circuit B14 of the ITC benchmark suite. VHDL

mutations and stuck-at faults have been considered as

potential system failures. Many failures that change the

output results are not monitored by examining impossible

combinations of properties. This shows that the runtime

verification in respect of the properties must have

information on how many disruptions in the system can be

detected.

The scattering of experimental results shows that none of

the three marking methods has any obvious advantage. It is

appropriate to use all three of the proposed marking

techniques together during runtime verification.

This article is based upon work from COST Action ARVI

IC1402, supported by COST (European Cooperation in

Science and Technology).

References

[1] Colin, S., & Mariani, L. (2005). “18 Run-Time Verification”.
In Model-Based Testing of Reactive Systems (pp. 525-555).
Springer, Berlin, Heidelberg. doi.org/10.1007/11498490_24.

[2] Leucker, M., & Schallhart, C. (2009). “A brief account of
runtime verification”. The Journal of Logic and Algebraic
Programming, 78 (5), 293-303.
doi.org/10.1016/j.jlap.2008.08.004.

[3] Colombo, C., Pace, G. J., & Schneider, G. (2008). “Dynamic
event-based runtime monitoring of real-time and contextual
properties”. In International Workshop on Formal Methods for
Industrial Critical Systems (pp. 135-149). Springer, Berlin,
Heidelberg. doi.org/10.1007/978-3-642-03240-0_13.

[4] Aktug, I., & Naliuka, K. (2008). “ConSpec—a formal
language for policy specification”. Science of Computer
Programming, 74=(1-2), 2-12.
doi.org/10.1016/j.scico.2008.09.004.

[5] Pnueli, A. (1977). ‘The temporal logic of programs”. In
Foundations of Computer Science, 1977., 18th Annual
Symposium on Foundations of Computer Science (pp. 46-57).
IEEE. doi.org/10.1109/sfcs.1977.32.

[6] Penczek, W., & Lomuscio, A. (2003). “Verifying epistemic
properties of multi-agent systems via bounded model
checking”. In Proceedings of the second international joint
conference on Autonomous agents and multiagent systems (pp.
209-216). doi.org/10.1145/860575.860609.

[7] Bodden, E., Hendren, L., Lam, P., Lhoták, O., & Naeem, N.
A. (2007). “Collaborative runtime verification with
tracematches”. In International Workshop on Runtime
Verification (pp. 22-37). Springer, Berlin, Heidelberg.
doi.org/10.1007/978-3-540-77395-5_3.

[8] Reger, G., Hallé, S., & Falcone, Y. (2016). “Third
International Competition on Runtime Verification“. Lecture
Notes in Computer Science, 21–37. doi.org/10.1007/978-3-
319-46982-9_3.

[9] Bartocci, E., Bortolussi, L., Nenzi, L., & Sanguinetti, G.
(2015). “System design of stochastic models using robustness
of temporal properties”. Theoretical Computer Science, 587,
3-25. doi.org/10.1016/j.tcs.2015.02.046.

[10] Colombo, C., Pace, G. J., Camilleri, L., Dimech, C., Farrugia,
R., Grech, J. P.,... & Adami, K. Z. (2016). “Runtime
verification for stream processing applications”. In
International Symposium on Leveraging Applications of
Formal Methods (pp. 400-406). Springer, Cham.
doi.org/10.1007/978-3-319-47169-3_32.

