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Abstract: The core of deep learning network is hyper-parameters which are updated through learning process with samples. 

Whenever a sample is fed into deep learning network, parameters change according to gradient value. At this point, the number 

of samples and the amount of learning are crucial, which are batch size and learning rate. To find the optimal batch size and 

learning rate, lots of trial is inevitable so it takes so much time and effort. Therefore, there have been lots of papers to enhance the 

efficiency of its optimization process by automatically tuning the single parameter. However, global optimization can’t be 

guaranteed by simply combining separately optimized parameters. This paper propose brand new effective method for 

hyperparameter optimization in which greedy search is adopted to find the optimal batch size and learning rate. In experiment 

with Fashion MNIST and Kuzushiji MNIST dataset, the proposed algorithm shows the similar performance as compared to 

complete search, which means the proposed algorithm can be a potential alternative to complete search. 
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1. Introduction 

The rise of deep learning has the potential to transform our 

future even more than it already has and perhaps more than 

any other technology. Deep learning has already created 

significant improvements in computer vision, speech 

recognition, and natural language processing, which has led 

to deep learning based commercial products being ubiquitous 

in our society and in our lives. 

The recent decade saw dramatic success of deep neural 

networks based on the optimization method of stochastic 

gradient descent (SGD) [1, 2]. It is an interesting and 

important problem that how to tune the hyper-parameters of 

SGD to make neural networks generalize well. Some works 

have been addressing the strategies of tuning hyper-parameters 

[3-6] and the generalization ability of SGD [7-11]. However, 

there still lacks solid evidence for the training strategies 

regarding the hyper-parameters for neural networks. 

Mini-batch stochastic gradient descent and variants thereof 

have become standard for large-scale empirical risk 

minimization like the training of neural networks. These 

methods are usually used with a constant batch size chosen 

by simple empirical inspection. The batch size significantly 

influences the behavior of the stochastic optimization 

algorithm, though, since it determines the variance of the 

gradient estimates. This variance also changes over the 

optimization process; when using a constant batch size, 

stability and convergence is thus often enforced by means of 

a (manually tuned) decreasing learning rate schedule. 

Learning rate decay is a de facto technique for training 

modern neural networks. It starts with a large learning rate and 

then decays it multiple times. It is empirically observed to help 

both optimization and generalization. Common beliefs in how 

lrDecay works come from the optimization analysis of SGD: 1) 

an initially large learning rate accelerates training or helps the 

network escape spurious local minima; 2) decaying the 

learning rate helps the network converge to a local minimum 

and avoid oscillation. Despite the popularity of these common 

beliefs, experiments suggest that they are insufficient in 

explaining the general effectiveness of lrDecay in training 

modern neural networks that are deep, wide, and nonconvex. 

Currently there are no simple and easy ways to set 

hyper-parameters – specifically, learning rate, batch size, 

momentum, and weight decay. A grid search or random 

search [12] of the hyper-parameter space is computationally 

expensive and time consuming. Yet training time and final 
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performance is highly dependent on good choices. 

In this paper, a new approach based on greedy search is 

proposed which is less time consuming but shows affordable 

performance. 

2. Related Works 

2.1. Batch Size 

Some papers investigate how batch sizes affect the 

performance of deep learning networks. Batch size is known as 

the most important parameters in deep learning networks 

because it affects gradient direction. Now that GPU can be used 

in training, the batch size is also influenced by GPU memory 

and its architecture. However, there is no general rule of how to 

choose the proper batch size. Instead, it’s determined through 

time-consuming repeated tests. Some researchers tried to 

automatically determine batch sizes by accumulating gradients 

of mini-batches and performing an optimization step at just the 

time when the direction of gradients starts to fluctuate [13]. 

2.2. Learning Rate 

Learning rate decay is a de facto technique for training modern 

neural networks. It starts with a large learning rate and then 

decays it multiple times as shown in Figure 1. It is empirically 

observed to help both optimization and generalization. Common 

beliefs in how learning rate decay works come from the 

optimization analysis of Stochastic Gradient Descent. An initially 

large learning rate accelerates training or helps the network 

escape spurious local minima. It also helps the network converge 

to a local minimum and avoid fluctuation. Nevertheless, 

experiments suggest they are insufficient in explaining its general 

effectiveness in training neural networks. Regarding learning rate 

decay, there are several variants, but the fundamental idea is the 

same. Some research shows one can usually obtain the same 

learning curve on both training and test sets by instead increasing 

the batch size during training [14]. 

 

Figure 1. Learning rate decay. 

Batch size and learning rate can be optimized separately but 

separate optimization doesn’t guarantee the best performance 

when combined. Some papers have tried to tune these 

hyper-parameters at the same time [15, 16]. However, they’re 

also based on empirical beliefs. The best practice can be the grid 

search or random search, but it requires lots of computation. 

3. Proposed Method 

The proposed method comes in the form of applying greedy 

search to find the best combination of batch size and learning 

rate. 

3.1. Greedy Search 

A greedy algorithm is any algorithm that follows the 

problem-solving heuristic of making the locally optimal 

choice at each stage. In many problems, a greedy strategy does 

not produce an optimal solution, but a greedy heuristic can 

yield locally optimal solutions that approximate a globally 

optimal solution in a reasonable amount of time. 

For example, a greedy strategy for the “travelling salesman 

problem” is the following heuristic: "At each step of the 

journey, visit the nearest unvisited city." This heuristic does 

not intend to find the best solution, but it terminates in a 

reasonable number of steps; finding an optimal solution to 

such a complex problem typically requires unreasonably 

many steps. In mathematical optimization, greedy algorithms 

optimally solve combinatorial problems having the properties 

of matroids and give constant-factor approximations to 

optimization problems with the submodular structure. 

3.2. Method 

Because batch size and learning rate affect the 

performance of neural networks, Cartesian product of both 

parameters is used to find the best combination. For example, 

batch sizes={16, 32, 64, 128, 256} x learning rate={0.1, 0,05, 

0,01, 0,005, 0,001} result in 25 combinations. 

In this approach, either batch size or learning rate is fixed 

and then apply several instances of the other parameter. For 

instance, fixed learning rate, 0.1 with batch sizes={16, 32, 64, 

128, 256} brings 5 cases among which the best case is 

chosen by measuring the accuracy with reserved test samples 

and then continue the same procedure until the end of epoch. 

 

Figure 2. Greedy Search. 

4. Experiment 

In evaluating the performance of complete search and 

proposed method, the experimental settings are established 
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like the following. 

Training and test dataset: Fashion MNIST and Kuzushiji 

MNIST are used, both of which consist of 60,000 training 

samples and 10,000 test samples of 28 by 28 gray-scale pixel 

maps with 10 classes. 

Neural network architecture: Multilayer perceptron (MLP) 

with Python. Its layer consists of 784, 256, 128, 100, 10 with 

sigmoid as the activation function. 

  

  

 

Figure 3. Complete Search of Fashion MNIST. 
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Figure 4. Complete Search of Kuzushiji MNIST. 

4.1. Result of Complete Search 

The results showed that using an extremely small or large 

learning rate decreased the accuracy of the complete search. 

For every batch size, either the learning rate of 0.001 or 0.1 

had the lowest accuracy throughout the iteration. The result 

also showed the same tendency for the batch size. This proves 

that for MNIST, it’s not recommended to increase or decrease 

the batch size and learning rate but rather keep it moderate. 

The fluctuation of the accuracy was positively proportional 

to the learning rate and inversely proportional to the batch size. 

The blue curves that show the learning rate of 0.001 was 

almost a smooth curve whereas the orange curves that how the 

learning rate of 1 fluctuated a lot. 

4.2. Result of Proposed Method 

The complete search shows the accuracy varies depending 

on batch size and learning rate. Therefore, the best 

combination can be obtained only through lots of comparison 

experiments which is time-consuming and it’s not feasible if 

dataset is huge. 

In this paper, brand new optimization algorithm based on 

greedy search is proposed. 

Training and evaluation dataset: Training samples is 

splitted into two sets, 90% training samples and 10% 

evaluation samples which are used to find the local best case. 

Fixed batch size: When fixing batch size, there will be five 

cases according to learning rates, [0.1, 0.05, 0.01, 0.005, 

0,001]. Greedy search chooses the best result among them 

every literation by measuring the accuracy with evaluation 

samples. Figure 5 and Figure 7 show five graphs for each 

fixed batch size. It’s shown that the similar or the better 

accuracy rate as compared to complete search. 

Fixed learning rate: When fixing learning rate, there will be 

five cases according to batch sizes, [16, 32, 64, 128, 256]. 

Likewise, Greedy search chooses the best result among them 

every literation by measuring the accuracy with evaluation 

samples. Figure 6 and Figure 8 show five graphs for each 

fixed learning rate. larger learning rate is expected to show 

fluctuation, but it depends on the characteristics of dataset. 

Kuzushiji MNIST doesn’t show fluctuation while Fashion 

MNIST shows lots of fluctuation with higher learning rate, 

0.1. 

The result says it’s not feasible to get the best combination 

through deterministic calculation. Therefore, efficient search 

like greedy is applicable in finding hyper-parameters. 
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Figure 5. Proposed method with fixed batch of Fashion MNIST. 

 

Figure 6. Proposed method with fixed learning rate of Fashion MNIST. 

 

Figure 7. Method with fixed batch of Kuzushiji MNIST. 
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Figure 8. Proposed method with fixed learning rate of Kuzushiji MNIST. 

5. Conclusion 

In deep learning network, hyper-parameters are crucial 

because it directly affects the performance among which batch 

size and learning rate are the most important. This paper 

proposes brand new search algorithm to find the optimal 

combination of batch size and learning rate. Through 

comparison between complete search and proposed method, 

the proposed method shows its effectiveness. However, the 

proposed method doesn’t guarantee global optimization either. 

Dependent upon dataset, the proposed method shows the 

better performance, but it doesn’t in another dataset. And 

fixing learning rate shows the better performance as compared 

to fixing batch size because large learning rate may result in 

the fluctuation of accuracy.  

However, if more parameters are chosen like batch size, 8, 

16, 24, 32, up to 1024, complete search is not feasible because 

it’ll take too much time. In such a case, the proposed method 

can be practically the alternative. As a further study, the 

method which considers both batch size and learning rate at 

the same time without fixing either of them during learning is 

needed to be investigated. 
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