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Abstract: In diagnosing cancer and determining its progress, an important aspect is the identification of malignant cells. 

Blood diseases such as leukemia are generally detected when cancer cells are much larger than normal cells in the late stages. 

Due to strong morphological similarities, the differentiation of cancer cells from normal blood cells is a challenge. Compared 

with normal cells, the precise classification of malignant cells in a microscopic image of blood cells depends on the early 

diagnosis of leukaemia. Transfer learning and fine-tuning of the VGG16 convolutional neural network through batch 

normalization can resolve the malignant and normal white blood cells classification problem with higher accuracy. Applying 

CLAHE to enhance image data quality is then passed as input to the network for training purposes. The results acquired by the 

fine- tuning of triple-loss and cross-entropy or cross- entropy loss with L2 normalization are compared. Furthermore, fine-tuning 

on a combined training validation dataset using simple cross-entropy loss can improve the model's performance. As an effective 

technique for diagnosing leukaemia, computer-aided cell classification has become popular. Fine-tuning VGG16 neural 

networks to classify normal and malignant cell images through batch standardization is part of our classification method. The 

proposed convolutional neural network detects cancer and normal cells with greater accuracy and time efficiency. 
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1. Introduction 

Continuous development of cancer research has been 

carried out over the past few decades. Scientists have used 

various methods to detect the type of cancer before it causes 

symptoms, such as early screening [1]. Also, at an early 

stage, they have developed new strategies for Cancer 

Prediction outcomes. Many cancer data has been collected 

for use by the medical research community with ad-new 

medical technology. However, precise Disease prediction 

outcomes it is one of the most exciting and challenging tasks 

for physicians. For medical researchers, machine learning has 

become a popular tool as a result [2]. These methods can 

identify and identify patterns from complex data sets and 

their relationships while effectively predicting future cancer 

types. 

Given the importance of personalized medicine and the 

growing ML technology application trend, we review the 

research using this cancer prediction and progress techniques 

[3]. In these studies, cancer patients' prognostic and 

predictive characteristics were considered independent of 

specific therapies or integrated into guided treatments. We'll 

also discuss the types of ML technologies used, the types of 

information they combine, and the overall performance of 

each proposed scenario, as well as their advantages and 

disadvantages. 

In the proposed work, notable trends include integrating 

mixed data, such as clinical and genomic data. However, the 

lack of external validation or testing of predictive model 

performance is a common issue we have noticed in several 

books. The ML method application can improve the 

susceptibility to cancer, recurrence rate, and the accuracy of 

prediction of survival. The accuracy of cancer prediction 

outcomes has significantly improved by 15 percent to 20 

percent in recent years using ML technology [4]. 
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Several studies based on different strategies to achieve 

early cancer diagnosis and prognosis have been reported in 

the literature. Specifically, these studies describe cyclic 

miRNA spectrometry related methods that have proven to be 

a good cancer detection and identification category [5]. 

However, in early screening, these techniques are less 

sensitive to use and difficult to distinguish between benign 

and malignant tumors. Various elements are discussed in the 

prediction of cancer outcomes based on gene expression 

characteristics. In predicting cancer outcomes, these studies 

list the potential and limitations of microarrays. Although 

genetic markers Our prognosis in cancer patients can 

significantly improve, not enough progress has been made 

clinically. However, data samples need to be studied more 

extensively and thoroughly validated Before expression of 

genes spectrum analysis In clinical practice, it can be used. 

Leukemia is a type of blood cancer that starts in the bone 

marrow and leads to abnormal blood cell production [6]. 

Such WBC cells nucleus are destroyed and are also known as 

exploded cells. There are variations in the causes of 

suspected leukemia. High-risk variables include genetic and 

environmental factors, smoking, prolonged exposure to 

ionizing radiation, benzene, chemotherapy and Down 

syndrome. Acute lymphoblastic leukemia (ALL), acute 

myeloid leukemia (AML), chronic lymphoblastic leukemia 

(CLL), and chronic myeloid leukemia (CMLL) are four types 

of blood cancer [7]. To detect blood cancer, a blood sample 

or bone marrow using a biopsy procedure is examined by a 

histopathologist to detect blood cancer. In the late stages of 

blood diseases, such as leukemia the number of abnormal 

(Malignant) blood cancers is equal to or higher than normal 

cells. The manual classification of malignant and normal 

cells by pathologists is critical to diagnose these blood 

diseases early. Computer-vision and machine learning aided 

based leukemia diagnostic systems have attracted great 

interest as an early cancer diagnosis method. Cells have been 

classified through computer vision to diagnose leukemia and 

determine its stage and type. Artificial intelligence-based 

cancer cell recognition is a very accurate, efficient, and easy-

to-use method [8]. 

However, distinguishing between cancer and normal white 

blood cells can be challenging due to the morphological 

similarity. This research article structure is as follows: 

Literature review cancer cells classification is discussed in 

section 2. Our proposed model for cancer and normal cell 

classification is covered in section 3. In Section 4, the 

experimental result acquired from the proposed model is 

visualized and discussed. 

2. Literature Review 

The best choice for medical imaging applications such as 

detection and classification is currently deep learning using 

reel neural networks (CNN). Although CNN achieves the 

best results on large data sets, training requires many data 

and computing resources. The data set is limited in many 

instances and may not be sufficient to train CNN from the 

outset. Transfer learning can be used in this situation to take 

advantage of the capabilities of CNN while reducing the cost 

of computing. In this strategy, CNN initially pre- trained and 

then applied it to specific tasks on a large and diverse 

standard image dataset. Several pre-trained neural networks, 

such as VGGNet, Resnet, Nasnet, Mobilenet, Inception, and 

Xception15, have won international competitions [9]. In 

evaluating different CNN architectures, transfer learning 

scored highest in the classification of lymph nodes (LN) and 

interstitial pulmonary disease (ILD) in the chest and 

abdomen. 

To distinguish malignant cells from non- malignant cells, 

the authors used an average combined classification because 

using a pre- trained CNN architecture fed into a fully 

connected classification layer; they extracted features from 

breast cancer images. [3]. The experimental results show that 

their model is more accurate than all other CNN methods to 

classify and classify breast tumors based on cell images. 

Further work is based on a range of deep learning 

architectures to improve transfer learning usefulness for cell-

based image classification. In transfer learning, it is used in 

cytological images on previously published standard baseline 

data sets to overcome breast cancer detection models' 

limitations [10]. 

These approaches have in common that many of the pre-

trained CNN model features are used (up to 100upK). Since 

many of these features are redundant or contain zeros, they 

are inefficient in time and computing resources. Furthermore, 

the classifier's accuracy can benefit from limiting the number 

of features. In previous work, white blood cell detection was 

performed using classical image processing by extracting 

various features (including colours, textures, shapes, 

blending features) and then using social spider-inspired 

optimization methods to select the most useful features [11]. 

In ALL-IDB2, the same data set as this work, the model was 

tested. The accuracy, sensitivity, and specificity of the split 

outcomes were 99.2%, 100%, and 97.1%, respectively, and 

the model classification accuracy was by far the best 

published [12]. 

To distinguish between ALL and AML subtypes in 

leukaemia datasets, Super Neural Network (FHSNN) fuzzy 

classifier is offered. Since the number of genes exceeds the 

number of samples available in the DNA chip dataset [13], 

pre-trained dimensional reduction techniques such as signal-

to-noise ratio (SNR), spacing, rank, and Wilcoxon statistics, 

and reporting by Fisher is subject to the data set [14]. 

Experimental results show that, with fewer genes than 

previously published methods, FHSNN can achieve 100 

percent accuracy [15]. A new algorithm for artificial neural 

networks (ANN) was introduced by Adjouadi [16] to 

improve the classification of multidimensional data, 

highlighting the classification of abnormal blood samples 

relative to normal blood samples (i.e., AML and LAL). All 

ratings achieve an accuracy of 96.67 percent through this 

algorithm. 

An amendment to FHSNN, an improved ultra- fuzzy 

neural network, to differentiate between LAL and AML in 
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the Leukemia Data Set was proposed by Fabio Scotti, 

Department of Information Technology, University of Milan 

(Università degli Studi di Milano) [17]. Using dimension-

reducing techniques such as the Spaceman correlation 

coefficient and Wilcoxon rank, gene selection is carried out. 

With only two genes, using the MFHSNN classifier, 100 

percent classification precision can be obtained. The 

proposed model is a novel method of how acute 

lymphoblastic leukemia cells and normal cells can be 

distinguished [18]. The k-average algorithm is classified as 

the cell's nucleation after pre- image processing of 

microscopic blood cell images. Geometric and statistical 

features are extracted from the cell's nucleation to be 

classified through the use of a support vector machine. To 

process datasets, all of these methods use dimension 

reduction or special network structures. Our system uses a 

network of reeling neurons with common weights. In 

addition, our strategy reduces the time required. it takes to 

form a network compared to normal cell classification by 

starting with a pre-formed network and recycling it into 

leukemia mother cells. 

3. Methodology 

The transfer learning approach is adopted in the VGG16 

CNN model pre-trained initially with ImageNet 1000 classes 

dataset; the same model is modified by replacing the last two 

layers, i.e., softmax and classification output layers, along 

with fully connected layer with two output nodes. The 

modified network is trained with the custom malignant and 

normal cell images for developing an automatic cancer cells 

detection system. 

4. VGG16 

VGG16 is a convolutional neural network architecture 

(CNN) developed to rival the ImageNet Wide-Area Optical 

Recognition. 

Challenge by the Oxford Visual Engineering Group 

(ILSVRC). The ImageNet is a benchmark dataset consisting 

of 14 million images spread across 1,000 different categories 

of objects. The VGG16 CNN model won the ILSVRC 

challenge, which happens back in 2014, by achieving the 

highest accuracy for classifying 1000 class images among the 

competitors' models. 

The network has a sophisticated design that utilizes 

various 3 x 3 filters and is stacked to form a normalization 

layer on top of each other. Such a stack of layers helps in 

capturing more information with a lower amount of 

computing. A feature map resulting from three remnants 

stacked with 3 x 3 filters has less computational overload and 

maybe equivalent to a single 7 x 7 filter smoothing layer. 

 

Figure 1. Architecture of VGG16. 

The maximum pooled layer consists of 2 x 2 filter that 

reduces input by two times as much as the maximum value 

near output 2 x 2. The input image to the VGG16 model is 

reduced four times its original size. The grid ends with two 

fully connected layers where each layer has 4,096 input 

nodes and 1,000 output nodes followed by a softmax and 

classification output layer. A fully connected layer associates 

each layer node with each feature element in the input. These 

fully connected layers restrict network input to fixed input 

size of 224 x 224 x 3. A softmax classifier uses σ that applies 

softmax (the data) to a fully connected layer's output 

characteristics. 

α(z)J= e
z
J/ ∑k e

z
k 

For j = 1,..., k 

and 

Z1 = (z1, …, z1) 

The maximum pooled layer is made up of 2 x 2 cores that 

decrease the input by two times the maximum value of 2 x 2 

near the output. The entry size is reduced to 4 times the 

minimum. The grid ends with two fully linked layers, each 

containing 4,096 sections, followed by 1,000 Softmax 

classifier sections. With a fully connected layer, each layer 
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node is associated with each feature element in the input. 

These fully linked layers limit network input to a 224 x 224 x 

3 fixed size. A softmax classifier is a full σ that applies 

softmax (the data) to a fully connected layer's output 

characteristics. 

 

Figure 2. These fully linked layers limit network input to a 224 x 224 x 3 fixed size. 

5. Batch Normalization 

Typically, neural networks consist of a small number of 

input batches and are sampled from more extensive datasets. 

The distribution of the entry batch's median value, however, 

varies from batch to batch. Deformation"deformation" The 

behavior of neural networks is affected by changes in the 

input data distribution. Neural networks are trained to alter 

each layer's weight, thus altering its activation process. The 

output distribution of each layer changes as formations 

advance, forcing the next layer to adapt to these 

modifications. The conversion of variables extends the time 

needed to form the network's middle layer. 

Bulk adjustment is used to standardize the activation process, 

with an average output of 0 unit variance per weighted layer. 

This stabilizes the input speed to the next layer and accelerates 

the formation. The limitation of these activations to values 

between 1 and -1 can, however, compromise learning. As a 

result, the batch smoothing layer can learn to adjust the γ 

parameters and extend and convert natural activations. Bulk 

standardization can also improve the performance of networks. 

VGG16 has a higher error rate than the simplified batch 

standardization of 26.63%. The highest error rate for VGG16 

is 28.41%. For the correct category of the input image, the first 

error rate measures the prediction error. 

6. Transfer Learning 

It is a complex and time consuming process to train a CNN 

with certain random hyper- parameters on a large image dataset. 

The transfer learning approach can be followed by removing the 

old learning from an existing CNN model instead of developing 

a new CNN model that is a tidoius and challenging task and 

training the same model with some custom datasets by 

employing few model changes. In transfer learning, fine-tuning 

is carried out which updates all model parameters to suit the new 

dataset. The previously tested VGG16 network on a large 

ImageNet dataset demonstrates transfer learning to extend it to 

images outside the ImageNet dataset. To detect malignant white 

blood cells compared with normal blood cells, transfer learning 

in the VGG16 network is therefore carried out. 

6.1. Data 

The training and test data set presented consists of 

microscopic photos of two categories of cells: ALL 

(Malignant) and NORMAL. From several subjects with 

different identifiers, information from both classes is 

obtained. See Table 1 for configuring datasets. 

Table 1. Composition of datasets. 

Dataset ALL Images ALL Subjects Normal Images Normal Subjects 

Training 7270 48 3390 29 

 

6.2. Data Preprocessing 

3-channel images in the format of 450 x 450 are unique 

microscopic photos. To remove lighting differences, use 

point standardization to pre-process images. 

Acquisition and pre- processing of data are described in 9-

13 in more detail. Normal data is added to equalize the 

number of pictures of both types by applying horizontal and 

vertical inverse and 90, 180, and 270-degree rotation 

combinations. Just 224 x 224 x 3 input channels are accepted 

by the VGG16 architecture. You have to keep the photo of 
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the input microscope to a minimum before entering the grid. 

The image is 450 x 450 in size and is cropped to 448 x 448 

images in the centre for capture. There is little chance that 

information will be lost because these images' limitations are 

part of the background. To scale the picture twice, use the 

network pre-layer converted by VGG16. To improve contrast 

and fine detail (see Figure 3) before inserting the mesh, apply 

the completed adaptive contrast histogram equation (CLAHE) 

to all images. The image is displayed in the YUV color space, 

whereas CLAHE is generated only on the Y channel. In the 

RGB color space, the image is then displayed again. 

6.3. Finetuning 

With a batch standardization layer, the network has the same 

pre-driven VGG16 standard network architecture. Add three 

layers of 2 x 2 cores and a reLU-enabled relux layer to the 

second sample input image network at 448 x 448 resolution. 

This layer's output consists of three 224 x 224 channels 

connected to the original network of VGG16. This course 

provides the advantages of learning shorthand through 

training. The final softmax network layer was reconfigured to 

contain only two NORMAL (0), and ALL (1) input data 

outputs corresponding to each category, respectively (see 

Figure 2). 

In phases, training was conducted. Only the training data is 

recycled from the network in the first phase, and the initial 

test dataset is used for validation. In the Phase 2 validation 

package, the model is also optimized to enhance performance. 

 

Figure 3. Images a and d are Malignant White blood cell images whereas the image e and h are the enhanced imaged of a and d images. Similarly, image b 

and c are Normal WBCs whose enhanced images can be seen in f and g. 

6.4. Observations 

The training dataset (5 images per class) is divided into ten 

batches. These batches are then passed to the CNN for model 

training. The total number of batches are 1455, and the size 

of the dataset is 14,550. Each batch of images also needs to 

be flipped horizontally and vertically, with a 0.5 probability 

of rotating 90, 180, and 270 degrees per conversion. 

6.5. Stage 1 Training Cross-Entropy Loss 

A classification model's performance can be measured using 

Entropy loss that produces probability values between 0 and 1 

for each category. The only encoded label vector is the model 

target, the 0 and 1 label vectors that correspond to the actual 

entry category. The order of losses varies, depending on the 

expected probability of the categqory and its target name. For 

example, for a category where the target specifies one as an 

essential loss value, the predicted probability is 0.1. 

Cross Entropy Loss (p, y)= -∑�	 �	�	 log(�	�	) 

For i = 1,…, K 

where p is the probability vector corresponding to class K 

and the unique encoded label vector. Loss on average per 

payment. The network is formed by the loss of two types 

of cross- entropy. A random gradient drop with a usage 

time of 0.9 optimizes loss. Set the learning rate to 0.01 

until the 10th time divided by twice every two periods, 

and then halved every ten cycles. However, in the first 10 

to 15 periods, the validation set's best performance was 

obtained. 

As shown in Figure 4, network loss can be optimized by 

implementing CLAHE. Also, as shown in Figure 5, we get 

better performance in the CLAHE verification package. 
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Figure 4. The average training loss seen by the network is compared to the total number of training samples (i) using CLAHE input and (ii) not using CLAHE 

input. The images used for model training are not unique because the dataset images are used once per epoch. The parameters set for CLAHE are: limit of the 

clip is 2.0 and grid size s 8×8. 

 

Figure 5. Validation score of training simples. 

6.6. Stage 2 Training 

For better output on the test's final dataset, the best 

performing model on the validation set (weighted F1 score of 

0.848966) is further optimized. The hyper-parameter such as 

the number of epochs, Batchsize, optimizer etc. are fine-

tuned for the cell image training and validation set. L2 

normalization (the normalization coefficient is 0.001) and a 

combination of cross-entropy which are also standard hyper-

parameters used for practical model training. 

Triplet Loss 

The three-state loss method is used to calculate the 

similarity between three-state samples. Batches include 

baseline samples (anchor points, a), positive samples (p) and 

negative samples (n). As the resemblance between a and p 

decreases or the resemblance between a and n rises, the loss 

value increases. Its euclidean distance usually measures 

similarity. 

L(a, p, n) = max{d(�	�	, �	�	)- d(�	�	, �	�	)+margin, 0} 

For i = 1,…, K 

where d(x, y) = ||x – y||2 is the Euclidean distance between x 

and y and K is the number of triples in the batch. Using a 

triple-state loss training network ensures that the 

characteristics of the network-generated anchor and positive 

samples are close together, while the characteristics of the 

negative sample are at least as far apart from the anchor's 

features positive samples. The features computed using the 

trained network are easily grouped into classes that can be 

easily separated using a margin value. 

The combination of triple-state loss and cross- entropy loss 

was tried as a hypermeter for the model training. Three-state 

loss (before the softmax function is applied) is calculated 

from batches of 10 feature vectors calculated from the 

network in ten three-groups. For example, for each feature 

vector used as an anchor, select the same sample class's 

feature vector at the maximum Euthio mile distance from the 

anchor. Select a feature vector for a different sample type 

with the smallest distance from the anchor point as a negative 

example. Although L2 normalization optimizes losses better 

than other methods (see Figure 6), the initial test dataset 

performs best when training the composite dataset network 

(see Figure 7). 
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Figure 6. The average training loss is the sum of the total number of training samples seen by the network (i) the cross-entropy loss for training and testing 

dataset (ii) L2 normalization (λ = 0.001) with cross-entropy loss and (iii) cross entropy loss with triplet loss. The images used for model training are not 

unique because they are used once per epoch in the dataset. Fine-tuning was performed on the combination of training and validation datasets used in Phase 

1 of the network. 

 

Figure 7. Using (i) A simple cross-entropy loss (training and validation dataset), (ii) fine-tuning the model to validate the set and weighted F1 fractional 

cross-entropy plus the three-state loss over time, combined with L2 normalized cross-entropy loss (0.001) and (iii). By marking the appropriate data points, 

you can indicate the best score. Fine-tune the combination of training and validation datasets used in Phase 1 to the network. 

7. Experimental Results 

 

Figure 8. Check the model set's accuracy relative to the duration for fine-tuning models that use I training datasets and (ii) combined training and validation 

datasets for cross-entropy loss. The highest accuracy of each method is represented by marking the appropriate data points. 

Table 2. Scores for test datasets. 

Dataset Weighted Precision Weighted Recall Weighted-F1 Score 

Results 0.9470 0.9475 0.9470 
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8. Conclusions 

Transfer learning and fine-tuning of the VGG16 

convolutional neural network through batch normalization can 

resolve the malignant and normal white blood cells 

classification problem with higher accuracy. Applying 

CLAHE to enhance image data quality is then passed as input 

to the network for training purposes. The results acquired by 

the fine- tuning of triple-loss and cross-entropy or cross- 

entropy loss with L2 normalization are compared. Furthermore, 

fine-tuning on a combined training validation dataset using 

simple cross-entropy loss can improve the model's 

performance. The VGG16 network has some drawbacks 

because of the many layers and too many training parameters, 

making the model training process time- efficient. For 

achieving efficiency along with accuracy, some lightweight 

state-of-the-art deep learning models can also be considered. 

The proposed model achieves an average accuracy of 

94.75 for classifying malignant and normal cells, the higher 

accuracy obtained by the proposed model shows the 

effectiveness of transfer learning in cancer detection. 

 

References 

[1] N. Thanh, K. AL-Dulaimi, J. Banks, V. Chandran, I. Tomeo-
Reyes, and K. Nguyen, "Classification of White Blood Cell 
Types from Microscope Images: Techniques and Challenges," 
pp. 17–25, 2018. 

[2] I. Mehmood et al., "An efficient computerized decision 
support system for the analysis and 3D visualization of brain 
tumor," Multimed. Tools Appl., pp. 1–26, 2018. 

[3] A. Nedra, M. Shoaib, and S. Gattoufi, "Detection and 
classification of the breast abnormalities in Digital Mammograms 
via Linear Support Vector Machine," Middle East Conf. Biomed. 
Eng. MECBME, vol. 2018– March, pp. 141–146, 2018. 

[4] K. Kourou, T. P. Exarchos, K. P. Exarchos, M. V. Karamouzis, 
and D. I. Fotiadis, "Machine learning applications in cancer 
prognosis and prediction," Comput. Struct. Biotechnol. J., vol. 
13, pp. 8–17, 2015. 

[5] C. E. Condrat et al., "miRNAs as Biomarkers in Disease: 
Latest Findings Regarding Their Role in Diagnosis and 
Prognosis," Cells, vol. 9, no. 2, p. 276, 2020. 

[6] N. Bibi, M. Sikandar, I. U. Din, A. Almogren, and S. Ali, 
"IOMT-based automated detection and classification of 
leukemia using deep learning," J. Healthc. Eng., vol. 2020, 
2020. 

[7] W. Ladines-Castro et al., “Morphology of leukaemias,” Rev. 
Médica del Hosp. Gen. México, vol. 79, no. 2, pp. 107–113, 
2016. 

[8] A. R. M. Al-shamasneh and U. H. B. Obaidellah, "Artificial 
Intelligence Techniques for Cancer Detection and 
Classification: Review Study," Eur. Sci. J., vol. 13, no. 3, pp. 
342–370, 2017. 

[9] P. Szymak, P. Piskur, and K. Naus, "The effectiveness of using 
a pretrained deep learning neural networks for object 
classification in underwater video," Remote Sens., vol. 12, no. 
18, pp. 1–19, 2020. 

[10] G. Ayana, K. Dese, and S. Choe, "Transfer Learning in Breast 
Cancer Diagnoses via Ultrasound Imaging," 2021. 

[11] A. Luque-Chang, E. Cuevas, F. Fausto, D. Zaldívar, and M. 
Pérez, “Social Spider Optimization Algorithm: Modifications, 
Applications, and Perspectives,” Math. Probl. Eng., vol. 2018, 
2018. 

[12] A. T. Sahlol, P. Kollmannsberger, and A. A. Ewees, "Efficient 
Classification of White Blood Cell Leukemia with Improved 
Swarm Optimization of Deep Features," Sci. Rep., vol. 10, no. 
1, pp. 1–11, 2020. 

[13] R. Aziz, C. K. Verma, and N. Srivastava, "Dimension 
reduction methods for microarray data: a review," AIMS 
Bioeng., vol. 4, no. 1, pp. 179–197, 2017. 

[14] N. Ahmed, A. Yigit, Z. Isik, and A. Alpkocak, "Identification 
of leukemia subtypes from microscopic images using 
convolutional neural network," Diagnostics, vol. 9, no. 3, 
2019. 

[15] S. Agrawal and J. Agrawal, "Neural network techniques for 
cancer prediction: A survey," Procedia Comput. Sci., vol. 60, 
no. 1, pp. 769–774, 2015. 

[16] M. Adjouadi, M. Ayala, M. Cabrerizo, N. Zong, G. Lizarraga, 
and M. Rossman, "Classification of leukemia blood samples 
using neural networks," Ann. Biomed. Eng., vol. 38, no. 4, pp. 
1473–1482, 2010. 

[17] T. J. Sejnowski, "The unreasonable effectiveness of deep 
learning in artificial intelligence," Proc. Natl. Acad. Sci., p. 
201907373, 2020. 

[18] M. M. Amin, S. Kermani, A. Talebi, and M. G. Oghli, 
"Recognition of acute lymphoblastic leukemia cells in 
microscopic images using k-means clustering and support 
vector machine classifier," J. Med. Signals Sens., vol. 5, no. 1, 
pp. 49–58, 2015. 

 

 


