

American Journal of Computer Science and Technology
2021; 4(4): 90-96

http://www.sciencepublishinggroup.com/j/ajcst

doi: 10.11648/j.ajcst.20210404.11

ISSN: 2640-0111 (Print); ISSN: 2640-012X (Online)

Optimizing the Hyper-parameters of Multi-layer Perceptron
with Greedy Search

Mingyu Bae

North London Collegiate School Jeju, Jeju, Korea

Email address:

To cite this article:
Mingyu Bae. Optimizing the Hyper-parameters of Multi-layer Perceptron with Greedy Search. American Journal of Computer Science and

Technology. Vol. 4, No. 4, 2021, pp. 90-96. doi: 10.11648/j.ajcst.20210404.11

Received: September 13, 2021; Accepted: October 4, 2021; Published: October 15, 2021

Abstract: The core of deep learning network is hyper-parameters which are updated through learning process with samples.

Whenever a sample is fed into deep learning network, parameters change according to gradient value. At this point, the number

of samples and the amount of learning are crucial, which are batch size and learning rate. To find the optimal batch size and

learning rate, lots of trial is inevitable so it takes so much time and effort. Therefore, there have been lots of papers to enhance the

efficiency of its optimization process by automatically tuning the single parameter. However, global optimization can’t be

guaranteed by simply combining separately optimized parameters. This paper propose brand new effective method for

hyperparameter optimization in which greedy search is adopted to find the optimal batch size and learning rate. In experiment

with Fashion MNIST and Kuzushiji MNIST dataset, the proposed algorithm shows the similar performance as compared to

complete search, which means the proposed algorithm can be a potential alternative to complete search.

Keywords: Hyper Parameters, Batch Size, Learning Rate, Greedy Search

1. Introduction

The rise of deep learning has the potential to transform our

future even more than it already has and perhaps more than

any other technology. Deep learning has already created

significant improvements in computer vision, speech

recognition, and natural language processing, which has led

to deep learning based commercial products being ubiquitous

in our society and in our lives.

The recent decade saw dramatic success of deep neural

networks based on the optimization method of stochastic

gradient descent (SGD) [1, 2]. It is an interesting and

important problem that how to tune the hyper-parameters of

SGD to make neural networks generalize well. Some works

have been addressing the strategies of tuning hyper-parameters

[3-6] and the generalization ability of SGD [7-11]. However,

there still lacks solid evidence for the training strategies

regarding the hyper-parameters for neural networks.

Mini-batch stochastic gradient descent and variants thereof

have become standard for large-scale empirical risk

minimization like the training of neural networks. These

methods are usually used with a constant batch size chosen

by simple empirical inspection. The batch size significantly

influences the behavior of the stochastic optimization

algorithm, though, since it determines the variance of the

gradient estimates. This variance also changes over the

optimization process; when using a constant batch size,

stability and convergence is thus often enforced by means of

a (manually tuned) decreasing learning rate schedule.

Learning rate decay is a de facto technique for training

modern neural networks. It starts with a large learning rate and

then decays it multiple times. It is empirically observed to help

both optimization and generalization. Common beliefs in how

lrDecay works come from the optimization analysis of SGD: 1)

an initially large learning rate accelerates training or helps the

network escape spurious local minima; 2) decaying the

learning rate helps the network converge to a local minimum

and avoid oscillation. Despite the popularity of these common

beliefs, experiments suggest that they are insufficient in

explaining the general effectiveness of lrDecay in training

modern neural networks that are deep, wide, and nonconvex.

Currently there are no simple and easy ways to set

hyper-parameters – specifically, learning rate, batch size,

momentum, and weight decay. A grid search or random

search [12] of the hyper-parameter space is computationally

expensive and time consuming. Yet training time and final

91 Mingyu Bae: Optimizing the Hyper-parameters of Multi-layer Perceptron with Greedy Search

performance is highly dependent on good choices.

In this paper, a new approach based on greedy search is

proposed which is less time consuming but shows affordable

performance.

2. Related Works

2.1. Batch Size

Some papers investigate how batch sizes affect the

performance of deep learning networks. Batch size is known as

the most important parameters in deep learning networks

because it affects gradient direction. Now that GPU can be used

in training, the batch size is also influenced by GPU memory

and its architecture. However, there is no general rule of how to

choose the proper batch size. Instead, it’s determined through

time-consuming repeated tests. Some researchers tried to

automatically determine batch sizes by accumulating gradients

of mini-batches and performing an optimization step at just the

time when the direction of gradients starts to fluctuate [13].

2.2. Learning Rate

Learning rate decay is a de facto technique for training modern

neural networks. It starts with a large learning rate and then

decays it multiple times as shown in Figure 1. It is empirically

observed to help both optimization and generalization. Common

beliefs in how learning rate decay works come from the

optimization analysis of Stochastic Gradient Descent. An initially

large learning rate accelerates training or helps the network

escape spurious local minima. It also helps the network converge

to a local minimum and avoid fluctuation. Nevertheless,

experiments suggest they are insufficient in explaining its general

effectiveness in training neural networks. Regarding learning rate

decay, there are several variants, but the fundamental idea is the

same. Some research shows one can usually obtain the same

learning curve on both training and test sets by instead increasing

the batch size during training [14].

Figure 1. Learning rate decay.

Batch size and learning rate can be optimized separately but

separate optimization doesn’t guarantee the best performance

when combined. Some papers have tried to tune these

hyper-parameters at the same time [15, 16]. However, they’re

also based on empirical beliefs. The best practice can be the grid

search or random search, but it requires lots of computation.

3. Proposed Method

The proposed method comes in the form of applying greedy

search to find the best combination of batch size and learning

rate.

3.1. Greedy Search

A greedy algorithm is any algorithm that follows the

problem-solving heuristic of making the locally optimal

choice at each stage. In many problems, a greedy strategy does

not produce an optimal solution, but a greedy heuristic can

yield locally optimal solutions that approximate a globally

optimal solution in a reasonable amount of time.

For example, a greedy strategy for the “travelling salesman

problem” is the following heuristic: "At each step of the

journey, visit the nearest unvisited city." This heuristic does

not intend to find the best solution, but it terminates in a

reasonable number of steps; finding an optimal solution to

such a complex problem typically requires unreasonably

many steps. In mathematical optimization, greedy algorithms

optimally solve combinatorial problems having the properties

of matroids and give constant-factor approximations to

optimization problems with the submodular structure.

3.2. Method

Because batch size and learning rate affect the

performance of neural networks, Cartesian product of both

parameters is used to find the best combination. For example,

batch sizes={16, 32, 64, 128, 256} x learning rate={0.1, 0,05,

0,01, 0,005, 0,001} result in 25 combinations.

In this approach, either batch size or learning rate is fixed

and then apply several instances of the other parameter. For

instance, fixed learning rate, 0.1 with batch sizes={16, 32, 64,

128, 256} brings 5 cases among which the best case is

chosen by measuring the accuracy with reserved test samples

and then continue the same procedure until the end of epoch.

Figure 2. Greedy Search.

4. Experiment

In evaluating the performance of complete search and

proposed method, the experimental settings are established

 American Journal of Computer Science and Technology 2021; 4(4): 90-96 92

like the following.

Training and test dataset: Fashion MNIST and Kuzushiji

MNIST are used, both of which consist of 60,000 training

samples and 10,000 test samples of 28 by 28 gray-scale pixel

maps with 10 classes.

Neural network architecture: Multilayer perceptron (MLP)

with Python. Its layer consists of 784, 256, 128, 100, 10 with

sigmoid as the activation function.

Figure 3. Complete Search of Fashion MNIST.

93 Mingyu Bae: Optimizing the Hyper-parameters of Multi-layer Perceptron with Greedy Search

Figure 4. Complete Search of Kuzushiji MNIST.

4.1. Result of Complete Search

The results showed that using an extremely small or large

learning rate decreased the accuracy of the complete search.

For every batch size, either the learning rate of 0.001 or 0.1

had the lowest accuracy throughout the iteration. The result

also showed the same tendency for the batch size. This proves

that for MNIST, it’s not recommended to increase or decrease

the batch size and learning rate but rather keep it moderate.

The fluctuation of the accuracy was positively proportional

to the learning rate and inversely proportional to the batch size.

The blue curves that show the learning rate of 0.001 was

almost a smooth curve whereas the orange curves that how the

learning rate of 1 fluctuated a lot.

4.2. Result of Proposed Method

The complete search shows the accuracy varies depending

on batch size and learning rate. Therefore, the best

combination can be obtained only through lots of comparison

experiments which is time-consuming and it’s not feasible if

dataset is huge.

In this paper, brand new optimization algorithm based on

greedy search is proposed.

Training and evaluation dataset: Training samples is

splitted into two sets, 90% training samples and 10%

evaluation samples which are used to find the local best case.

Fixed batch size: When fixing batch size, there will be five

cases according to learning rates, [0.1, 0.05, 0.01, 0.005,

0,001]. Greedy search chooses the best result among them

every literation by measuring the accuracy with evaluation

samples. Figure 5 and Figure 7 show five graphs for each

fixed batch size. It’s shown that the similar or the better

accuracy rate as compared to complete search.

Fixed learning rate: When fixing learning rate, there will be

five cases according to batch sizes, [16, 32, 64, 128, 256].

Likewise, Greedy search chooses the best result among them

every literation by measuring the accuracy with evaluation

samples. Figure 6 and Figure 8 show five graphs for each

fixed learning rate. larger learning rate is expected to show

fluctuation, but it depends on the characteristics of dataset.

Kuzushiji MNIST doesn’t show fluctuation while Fashion

MNIST shows lots of fluctuation with higher learning rate,

0.1.

The result says it’s not feasible to get the best combination

through deterministic calculation. Therefore, efficient search

like greedy is applicable in finding hyper-parameters.

 American Journal of Computer Science and Technology 2021; 4(4): 90-96 94

Figure 5. Proposed method with fixed batch of Fashion MNIST.

Figure 6. Proposed method with fixed learning rate of Fashion MNIST.

Figure 7. Method with fixed batch of Kuzushiji MNIST.

95 Mingyu Bae: Optimizing the Hyper-parameters of Multi-layer Perceptron with Greedy Search

Figure 8. Proposed method with fixed learning rate of Kuzushiji MNIST.

5. Conclusion

In deep learning network, hyper-parameters are crucial

because it directly affects the performance among which batch

size and learning rate are the most important. This paper

proposes brand new search algorithm to find the optimal

combination of batch size and learning rate. Through

comparison between complete search and proposed method,

the proposed method shows its effectiveness. However, the

proposed method doesn’t guarantee global optimization either.

Dependent upon dataset, the proposed method shows the

better performance, but it doesn’t in another dataset. And

fixing learning rate shows the better performance as compared

to fixing batch size because large learning rate may result in

the fluctuation of accuracy.

However, if more parameters are chosen like batch size, 8,

16, 24, 32, up to 1024, complete search is not feasible because

it’ll take too much time. In such a case, the proposed method

can be practically the alternative. As a further study, the

method which considers both batch size and learning rate at

the same time without fixing either of them during learning is

needed to be investigated.

References

[1] L. Bottou. Online learning and stochastic approximations.
On-line learning in neural networks, 17 (9): 142, 1998.

[2] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the
importance of initialization and momentum in deep learning.
In International conference on machine learning, 2013.

[3] L. Dinh, R. Pascanu, S. Bengio, and Y. Bengio. Sharp minima
can generalize for deep nets. In International Conference on
Machine Learning, 2017.

[4] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He. Accurate, large

minibatch sgd: training imagenet in 1 hour. arXiv preprint
arXiv: 1706.02677, 2017.

[5] S. Jastrzebski, Z. Kenton, D. Arpit, N. Ballas, A. Fischer, Y.
Bengio, and A. Storkey. Three factors influencing minima in
sgd. arXiv e-prints, 1711.04623, 2017.

[6] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and
P. T. P. Tang. On large-batch training for deep learning:
Generalization gap and sharp minima. In International
Conference on Learning Representations, 2017.

[7] Y. Chen, C. Jin, and B. Yu. Stability and convergence
trade-off of iterative optimization algorithms. arXiv preprint
arXiv: 1804.01619, 2018.

[8] M. Hardt, B. Recht, and Y. Singer. Train faster, generalize
better: Stability of stochastic gradient descent. In International
Conference on Machine Learning, 2015.

[9] J. Lin, R. Camoriano, and L. Rosasco. Generalization
properties and implicit regularization for multiple passes sgm.
International Conference on Machine Learning, 2016.

[10] W. Mou, L. Wang, X. Zhai, and K. Zheng. Generalization
bounds of sgld for non-convex learning: Two theoretical
viewpoints. In Annual Conference On Learning Theory, 2018.

[11] A. Pensia, V. Jog, and P.-L. Loh. Generalization error bounds
for noisy, iterative algorithms. In IEEE International
Symposium on Information Theory, 2018.

[12] James Bergstra and Yoshua Bengio. Random search for
hyper-parameter optimization. Journal of Machine Learning
Research, Feb, 2012.

[13] H Xu, J van Genabith, D Xiong, Q Liu, Dynamically
Adjusting Transformer Batch Size by Monitoring Gradient
Direction Change, arXiv preprint arXiv: 2005.02008, 2020.

[14] SL Smith, PJ Kindermans, C Ying, QV Le, DON’T DECAY
THE LEARNING RATE, INCREASE THE BATCH SIZE,
arXiv preprint arXiv: 1711.00489, 2017.

[15] L Balles, J Romero, P Hennig, Coupling adaptive batch sizes
with learning rates, arXiv preprint arXiv: 1612.05086, 2016.

 American Journal of Computer Science and Technology 2021; 4(4): 90-96 96

[16] F He, T Liu, D Tao, Control Batch Size and Learning Rate to
Generalize Well: Theoretical and Empirical Evidence,
Advances in Neural Information Processing Systems 32
(NeurIPS 2019).

