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Abstract: Chromosome analysis and identification from metaphase images is a critical part of cytogenetics based medical 

diagnosis. It is mainly used for identifying constitutional, prenatal and acquired abnormalities in the diagnosis of genetic 

diseases and disorders. The process of identification of chromosomes from metaphase is a tedious one and requires trained 

personnel and several hours to perform. Challenge exists especially in handling touching, overlapping and clustered 

chromosomes in metaphase images, which if not segmented properly would result in wrong classification. This study proposes 

a method to automate the process of detection and segmentation of chromosomes from a given metaphase image, and in using 

them to classify through a Deep CNN architecture to know the chromosome type. There are two methods to handle the 

separation of overlapping chromosomes found in metaphases - one method involving watershed algorithm followed by 

autoencoders and the other a method purely based on watershed algorithm. These methods involve a combination of 

automation and very minimal manual effort to perform the segmentation, which produces the output. The manual effort 

ensures that human intuition is taken into consideration, especially in handling touching, overlapping and cluster chromosomes. 

Upon segmentation, individual chromo- some images are then classified into their respective classes with 95.75% accuracy 

using a Deep CNN model. Further, a distribution strategy is imparted to classify these chromosomes from the given output 

(which typically could consist of 46 individual images in a normal scenario for human beings) into its individual classes with 

an accuracy of 98%. This study helps conclude that pure manual effort involved in chromosome segmentation can be 

automated to a very good level through image processing techniques to produce reliable and satisfying results. 

Keywords: Chromosome Analysis, Karyotyping, Cytogenetics, Chromosome Segmentation, Autoencoder, Squeezenet, 

Watershed Algorithm 

 

1. Introduction 

Human Chromosome Analysis involves the identification 

of 23 pairs of Chromosomes in human cells, out of which the 

first 22 pairs are called Autosomes and the 23rd pair is the 

Sex Chromosome. This process is called Karyotyping, and it 

is typically performed by experts in the field of Cytogenetics. 

Its potential is immense in the early detection/diagnosis of 

diseases including Constitutional abnormalities, Prenatal and 

Acquired abnormalities. However, the whole process is very 

manual, labour intensive, and hence prone to human errors 

and fatigue, which could effectively result in delays in report 

generation and inaccurate/faulty reports. 

The process of Karyotyping includes multiple stages, and 

the whole exercise involves a lot of manual effort to go 

through the images of chromosomes, look for abnormalities 

if any and confirm those and prepare the final report. The 

adoption of Artificial Intelligence and Image Processing is 

pertinent to this problem domain, where information exists in 

terms of digital images. 
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The focus of this paper is to develop an automated image 

segmentation process that identifies and segments the 

individual chromosomes (46 in number for normal cases) 

from the metaphase image obtained through a microscope, 

and further classify them with a deep learning model. This 

process, when implemented through a software, is intended 

to help freshers and students in cytogenetics learn to use their 

intuition and domain knowledge to separate overlapping 

chromosomes in an easier and effective way by combining 

human and machine intelligence, thereby making their 

training process much simplified. Additionally, it can 

function just as an aid in diagnosis as well. 

Routine chromosome analysis in cytogenetics requires 

culturing of samples for a certain period depending upon the 

sample type, followed by metaphase slide preparation and 

image capture of metaphase using a microscope. This process 

involves one of the various staining methods, out of which this 

research considers the case involving Q-banding staining 

method and the G-banding staining method separately. The Q-

banding staining method is a fluorescent staining method, 

which uses quinacrine, is used to identify individual 

chromosomes and their structural anomalies, whereas G-

banding is done by using Giemsa or Leishman stains to 

produce thin, alternating bands along the length of the entire 

chromosome that create unique patterns through which 

identification is done. The characteristic banding pattern can 

be used to identify each chromosome accurately. These images 

are then loaded onto a software and manually analyzed to 

segment them using human expertise and through imparting 

visual cognitive effort. This research proposes to automate this 

part by implementing Image Processing techniques to segment 

chromosomes more efficiently, especially for early-stage users 

in the field. After segmentation of the chromosome images 

through this approach, these images are to be used with a Deep 

CNN architecture to train and achieve the automated 

classification of these chromosome images to a high accuracy 

level to produce the Karyogram output. 

The contribution is 4 fold: 

1) Identification and separation of individual 

chromosomes. 

2) Detecting and separating touching, overlapping, and 

chromosome clusters. 

3) Predicting the chromosome classes for all individual 

chromosome images also handling abnormality detec- 

tion. 

4) A distribution algorithm that increases overall accuracy. 

2. Related Work 

The analysis of a Karyotype has a wide range of uses in 

the cytogenetics field, its most important and common usage 

lies in prenatal diagnosis and genetic disease detection. The 

current industry method involves manual segmentation and 

classification by a trained person to classify and detect 

anomalies. 

The methods and research in this paper for chromosome 

image segmentation is performed on G-Band and Q-Band 

metaphase images. Classification of chromosomes is 

constrained to Q- Band metaphase images as that’s where better 

accuracy was achieved. Research is being continued for G-Band 

image classification to obtain the best possible accuracy. 

N. Xie et al. [1] proposed the use of multiple input 

convolutional neural networks (CNN) and geometric 

optimization, called mCNN GO for classification. They used 

Mask R-CNN for the segmentation of individual chromosomes 

from the metaphase images and classified the sub-images 

using the mCNN GO. They also performed chromosome 

straightening with a medial axis locating algorithm, and 

achieved around 95.644% accuracy for segmentation. 

M. S. Al-Kharraz et al. [2] proposed a segmentation 

method where individual chromosome detection was done 

using YOLOv2 CNN followed by some chromosome post-

processing. This step achieved 0.84 mean IoU. They used 

VGG19 for further processing and classification and obtained 

an accuracy of 94.11% on the BioImLab Q-Band image 

dataset. They worked with metaphase images containing non-

overlapped chromosomes. 

By adding a number of layers onto the U-Net architecture, H. 

M. Saleh et al. performed overlapping chromosome semantic 

segmentation by implementing TTA and reached 99% 

accuracy [3]. 

H. A. Al-Ameri et al. [4] detected overlaps by performing 

thinning of the image using a Morphological operation. They 

found the cut points of the intersection by implementing an 

algorithm with a predefined 7x7 mask. 

E. Poletti et al. [5] used features extraction methods, and 

extracted medial axis, polarisation and length of individual 

chromosomes, to then classify them using an MLP network, 

they also used a multi-stage decision tree to find the polarisation 

of the chromosome. They achieved an accuracy of 95.6%. 

E. Poletti et al. [6] proposed using extensive features that 

were extracted from the chromosome images, and improved 

estimation of the medial axis. Feature re-scaling and 

normalising techniques take full advantage of the results of 

the polarisation step, re- ducing the intra-class and increasing 

the inter-class variances. They also use a rule-based approach 

that works on features to identify the polarisation. An MLP is 

used for classification and the accuracy obtained is 94%. 

E. Poletti et al. [5, 6] employ a distribution strategy that 

takes into account the number of chromosomes constraint 

and helps them classify chromosomes from a karyotype with 

better accuracies. 

M. Al-Kharraz et al. [7] proposed an ensemble of 3 Deep 

CNN models to further increase the classification accuracies. 

Their method achieves a classification accuracy of 97% with 

the ensemble of VGG19, ResNet50 and MobileNetv2. 

S. Swati et al. [8] proposed a multistage architecture that 

includes a network that upscales the image to a higher 

resolution, using super-resolution layers to upscale. They 

further use an Xception or a ResNet50 to classify the scaled 

images. The highest accuracy was achieved by using 

Xception and it is 93%. 

X. Liu et al. [9] proposed using a super-resolution net and 

self-attention negative feedback network and combining it 
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with Deep CNNs to obtain a classification method (SRAS-

net). The class imbalance of X and Y chromosomes was 

tackled by using SMOTE to generate additional Y samples. 

They achieved an accuracy of 97.5%. 

M. Sharma et al. [16] focused on crowdsourcing, and 

enabling large segmented dataset which can be fed to DNN 

models for automatic classification. However, this is 

dependent on human effort a lot, while some automation is 

there. Human in the loop is a key consideration factor here. 

R. L. Hu et al. [17] the distinction between partially 

overlapping chromosomes was done by using a neural 

network based image segmentation method. This was applied 

on a synthetic dataset by using U-Net for segmentation. The 

results achieved IoU scores of 94.7% for the overlapping 

region and 88-94% for the non-overlapping chromosome 

regions. 

3. Dataset 

Two sets of chromosome image datasets were used for the 

research and development of this project. The first dataset 

includes Q Band chromosome images which are obtained by 

staining chromosomes with Quinacrine, a fluorescent dye in 

the laboratory. It consists of 230 images of individual 

chromosomes for each type, across all 23 types of chromo- 

some classes (including X and Y as class 23). The dataset 

also has 117 metaphase images from which these individual 

chromosome images are taken. These images include a wide 

range of chromosome orientations which are straight, bent 

and so on and also include touching, overlapping and clusters 

of chromosomes in the metaphase images. The individual 

chromosome images are all in the right polarity with the p-

arm placed above the q-arm, and was used for the training of 

deep learning models to predict the chromosome classes. 

This is a publicly available dataset found online from the 

BioImLab- Laboratory of Biomedical Imaging [10]. 

The second dataset contains G-Band metaphase images 

which are prepared by staining chromosomes with the 

Giemsa stain. Here, the banding patterns are more 

pronounced and can be seen more clearly when compared to 

Q-Band stained images. This dataset was obtained from Dr. 

Rao’s Genetics Laboratory and Research Center, Bangalore, 

India. The metaphase images also include a wide range of 

chromosomes that are touching, overlapping or clustered. 

4. Methodology 

The metaphase image comprises 46 chromosomes for a 

normal human cell or it may be 45 or 47 chromosomes 

typically in cells involving numerical abnormalities. These 

chromosomes are scattered in the image and they occur in 

ways that require complex segmentation methods. These are 

categorized into 4 main categories- 

1) Individual isolated chromosomes 

2) Touching chromosomes 

3) Overlapping chromosomes 

4) Clusters of chromosomes 

A. Segmentation - Initial Stage 

The G-Band metaphase images (Refer Figure 1) occur 

with pixel intensities varying from 0 to 255. It generally 

includes chromosomes in gray lying on a white background. 

Object detection is first performed to locate the chromosomes 

on the image. Noise reduction is done to the image by 

applying the medianBlur filter over the image. This helps 

smoothen the pixels inside the chromosomes and focuses 

only on the outermost contour of the chromosomes and not 

the bands found inside. 

The Otsu thresholding [14] algorithm is used on the 

denoised grayscale image for binarization. This way, the 

background is separated from the foreground (chromosomes). 

It is important to implement adaptive thresholding to find the 

optimal value as this allows the algorithm to work on 

metaphase images of varying intensities and not just conform 

to a single threshold value. The next step involves the 

detection of chromosome outlines. One of the approaches for 

this is to use the Canny Edge detection [13] method. Upon 

using the Canny Edge algorithm on the metaphase image 

with the aperture size set to a value equal to 5, the boundaries 

of the chromosomes are clearly identified. Even finer details 

like the banding patterns inside the chromosome are visible 

to a great extent (Figure 2). 

As the initial step is to detect and segment the individual 

chromosomes, the Morphological Gradient [15] is used to 

detect the external boundaries alone. The outlines of the 

chromosomes are found by applying the Morphological 

Gradient operator using a 2x2 kernel in the image. 

Morphological Gradient is essentially the difference between 

the dilated and eroded versions of the image which produces 

the outline of the boundaries (Figure 3). Contours are found 

on this image and by using it as a mask, each contour is 

iterated through to get the chromosome Region Of Interest 

(ROI). Once the ROI is obtained, the chromosome is placed 

on a three-channel white background image. This ensures 

that any noise, or parts of other chromosomes are absent in 

that particular image. The minimum area rectangle bounding 

box is calculated for that chromosome, and this way multiple 

single chromosome images are saved from the metaphase for 

each contour. At this point, individual chromosomes are fully 

segmented and preprocessed, and clusters and overlaps have 

completed the initial stage of object detection. 

 

Figure 1. Metaphase Image. 
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Figure 2. After applying Canny Edge Detection. 

 

Figure 3. After applying Morphological Gradient. 

B. Detection of Overlaps and Clusters 

The next stage of the chromosome segmentation pipeline 

involves the detection of overlaps and clusters from the set of 

chromosome images that is received through the initial stage of 

segmentation. To achieve this, each sub-image is skeletonized 

after some noise reduction (Figure 4). The skeleton of an 

image is the eroded, thinned-down representation. The 

chromosomes are now shown as lines. If there exists an 

overlap, the skeleton lines intersect at a point. This strategy is 

used to detect chromosome overlaps. The same works in the 

case of touching and cluster chromosomes as well. 

The presence of an intersection is found by locating a white 

pixel and obtaining its neighboring pixels. The neighboring 

pixels have a value of 1 if it’s white or 0 if it’s black. A list of 

such pixels surrounding the pixel of interest is obtained and 

compared with a predefined list of all possible pixel value 

combinations where an intersection exists. This algorithm 

returns the intersection coordinates if and when detected. 

 

Figure 4. Overlap and its skeleton. 

 

Figure 5. Overlap image (left) and its segmented output (right). 

C. Segmentation - Separation of Overlapping 

Chromosomes 

The research has led to the discovery of two types of 

approaches for solving this using Image Processing based 

techniques- 

1. Watershed Algorithm is followed by Autoencoding to 

fill the missing intersection region that was initially 

covered by the overlap. 

2. Watershed Algorithm that considers the overlap 

intersection as a part of both chromosomes after 

separation. 

Method 1: This method works best with Q-Band 

chromosome images. Assume an image having two 

overlapping chromosomes. The watershed algorithm is used 

to segment the two chromosomes. Here, the markers for 

specifying seeds to the segmentation algorithm are provided 

manually. This ensures that the user has more control over 

how they perceive the particular chromosome overlap. A 

clinician would have to decide if the intersection is due to 

two chromosomes crossing each other, or due to two bent 

chromosomes touching at the bending point. 

Once the seeds are placed appropriately at the regions on 

the image (Figure 5 - left), the segments are generated 

accordingly, and drawn as a new image with the segments 

shown correspondingly (Figure 5 - right). The regions are 

differentiated by changing the segment’s color. All segments 

belonging to a particular chromosome have the same color. 

Each segment is then placed on a new background image 

unique to each chromosome. The chromosome lying above 

includes the intersection region after segmentation, whereas 

the chromosome lying beneath has an empty region where the 

intersection initially was. To help fill this gap, an autoencoder 

was trained with the BioImLab chromosome image dataset. An 

image autoencoder is a neural network that learns to first 

decompose the data into smaller objects and then reconstruct 

the original image using it to match the original as closely as 

possible. Autoencoders are widely used to reconstruct missing 

data, smoothen images, or even reduce noise. The autoencoder 

model was trained using the Tensorflow framework and used it 

to fill the gaps after the watershed segmentation if any. It was 

also found that autoencoding the entire image resulted in loss 

of valuable information like the chromosome banding pattern 

which is extremely important for CNN models to classify. 
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Hence, only the missing region of the chromosome is 

autoencoded (Figure 6). 

 

Figure 6. Chromosome with a missing region (left) after autoencoding 

(right). 

This method involves a few drawbacks. Firstly, an image 

autoencoder model was able to be trained with good accuracy 

only for the Q-Band chromosome dataset. The autoencoder 

for the G-Band chromosomes did not perform with good 

accuracy. Secondly, the autoencoded image did not get 

classified correctly by the Deep CNN model at all times. 

To resolve the above drawbacks, Method 2 is proposed. 

Method 2: This method supports G-Band and Q-Band 

chromosomes. The Watershed Algorithm described in 

Method 1 is implemented here as well. The seeding of 

chromosome segments is done in such a way that the 

intersection region of the overlap is specified as a separate 

segment from the rest of the chromosome segments (Figure 7 

- right). Finally while integrating the chromosome segments, 

the intersection region is integrated in both of the final 

separated chromosome images (Figure 8). 

D. Classification 

After completion of the segmentation of chromosomes 

from the initial metaphase image, the result includes 46 

individual chromosome images (assuming a case with no 

abnormalities). The next step is to correctly classify the 

chromosomes into their respective pair numbers - there are a 

total of 23 pairs, with the last pair including the sex 

chromosomes which is X and X in the case of females or X 

and Y in case of males. To do the classification, a Deep 

Convolutional Neural Network model - SqueezeNet [11] was 

trained. The SqueezeNet architecture is designed to reduce 

the number of parameters by “squeezing” parameters with 

the help of fire modules that use 1x1 convolutions. This 

results in a 50x reduction in model size when compared to 

AlexNet [12], while maintaining good prediction accuracy. 

 

Figure 7. Overlap (left) segmented with the intersection seeded separately 

(right). 

 

Figure 8. Chromosomes after separation from the overlap. 

The pair number for every segmented chromosome image 

is then predicted by using the trained CNN model, with good 

accuracy. 

E. Distribution Algorithm 

To further improve the final classification accuracy, the 

distribution algorithm is used. The idea is to take advantage 

of the constraint on the number of chromosomes for a given 

metaphase and redistribute erring predictions to best classify 

the chromosomes. 

Steps- 

1) Get individual predictions for each pair. 

2) Find pairs that are lacking (less than 2 chromosomes are 

predicted for it). 

3) For each of the lacking pairs, search crowded pairs 

(more than 2 chromosomes are predicted for it) for an 

image that has the highest score for the class that the 

lacking pair is in. 

4) Reassign that image to the lacking pair. 

5) Repeat until there are no lacking pairs left. 

5. Results 

The segmentation process which involves the detection 

and separation of purely individual chromosomes from the 

metaphase image works efficiently and produces 

approximately 95% accuracy. 

In cases of segmentation involving overlap detection and 

separation of chromosomes, the proposed algorithm works 

with most images and produces around 94% accuracy after 

performing tests on multiple image segments. 

 

Figure 9. Validation Accuracy of 95.75% - SqueezeNet model. 

The SqueezeNet model trained on all 23 pairs of 

chromosome images produced an accuracy of 95.75%. The 

model was prepared by using an early stopping callback to 

prevent overfitting of the data. It trained for 119 epochs using 
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the K-fold cross-validation strategy (5 folds). Refer Figure 9 

and Figure 10 for visualization of the metrics. Using the 

distribution algorithm on the model predictions pushed the 

accuracy up to 98% when the segmented images from the 

metaphase are given as the input to the SqueezeNet model for 

classification. This end-to-end segmentation-classification 

pipeline thus validates the proposed approach towards 

automating the karyotyping process. 

 

Figure 10. Confusion matrix for the test data predictions. 

6. Conclusion 

Karyotyping process is predominantly a manual effort 

driven task today and is generally very tedious. The main aim 

of this research was to simplify the segmentation of 

chromosomes in metaphase images, so that in particular 

complexities involved in the separation of touching, 

overlapping, and cluster chromosomes are resolved through 

combination of automation and very minimal manual efforts. 

This helps as an aid and augmentation to cytogeneticists in 

the task and help freshers in the field to get trained and learn 

the domain better and faster. Through this research, efficient 

methods to initially segment the individual chromosomes 

were found, and future work could involve the use of the 

Canny Edge detection algorithm to further detect internal 

banding patterns found in chromosomes. 

This research proposes a method that performs the overlap 

separation by using the watershed algorithm and segments 

the chromosome regions by manual seeding followed by 

techniques like contouring and image cropping. One of the 

approaches also involved the use of image autoencoding. 

Further, the chromosome class prediction accuracy after 

segmenting individual chromosomes from the metaphase 

image was validated. This was done by training a Deep CNN 

- SqueezeNet model that produced an accuracy of 95.75% on 

the dataset. By employing the distribution algorithm, the 

accuracy was enhanced to 98%. 
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This way, the process of handling metaphase images 

consisting of touching, overlapping, and clustered 

chromosomes in real-world can produce more accurate 

segmentation output. Those output images can then be fed 

into various classification algorithms for much better 

prediction outcomes of chromosome classes with higher 

accuracies. The impact of this overall, will result in 

automation of the karyotyping process to predict 

chromosomal defects with high accuracy. 
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