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Abstract: Bird baths pose a threat to human life as they are the perfect foci for Aedes aegypti Linnaeus, a mosquito that can 

spread chikungunya, Zika fever, Rift Valley fever, Mayaro, Yellow fever, and dengue under the right temperature and 

precipitation conditions. The vector lays its eggs in containers with standing water, which later emerge as blood-feeding adult 

females that can transmit these viruses. Unfortunately, past entomological models contributed to literature have not been able to 

predictively map precise geolocations of aquatic larval habitats of Ae. aegypti. This is primarily due to limited remote sensing 

tools [e.g., acquiring epi-entomologic habitat data using ground-level survey with a Google Map, differentially collected Global 

Positioning Systems (GPS) tracker, etc.]. Thus, many Ae. aegypti habitats may go undetected even in open, canopied, land cover 

areas. We employed ArcGIS Pro, Python, and R to develop multiple satellite spectral signature models for predicting Ae. aegypti 

bird bath habitats in Hillsborough County, Florida. We interpolated a georeferenced, county abatement, high-income, residential, 

bird bath, Red, Green, and Blue [RGB], Sentinel-2, 10-meter resolution, spectral signature in Python. Incorporating other prolific, 

Ae. aegypti, larval/pupal habitat, seasonal, gridded, zip code, land use/land cover [LULC], stratified, Normalized Difference 

Vegetation [NDVI], and elevation satellite maps allowed eco-cartographically distinguishing unknown potential super breeder 

foci backyards [> 3 bird bath larval/pupal habitats] as well as individual aquatic breeding site foci in the intervention, county 

abatement, study site. Since we knew the aquatic habitat data occurrence abundance and distribution, a priori, 

eigen-autocorrelation, eigen-spatial filter algorithm attempted to spatially geolocate potentially hyperendemic clustered habitat 

patterns [i.e., ‘hot spots’] and dispersed habitat patterns [i.e., ‘cold spots’]. We subsequently field-verified the habitat signature 

entomological habitat model forecasts. The sensitivity and specificity of the ground truth exercises revealed a model approaching 

100 percent for identifying aquatic, birdbath, Ae. aegypti, larval habitats. The Moran's Index [I] indicated slight geospatial 

negative autocorrelation; [Moran's Index: -0.143071, z-score: -1.057957, p-value: 0.290075], hence the breeding site aquatic foci 

were dispersed. Remote sensing data can be used for constructing LULC, NDVI, elevation and signature models which can be 

used for implementing "Seek and Destroy" a real-time larval source management [LSM] system for informing individual 

homeowners and residents using social media for removing standing water in bird baths, twice a week.  
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1. Introduction 

Marked geographic, spatiotemporal (henceforth, 

geospatiotemporal) variabilities in mosquito infection of 

arboviruses require adaptive strategies for determining 

optimal field-sampling timeframes, pool screening, and data 

analyses. In particular, the error distribution and aggregation 

patterns of adult arboviral mosquitoes can vary significantly 

by species, which can statistically bias analyses of 

geospatiotemporal geosampled signature predictor variables 

generating misinterpretation of prolific habitat surveillance 

geolocations. Currently, there is a lack of reliable and 

consistent measures of risk exposure based on 

fieldgeosampled georeferenced explanatory signature-related, 

reflectance habitat, wavelength satellite covariates which can 

compromise quantitative predictions generated from arboviral 

mosquito surveillance models for implementing larval source 

management (LSM) strategies targeting hyperproductive, 

seasonal habitats. In this experiment, we employed spatial 

statistics and Sentinel-2 visible and nearinfra-red [NIR] data 

for determining trapping sites that were related to bird bath 

habitats of Ae. aegypti species and distribution in 

Hillsborough County Florida. Initially, a Land Use Land 

Cover (LULC), normalized difference vegetation index 

[NDVI], normalized difference water index [NDWI] and 

3DEM models were constructed from multiple 

geospatiotemporal, geosampled, georeferenced signature, 

habitat predictors and the Sentinel-2 visible and NIR data. A 

Google Earth habitat model was also constructed. We then 

eigendecomposed the data into positive and negative 

eigenspatial filter eigenvectors. Eigendecomposition of Ae. 

aegypti habitats necessitates synthesizing orthogonal 

meteorological, land cover vegetation, elevation, and habitat 

variables in eigenvector eigen-geospace [13]. An 

autoregressive process in the error term was subsequently 

employed used to derive the sample distribution of the 

Moran's statistic for determining latent geo-spatial temporal 

eigen-autocorrelation components in the model. A Moran’s 

index of spatial autocorrelation, involves the computation of 

cross-products of mean-adjusted values that are geographic 

neighbors (i.e., covariations), that ranges from roughly -1, to 0 

to for negative, and nearly 0 to approximately 1 for positive, 

spatial autocorrelation, with an expected value of -1/(n-1) for 

zero spatial autocorrelation, where n denotes the number of 

areal units [10]. Spatial autocorrelation has many interprets: a 

nuisance parameter, self-correlation, map pattern, a diagnostic 

tool, a missing variables surrogate, redundant information, a 

spatial process mechanism, a spatial spillover, and the 

outcome of areal unit demarcation [10]. Eigen-spatial filter 

algorithms established means, variances, distributional 

functions, and pairwise correlations for the Sentinel-2 

signature, habitat prognosticative variables. In doing so, we 

assumed that the eigenfunction spatial filter would quantify 

the residual autocorrelation error in the mean response term of 

the model as a linear combination of various distinct aquatic 

signature-related, Ae. aegypti bird bath habitat map patterns. 

Our assumption was seasonally prolific bird bath habitats of 

Ae. aegypti can be accurately geospatiotemporally targeted 

based on signature georeferencable data using Sentinel-2 

satellite signature model topographic geomorphological 

explanatory covariates, and space–time eigenfunctions. 

Florida's subtropical climate is the ideal destination for 

tourists and the 84 different species of mosquitos who have 

made this state their home. A particular species of mosquito, 

the Ae. aegypti, is the vector for many mosquito-borne 

illnesses such as dengue, Zika virus, yellow fever, and West 

Nile virus, all of which have become endemic diseases in the 

state. Due to historical records of yellow fever and dengue, Ae. 

aegypti has been thought to be present in Florida as early as 

the seventeenth century [5]. This highly invasive mosquito is 

typically found in areas of human-populated environments, 

which makes Hillsborough County, FL, an ideal location to 

take blood meals and to breed. Human blood meals give the 

female mosquitos the nutrition they need during their 

gonotrophic cycle (reproductive cycle) to develop their eggs. 

The duration of an Ae. aegypti's gonotrophic typically lasts 3 

to 4 days and can determine the rate at which the female 

mosquito will take a blood meal [1, 24, 34]. It is to be noted 

that there is a difference between biting and taking a blood 

meal. When a mosquito bites (also known as probing), the 

mosquito will use a sensory probe called the labella to search 

for blood vessels through the skin. Once a mosquito senses a 

blood vessel, it will use its fascicle to penetrate and release 

saliva that can transfer a pathogen to the human [1]. Once the 

mosquito's fascicle lacerates a blood vessel, its stylet begins 

the blood-feeding process [1, 7, 24]. Whether or not the bite 

results in a blood meal, it places the human at risk if the 

mosquito's saliva contains an infectious agent (i.e., dengue).  

Focal outbreaks of dengue fever (dengue) in the state of 

Florida have increased since 2009 (Stephenson et al. 2021). 

There have been ten locally acquired cases in Florida this year. 

Four new cases of the locally acquired mosquito-borne illness 

dengue fever alone were reported in Broward and 

Miami-Dade counties between July 30 and August 5, 2023 

[https://www.floridahealth.gov/]. However, little is known 

about the precise geolocations of Ae. aegypti habitat 

populations across different regions of Florida at the county 

level. 

The Ae. aegypti species of mosquito is widely distributed 

throughout the state, occupying both artificial and natural 

containers [8, 12, 13, 29]. As of 2016, numerous abatement 

programs within the state conducted their own unique routine 

mosquito control surveillance, but unfortunately, Florida lacks 

a statewide, centralized reporting system where counties can 

share collected data [18]. With Ae. aegypti being strongly 

associated with highly populated urban areas, there is reason 

to believe that the risk of arbovirus within Florida's urban 
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areas is rising. 

Many Floridian counties' efforts to reduce mosquito 

populations rely on trapping techniques or insecticides that 

target adult mosquitoes in their respective habitats [27]. While 

controlling the adult population of mosquitoes has been 

pivotal in reducing infected adults, the efficacy of the 

insecticide is questionable. Many mosquito populations, 

especially Ae. aegpyti can adapt to having resistance to both 

adulticides from the pyrethroid and organophosphate 

chemical classes [2, 19, 21, 22]. From a public health 

perspective, it is imperative that control methods target the 

immature stage of the mosquito's life cycle to reduce the 

growth of their populations and reduce the risk of 

mosquitoborne diseases.  

Advances in computer vision have made it possible to get 

credible intelligence from satellite imagery using AI 

techniques such as Deep Learning in ArcGIS Pro. For 

example, ArcGIS Pro allows the usage of machine learning 

classification [e.g., Random Forest (RF)] object-based 

algorithmic methods for georeferenceable, satellite imaging, 

vector arthropod, seasonal, archived, remotely sensed, RGB, 

drone acquired, signature data [14]. Random Forest ensemble 

models are made of many decision trees using bootstrapping, 

random subsets of features, and average voting to make 

predictions [17]. Here, the improved ability of multispectral 

sensors and the statistical and machine learning computational 

geoprocessing tools in ArcGIS Pro provided real-time, 

sensing data resource for heuristically optimizing spatial data 

visualization of retrievable, seasonal, quantitative, thematic 

information [e.g., Sentinel-2 imaged, high income, urban 

residential land cover of a georeferenced, semipermanent, 

capture point, Ae. aegypti bird bath, aquatic, larval habitat] in 

a real-time geospatial AI, web configurable interactive 

database. Subsequently, we scaled up the RGB indexed 

spectral signature database of the Sentinel-2, imaged, capture 

point, zip code grid-stratified, LULC classifiable, scalable, 

habitat feature attributes [e.g., levels of canopy vegetation, 

3-D slope coefficients of catchment watersheds, etc.] using 

geo-AI intelligence for predictively mapping unknown, 

georeferencable, county level, larval, aquatic bird bath, Ae. 

aegypti breeding sites for implementing real-time LSM “Seek 

and Destroy” (S&D).  

Jacob et al. provide essential insights into implementing a 

new, real-time LSM for reducing larval, vector density [Macro 

S&D] and blood parasite level [Micro S&D] in a treated and 

suspected intervened malaria mosquito Anopheles [gambiae 

s.l., arabiensis s.s., funestus s.s.] habitat population which 

may be usable for treating Ae. aegypti bird bath habitats in 

Hillsborough County [14]. Initially, the authors of Jacob et al. 

constructed a geo-AI, iOS interactive, webconfigurable 

smartphone app for precisely ecogeographically geolocating 

georeferencable water bodies, including natural water bodies, 

irrigated rice paddies, cultivated swamps, ditches, agricultural 

ponds, and other geolocations, which are among the common 

breeding sites for Anopheles mosquitoes in Gulu district of 

Northern Uganda [14]. Satellite signature interpolation 

modeling may allow determining exact geolocations of 

unknown Ae. aegypti habitats in a county or district for 

implementing S&D. 

We hypothesized by integrating real-time, scaled-up 

spectral signature with satellite high-resolution data using 

geo-AI infused into an iOS application (app), a local vector 

control officer could retrieve a ranked list of visually similar 

breeding sites, aquatic foci of Ae. aegypti mosquitoes, and 

their respective, scalable, county-level, capture point, GPS 

indexable, habitat, and centroid coordinates. In this 

experiment, Spatial satellite signature models were extended 

to account for any non-Gaussian, Ae. aegypti geo-sampled, 

habitat count variables. Geospatial outliers were teased out in 

the residual plots. Subsequently, the Ae. aegypti habitat data 

were eco-epidemiologically signature forecasted. The model 

data included LULC, NDVI, and meteorologically derived, 

probabilistic, discrete, integer values which then were 

employed to prognosticate a number of habitat occurrences for 

the Hillsborough County study site. Jacob et al. confirmed that 

a signature land cover, vegetation, and 3D slope coefficients 

for a spatial autoregressive forecast model revealed 

geolocations of Ae aegypti habitat such as small containers, 

vases, flowerpot dishes, and tree holes [13].  

Controlling populations of vector mosquito species in urban 

environments is a major challenge. Ae. aegypti is well adapted 

to and will successfully exploit many artificial and natural 

habitats present in urban environments, presenting a major 

challenge for the development of control strategies [31]. 

Reactive control strategies based on the use of larvicide and 

adulticide are widely ineffective due to the inherent difficulty 

in reaching cryptic breeding habitats and resting adult 

mosquitoes [23]. Moreover, Ae. aegypti populations have high 

levels of insecticide resistance which will further impair the 

effectiveness of reactive mosquito control strategies in urban 

environments [16].  

Alternative vector control strategies such as S&D and their 

effectiveness in controlling not only Aedes mosquito 

populations but also in decreasing the incidence of arbovirus 

transmission are yet to be proven. Controlling populations of 

vector mosquitoes in urban and non-urban areas is a difficult 

task and control strategies based on the LSM framework are 

complex relying on many actions that rationally build on each 

other [25]. However, the key components of S&D such as 

mosquito surveillance, source reduction (i.e., aquatic habitat 

removal), community engagement, and improved policies can 

achieve great success. Therefore, being able to determine the 

role of the aquatic habitats that are widely present in urban and 

nonurban elevated and vegetated LULC, classified signature 

areas responsible for maintaining Ae. aegypti populations will 

allow not only the development of more effective preventative 

mosquito control strategies but would also help guide and 

improve policy and better inform the Hillsborough community. 

Our objectives in this article were: 1. To construct a Google 

Earth map of a georeferenced Ae. aegypti bird bath, capture 

point. 2. to extract a satellite signature of the aquatic breeding 

site foci: and, 3. To autocorrelate and interpolate the signature 

to find unsampled, unknown birdbath habitat and scalable, 

capture point, aggregated/non-aggregated, ['hot' and 'cold' 
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spot] countylevel geolocations for implementing S&D LSM 

control tactics in Hillsborough County, Florida.  

2. Data Source and Methodology 

2.1. Study Site 

Hillsborough County is located in the west-central portion 

of the US state of Florida. In the 2020 census, the population 

was 1,459,762, making it the fourth-most populous county in 

Florida and the most populous county outside the Miami 

metropolitan area. A 2021 estimate has the population of 

Hillsborough County at 1,512,070 people with a yearly 

growth rate of 1.34%, which itself is greater than the 

populations of 12 states according to their 2019 population 

estimates. Its county seat and largest city is Tampa.  

Hillsborough County is part of the Tampa–St. Petersburg– 

Clearwater Metropolitan Statistical Area. According to the US 

Census Bureau, the county has a total area of 1,266 square 

miles (3,280 km
2
), of which 1,020 square miles (2,600 km

2
) 

are land and 246 square miles (640 km
2
) (19.4%) are covered 

by water. About 158.27 miles (254.71 km) of shoreline are on 

Tampa Bay. [www.wikipedia.org] 

 

Figure 1. Study area map of Hillsborough County, FL. 

2.2. Data Source 

The European Space Agency's (ESA) high-resolution 

cloud-free, orthorectified, radiometric, and atmospherically 

corrected Sentinel 2B MSI (Multispectral Instrument) 

Level1C image of May 2023 was used for signature 

determination.  

The satellite image was obtained from ESA's Copernicus  

Open Access Hub  

(https://scihub.copernicus.eu/dhus/#/home). MSI sensors 

are widely used in mapping and monitoring LULC patterns, 

including farmlands, water bodies, and vegetation [15]. Each 

tile of Sentinel 2B Level-1C data covers 100 × 100 km
2
, which 

is orthorectified in UTM/WGS84 projection [9]. 

Highresolution USGS 1/3 arc-second Digital Elevation Model 

(DEM) dataset of 10-meter spatial resolution from the 

National Elevation Dataset (NED) was downloaded from the 

Open Topography 

(https://portal.opentopography.org/raster?opentopoID=OTNE

D.012021.4269.1) to identify sinks and generate the slope, 

stream order, and flood vulnerability map. 

2.3. Land Use/Land Cover (LULC) 

High-level thematic resolution land cover classes were 

mapped using supervised classification in Google Earth Pro 

for 2023 and 2022. Based on the existing knowledge of the 

study area's land use/land cover, five LULC categories were 

classified, viz., urban commercial, urban residential, rural, 

farmlands, and vegetation, to analyze the impacts of various 

LULC patterns and the potential Ae. aegypti bird bath habitats. 

Supervised classification has been extensively used for 

mapping land use/land cover classes [6]. Google Earth Pro 

provides accessibility to a high-resolution satellite image of 

less than 5 meters [6] compared to the Sentinel 10-meter 

resolution. This high-resolution satellite image avoids 

overlapping or misclassifying pixels in the other land cover 

classes, eliminating the noise and increasing a model's 

accuracy [6]. Moreover, the land use classes with the finer 
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thematic resolution, such as urban commercial and urban 

residential, and their difficulties in differentiating the spectral 

signatures that are residential, and their economic impacts 

cannot be captured using Landsat or Sentinel imagery alone 

due to the difficulties in differentiating the spectral signatures 

that are homogenous with other land use and land covers.  

Verification points were randomly generated in ArcGIS Pro. 

MLC gave the projected class values for the verification 

points. An error confusion matrix was not generated. The 

capture points were overlayed onto Ae. aegypti bird bath 

habitat hotspots of Uelmen et al., which revealed that the 

projected points generated from the MLC aligned exactly with 

our verification points [27]. 

 

Figure 2. Zip code stratified land cover map of Hillsborough County, FL. 

2.4. Normalized Difference Vegetation Index (NDVI). 

NDVI is one of the most widely used remote sensing index 

[28], which explains the difference between visible (red band) 

and near-infrared [26]. The red band has a wavelength of 0.66 

µm, and a near-infrared (NIR) band has 0.86 µm. The value of 

NDVI ranges from positive to negative. Positive values 

indicate dense vegetation areas; zero or negative values 

represent sparse vegetation or water/built-up areas. The 

formula for NDVI is given by Tucker (1979) as. 

 

Figure 3. Verification Points. 
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The NDVI values were subsequently retrieved at each 

geospatially geolocated potential, capture point sentinel site 

aquatic Ae. aegypti habitat to evaluate the association between 

these habitats and changes in vegetation as their habitats are 

found in areas with high vegetation and woodland [4, 13]. 

Thus, we hypothesized that the potential aquatic habitats of Ae. 

aegypti are generally found in areas of dense vegetation with 

high woods. 

 

Figure 4. Zip code stratified normalized difference vegetation index of Hillsborough County, FL. 

2.5. Digital Elevation Model (DEM) 

High-resolution Digital Elevation Model (DEM) of ALOS 

PALSAR DEM data of 12.5-meter spatial resolution (Scene 

1:Path-152, Frame-550; Scene 2: Path-152, Frame-540; 

acquisition date of the DEMs: April 26, 2010) was 

downloaded from the Alaska Satellite Facility [Earthdata 

Search | Earthdata Search (nasa.gov)]. The values of elevation 

were later extracted at each geospatially located potentially 

interpolatable Ae. aegypti birdbath habitat to analyze the 

relationship between these habitats and changes in elevation 

as they are generally found in areas of low elevation, 

especially in dense vegetation and in swamps or marshy lands 

[13]. Thus, we hypothesized that the potential habitats of Ae. 

aegypti are found in areas of low elevation, dense vegetation, 

and high woodlands. 

 

Figure 5. Zip code stratified digital elevation model of Hillsborough County, FL. 
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2.6. Autocorrelation Analyses 

The first step for constructing a robust, georeferenceable, 

eigenizable, mosquito vector, arthropod, prognosticative, and 

epidemiologic risk model in R, is to specify the model [14]. 

Suppose an estimated, semi-parametric, geo-spatiotemporal, 

eigen-autocorrelation, aggregation/non-aggregation-oriented, 

georeferenceable, determinant vector arthropod 

vulnerabilityoriented model is misspecified. In that case, it 

will be biased and inconsistent [14]. In operationalizable, 

geospatiotemporal, regression-based, vulnerability-oriented, 

epidemiologic, Ae. aegypti-related, prognosticative, larval 

habitat models, the term misspecification covers a broad range 

of modeling errors, including measurement errors and 

discretizing, geo-sampled, continuous, prognosticative 

variables [8]. 

 

Figure 6. Moran’s index describes the distribution of Aedes aegypti bird bath 

habitats in Hillsborough County, FL. 

We generated spatial eigen-autocorrelation indices 

employing the capture point, georeferenced Ae. aegypti 

habitat, determinants from the georeferenced, scaled-up, 

capture point, geosampled, epidemiologic data. Moran's 

indices (I) is a way to measure geo-spatiotemporal, 

autocorrelation [10]. In simple terms, it's a way to quantify 

how closely values are clustered together in a 2-D space which 

is used in geography and GIS/Python/R to measure how 

closely clustered different features are on a map like 

household income, level of education, etc. To calculate 

Moran’s I we employed 

(N/W)*ΣΣwij(xi–x)(xj–x)/Σ(xi–x)2 

where:  

N: The number of county potential bird bath Ae. aegypti 

habitats units indexed by i and j W: The sum of all wij x: The 

variable of interest (zip code, predicted breeding site aquatic 

foci) 

x: The mean of x 

wij: A matrix of spatial weights 

We assumed that the simple terms could quantify how 

closely the aggregation/non-aggregation-oriented Ae. aegypti 

habitat, determinant, geosampled, eigenized, discrete, integer 

values were clustered together in a 2-D space. The upper and 

lower bounds for our eigen-spatial filter, eigendecomposition, 

and model spatial matrix were constructible employing 

Moran's I, which here was given by λmax(n/1
T
W 1) and 

λmin(n/1
T
W 1) where λmax and λmin were the extreme 

eigenvalues of Ω = HWH. An autocorrelation plot was 

generated. 

3. Results 

Initially, a misspecification perspective for the asymptotical, 

potentially eigenizable, scalable, capture point, sentinel site, 

county-level, signature, Ae. aegypti, Sentinel-2, signature 

model was generated in R assuming that the geosampled, 

aggregation/non-aggregation-oriented, potentially 

transmission-related, stratified, parameter estimator fit was 

(i.e., a standard regression equation). The primary function of 

the model generation was to identify the eigenizable 

autocorrelated disturbances in the stratified, 

aggregation/non-aggregation-oriented, georeferenced, capture 

point, sentinel site, hot/cold spot, and stratified determinants. 

The Graph mapping functionality in R allowed us to create 

choropleth, prism, block, and surface maps. The stratified 

latent coefficients were optimally decomposed into a 

white-noise component, and a set of unspecified and 

misspecified, model outputs that had structure. White noise is 

a univariate or multivariate discrete-time stochastic process, 

whose terms are independent and identically distributed (i.i.d.) 

with a zero mean [Stein. 1999]. The Annotate facility enabled 

us to generate a special dataset of graphics commands from 

which we created the stratified, county-level, Ae. aegypti, 

Sentinel-2, signature, determinant, vulnerabilityoriented, 

graphic, model output. The annotated output generated 

multiple, customized, topographic, capture point, sentinel site, 

georeferenceable, county-level, zip code, gridstratified, LULC 

maps.  

Signature quantification of the interpretive, land cover 

patterns was renderable from the distribution of the regressed, 

stratified, aggregation/non-aggregation-oriented, 

georeferenced, Ae. aegypti, bird bath, signature, determinants 

which in this experiment was a requirement to describe 

independent key dimensions of the underlying uncertainty 

processes in the empirical, geosampled, stratified, data capture 

points. We were able to define a pattern in the misspecification 
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term. R provided an efficient interactive tool for organizing 

and analyzing the stratified, 

aggregation/nonaggregation-oriented, hot/cold spot, Ae. 

aegypti, Sentinel-2, stratified, sentinel site, county-level, 

scaled-up, georeferenced, epidemiologic, data, capture points.  

Next, an autoregressive spatialized model was generated 

employing an asymptotical, stratified variable Y, as a function 

of a nearby Ae. aegypti bird bath, explanatory, signature, 

wavelength regressor Y in the aggregation/nonaggregation, 

entomologic, hot/cold spot, scaled-up model. A capture point, 

county-level, stratified, potentially eigenizable, Ae. aegypti, 

bird bath specifiable, geosampled, explanatorial, indicator 

value I (i.e., an autoregressive response), and the residual of Y 

was treated as a function of a nearby geosampled Y residual 

(i.e., an SAR or spatial error specification). For quantitative, 

autoregressive, hot/cold spot, vulnerability-oriented, 

prognosticative, entomologic vectorarthropod modeling, the 

SAR model furnishes an alternative specification that 

frequently is written in terms of matrix W [11]. Here, the 

spatial covariance of the asymptotically potentially, 

eigenizable, aggregation/on-aggregation-oriented, empirical, 

stratified, epidemiologic, capture point, sentinel site, hot/cold 

spot, scalable, georeferenceable, Ae. aegypti, bird bath data 

was a function of the matrix where T denoted the matrix 

transpose. The resulting matrix was symmetric and was 

considered a second-order specification as it included the 

product of two spatial structure matrices.  

Euclidean distances between the georeferenced capture 

point, sentinel site, scaled-up, county-level, stratified, 

aggregation/non-aggregation-oriented, Sentinel-2, habitat 

determinants were definable in terms of an n-by-n geographic 

weights matrix, C, whose values were, 1 if the geosampled, 

county-level, hot/cold spot geolocations i and j were deemed 

nearby, and 0 otherwise. Adjusting this matrix by dividing 

each row entry by its row sum subsequently rendered C1, 

where 1 was an n-by-1 vector of ones which converted the 

regression-based matrix to matrix W. The resulting SAR 

model specification with no geosampled, scaled-up, capture 

point, signature determinants (i.e., the pure spatial 

autoregression specification) subsequently took on the 

following form: where was the scalar conditional mean of Y, 

and was an n-by-1 error vector whose parameters were 

statistically individually identified and normalized random 

variates. Spatial autoregressive models are fit using datasets 

that contained observations on geographical areas or on any 

units with a spatial representation [Cressie 2015]. 

Approximate standard errors for the stratified, county-level, 

eigenizable, Ae. aegypti, bird bath, georeferencable signature, 

determinant specifiable, vulnerability model was computable 

as the square roots of the diagonal elements of the estimated 

covariance matrix. The covariance matrix for analyzing the 

estimator determinants was expressible employing where 

designated calculus of expectations, I was the n-by-n identity 

matrix denoting the matrix transpose operation and was the 

asymptotical error variance [i.e., the variance of how far the 

geosampled, non-homogeneous, 

aggregation/nonaggregation-oriented prognosticated, 

stratified, Ae. aegypti, bird bath-related, signature estimator 

determinants were spread out, eco-geographically and 

geo-hydrologically]. 

Subsequently, we employed a Hessian matrix for 

quantitating the empirical, georeferenced, county-level, 

geosampled signature habitat dataset of stratified, scaled-up, 

hot/spot, capture point, sentinel site, 

aggregation/nonaggregation-oriented evidential, 

observational, entomologic prognosticators. In mathematics, 

the Hessian matrix or Hessian is a square matrix of 

second-order partial derivatives of a function [Binmore and 

Davies, 2007]. This matrix described the local curvature of a 

function of the scaled up, capture point, sentinel site, Ae. 

aegypti, bird bath-related, stratified, geosampled, potentially 

eigenizable, estimator determinants. Given the function, if all 

second partial derivatives of f existed and were continuous 

over the domain of the function, then the Hessian matrix of f in 

the prognosticative, epidemiologic, signature, determinant, 

vulnerability-oriented, county-level, Ae. aegypti, bird bath 

model was derivable from where and were the differentiation 

operator with respect to the i-th argument. The matrix 

rendered in R was. We noted the determinant of the matrix in 

our scaled-up, entomologic, capture point, sentinel site, 

prognosticative model was Hessian. In image analysis, 

the Hessian matrix can describe the second-order variations of 

local image intensity [i.e., seasonal, 

aggregation/nonaggregation-oriented, stratified geolocation 

around a scaledup, capture point, sentinel site, LULC, 

reflectance pixel], thereby encoding the shape information 

[see Jacob et al. 2017]. In practice, it is computable by 

convolving an image with second derivatives of the Gaussian 

kernel in the x- and y-directions. Here, the matrix described 

the local curvature of the spatial structures over a whole 

county. Hessian matrix is suitable for entomologic, 

county-level, capture point, sentinel site, hot/cold spot, and 

shape detection. For our purposes, this Gaussian kernel was 

assumed to have a standard deviation of 1, applied on each 

pixel in a capture point, satellite, Sentinel-2 10m spatial 

resolution, Ae. aegypti, georeferenced sentinel site image so 

that the Hessian matrix was expressible as 

Hf=HxxHxyHyxHyy. 

In this experiment, the Hessian matrix was relatable to the 

Jacobian matrix. In vector calculus, the Jacobian matrix of a 

vector-valued function of several variables is the matrix of all 

its first-order partial derivatives [10]. When this matrix is 

square, that is, when the function takes the same number of 

variables as input, the number of vector components of its 

output, is referred to as the Jacobian determinant [Cressie 

2015]. Both the matrix and the determinant are often referred 

to simply as the Jacobian in the literature.  

The Jacobian of a vector-valued function in the 

georeferenced, Ae. aegypti, Sentinel-2, bird bath habitat, 

signature determinants generalized the gradient of a 

scalarvalued function which in turn generalized the derivative 

of a scalar-valued function of every stratified, geosampled, 

discrete integer value in the empirical satellite waveband 

dataset. In other words, the Jacobian matrix of a scalarvalued 
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function in the prognosticative, entomologic, risk model (the 

transpose of) was its gradient and the gradient of a 

scalar-valued function of a single, scaled-up, georeferenceable, 

aggregation/non-aggregation-oriented, capture point, sentinel 

site, county-level, habitat signature prognosticator was its 

derivative. Further, at each sentinel site where a function was 

differentiable, the Jacobian described the amount of 

"stretching", "rotating" or "transforming" that the function 

imposed locally near that habitat capture point. For example, 

here (x′, y′) = f(x, y) was employed to smoothly transform a 

stratified, georeferenced, scaled-up, signature related, bird 

bath, habitat, wavelength, reflectance observational, 

evidential prognosticator in the Jacobian matrix Jf(x, y) which 

here described how the geosampled, county-level, 

determinant in the Ae. aegypti, model performed.  

The hot/cold spot residuals represented independent, 

sentinel site, county-level, stratifiable, prognosticative, 

variable, clustering tendencies. The spatial pattern in the 

eigen-orthogonalized eigenvectors was synthetic. In the 

county-level, predictive, eigenvector, hot/cold spot, risk 

model, positive, global, eigen-autocorrelation in the local 

patterns of the Ae. aegypti habitat, determinants exhibited 

only positive local eigen-autocorrelation and vice versa for 

negative global eigen-autocorrelation. The eigenvectors 
 and 


�within each set of eigenvectors were mutually 

eigenorthogonal employing symmetry transformation  (� + 

�) which in this experiment was expressible employing a 

quadratic form as revealed in Equations (2.1) and (2.2).  

The eigen-spatial filter eigendecomposed eigenvectors of 

specification (2.1) were eigen-orthogonal to the georeferenced, 

geosampled, aggregation/non-aggregationoriented, 

county-level, hot/cold spot, X of the regressionrelated, 

epidemiologic, prognosticative, signature model constructed 

in R employing the transmission-oriented, operationalizable, 

stratified, scalable, sociodemiographic and environmental, 

eigenized, determinants.  

Conversely, the interpolatable, eigenvectors of specification 

(2.2) were eigen-orthogonal only to the constant unity vector 1 

in X. This eigen-orthogonality had implications for predictive 

modeling geospatial misspecification terms in our stratifiable, 

vector arthropod, habitat-related, 

aggregation/non-aggregation-oriented, georeferenceable, 

transmission-oriented, vulnerability, county-level model as 

they allow linking each collection of eigen-orthogonalizable 

eigenvectors to its specific autoregressable model residuals by 

letting  be a matrix whose vectors are subsets of {
1,⊠, 


�}SAR. Here we considered also within-group estimation of 

higher-order, autoregressive, panel models employing the 

georeferenced, clustering/non-clustering, 

vulnerability-oriented regressors and fixed effects where the 

lag order was possibly misspecified. Even when disregarding 

the misspecification bias, the fixed-effect bias formula 

regressed differently from the correctly specified case though 

its asymptotic order remained the same under stationarity. A 

linear combination of this subset was approximatable by 

employing the misspecification term of the simultaneous 

autoregressive version of the vulnerability-oriented, Ae. 

aegypti bird bath stratified, prognosticated, signature model 

output which was expressible as (����� 

=1����)(2.3). 

The linear combination ESAR  remained 

eigen-orthogonal to the geosampled exogenous variables X 

and, consequently, the estimated geosampled, 

sociodemographic, and environmental, stratified, predictor 

variable  ̂ were unbiased. Further, as a property of the 

ordinary least squared [OLS] estimator, the approximated 

term ESAR γ was also eigenorthogonal to the model residuals 

�̂. The model � = �β ̂ + �SAR ̂γ + ε̂ decomposed the eigenized, 

stratified, prognosticative Ae. aegypti habitat, determinants y 

into a systematic trend component, a stochastic signal 

component, and white-noise residuals. The term ESAR ̂γ 

removed variance inflation in the mean square error [MSE] 

term attributable to latent, eigen-autocorrelation in the 

scalable, aggregation/nonaggregation-oriented, geosampled, 

county-level, stratified, prognosticated, capture point, sentinel 

site, eigenized, habitat, signature, estimator determinants.  

Alternatively, for the spatial lag model (2.3), an 

aggregation/non-aggregation-oriented, autoregressive, 

predictive, vulnerability-oriented, signature model was 

constructible employing ELag which was a matrix of those 

eigen-spatial filter eigenvectors that were a subset of {
1,⊠, 

�}Lag. The approximation of the misspecification term 

became �&'( � �0 (�+ + �). Since �&'( � was correlated 

with the variables X, its incorporation into the scaled-up, 

capture point, sentinel site, county-level, stratified, risk model 

corrected the bias of estimated plain OLS parameters  in the 

latent, spatial lag, eigen decomposed, hot/cold spot model, 

summary diagnostics. The model � � �+̂ + �&'( ̂� + �̂ was 

constructible from the geosampled, 

aggregation/non-aggregation-oriented, vulnerability-oriented, 

determinants which in this experiment was derivable from an 

eigen decomposition of the spatial lag model, However, for 

the georeferenced, scaled-up, capture point, hot/cold spot, 

geosampled, county-level, prognosticative model, eigenized, 

estimator determinants we noted that the trend and the 

timeseries, signals were no longer uncorrelated and the MSE 

was deflated.  

The set of eigenvectors {
1,⊠,
�}Lag of the spatial lag 

model (2.3) was calculable in R independent of the 

georeferenced, county-level, eigendecomposed, 

prognosticative variables X. This calculation was dependent 

on the underlying spatial link matrix V. We found that this 

eigen-spatial filtering approach was more adaptable to an 

exploratory specification search of the relevant stochastically 

interpolatable, geosampled, county-level, Ae. aegypti habitat, 

signature, estimator determinant, capture point, scalable, 

georeferenced, sentinel site, hot/cold spots. Spatial predictions 

rather than with the regressed temporal shifting, 

georeferenced, sociodemiographic and environmental, 

prognosticated, aggregation/non-aggregation-oriented, 

geosampled, explanatory, eigenized, estimator determinant, 

discrete values in the epidemiologic, prognosticated, risk 

model output were quantifiable. In contrast, for the 

simultaneous autoregressive model (2.2), the eigenvectors 

{
1,⊠, 
�}SAR depended through the projection of 1(x) on 

the approximated explanatory variables X. Thus, any change 
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in the underlying model structure required a recalculation of 

the eigen-orthogonalized, eigen-spatial, filters, for generating 

robust tessellations. Eigen-spatial filtering of either the spatial 

lag model or the simultaneous autoregressive model with a 

common factor constraint, thereafter, only required 

identification of one set of selected, eigenvectors, namely, ��� 

or �&'(  respectively. The relevant set of eigenvectors 

was applied simultaneously to the multivariate, scaled-up, 

capture point, sentinel site, stratified, 

aggregation/non-aggregation-oriented, georeferenceable, and 

estimator determinants. For the generic autoregressive model 

(2.1), however, eigen-spatial filtering was applied individually 

to each geosampled, aggregation/nonaggregation-oriented, 

stratified, eigenized, signature determinant. The generic 

specification of autoregressive spatial models associated a 

specific spatial lag factor with the y variable and other lag 

factors for each additional, transmission-oriented, 

operationalizable, stratified, Ae. aegypti habitat, signature 

determinants. We employed the eigenvectors {
1,⊠,
�}Lag to 

filter latent, non-zero, eigenautocorrelation coefficients 

embedded in the scaled-up, generic, county-level, 

georeferenced, prognosticative, capture point, risk model for 

each geosampled, aggregation/nonaggregation-oriented, 

straifiable, sentinel site, semiparameterizable, eigen-estimator 

determinant.  

The final step was to identify suitable and parsimonious 

subsets of approximatable, eigen-orthogonalizable, 

eigenspatial filters ���� and �&'( from the georeferenced, 

aggregation/non-aggregation-oriented, stratified, 

environmental and sociodemiographic, vulnerabilityoriented, 

Ae. aegypti, bird bath habitat, signature determinant model 

specifications (2.1) or (2.2). We assumed that a particular 

subset of eigen-orthogonalized eigenvectors was suitable for 

optimally, heuristically, optimizing, georeferenceable, 

aggregation/non-aggregation-oriented, hot/cold spot, 

scaled-up, capture point, county-level, sentinel sites if the 

optimizable residuals  of the resulting eigenfunction, 

eigen-spatial filter, eigen-autocorrelation model became 

independent with respect to the underlying geosampled spatial 

structure V. Here, parsimony in the model estimation was 

definable as the smallest possible subset of 

eigen-orthogonalized eigenvectors which led to the 

independence in the Ae. aegypti habitat, forecasted, risk model, 

hot/cold spot, aggregation/non-aggregation-oriented, 

stratified, signature determinant derivatives. We noted that the 

patterns of different eigenvectors expressed independent and 

filter eigen-autocorrelation as interpreted from the model 

derivatives. This was formalized by an eigenized, signature 

determinant associated to the georeferenced, county-level, 

sentinel site, capture point Ae. aegypti habitat, stratified, 

hot/cold spot foci. Positive and negative, latent, 

eigenautocorrelation pseudo-R
2 

values were subsequently 

reported by employing a generalized linear mixed model 

[GLMM] estimation results from R.  

4. Discussion 

In this experiment, we attempted to establish the limiting 

distribution of the Moran test statistic for quantifying the 

independence in datasets of georeferenced, Ae. aegypti bird 

bath signature predictor variables geosampled at multiple sites 

in various neighborhoods in Hillsborough County. Initially, 

we partitioned each georeferenced capture point, Ae. aegypti 

habitat using Sentinel-2 visible and near-infra-red (NIR) data 

imaged, capture point georeferenced, in GIS to compare the 

spatial concurrence of adult-sampled mosquitoes based on a 

LULC reflectance signature covariate for evaluating 

surveillance activities. We then employed a semiparametric 

eigen-spatial filtering approach using a second order 

eigenfunction eigendecomposition algorithm based on a 

geographic connectivity matrix for computing the Moran's I 

statistic. The underlying rationale for employing an 

eigenvector eigen-spatial filtering approach for quantifying 

spatial autocorrelation levels is that eigenvectors that are 

extracted from a transformed spatial link matrix can exhibit 

distinctive spatial patterns [10]. The eigenvectors generated 

from geosampled, seasonal, georeferenced, bird bath, Ae. 

aegypti habitat data were mutually orthogonal and 

uncorrelated allowing for an explicit description of error in 

spatially lagged and simultaneous autoregressive, spectral, 

signature frameworks constructed from field-geosampled 

georeferenced entomologic, zip-code, gridded, LULC, NDVI, 

NDWI and 3-D DEM parameters. Contribution in literature [4, 

13] has covered many factors relating to the foraging behavior 

of vector mosquito species by generating models based on 

productivity and oviposition of gravid mosquitoes. Statistical 

deficiencies; however, in quantifying spatial error in 

field-geosampled arboviral mosquito data for measuring 

geo-spatiotemporal productivity and predicting prolific 

habitats can hamper progress in implementing control 

strategies as outlined in Gu and Novak (2005) rendering 

intervention efforts for targeting productive habitats 

inefficient. Undiagnosed spatial autocorrelation effects in 

geosampled georeferenced vector mosquito data can spill over 

across units of observation which can result in a misspecified 

model (Jacob et al., 2015). Since the strategy of targeted 

interventions is to recognize the importance of the variation in 

mosquito production among breeding sites in the design of 

control programs for suppression of disease transmission, it is 

vital to statistically summarize spatial error in autoregressive, 

Ae aegypti, bird bath, signature, interpolation models. We 

were able to construct a robust semiparametric eigen-spatial 

filtering model to deal explicitly with error in spatially lagged 

and simultaneous autoregressive signature interpolation 

models for identifying prolific habitats based on 

field-geosampled satellite data of georeferenced Ae. aegypti 

bird bath habitats in Hillsborough County, Florida.  

The NDVI Ae. aegypti Hillsborough County habitat map 

revealed geolocations of potential bird bath aquatic foci 

throughout different land covers in Hillsborough County. 

Several deterministic, signature habitat models have been 

developed in the literature [4, 13] to study the interactions of 

solar radiation within vegetation canopies of entomological, 

vector, arthropod, larval habitats in various sub-county 

abatement, geolocations e.g., hyper-arid, arid, semi-arid, 
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prerain, etc.), to understand how biodiversity responds to 

environmental degradation in various ecosystems for 

optimally, remotely targeting, Ae. aegypti seasonal, super 

breeder, foci. In this experiment, diversity and assemblage 

structure differed between amongst capture point geolocations 

and between LULC areas which were reclassified as territories 

vulnerable to Ae. aegypti bird bath habitats suitability. Here, 

NDVI measured wavelength Sentinel-2 imaged reflectance 

visible and NIR explanators of seasonal, hyper-larval 

productivity currently including canopy closure, vegetation 

height, percent cover of bare ground, leaf litter, and grasses 

amongst collected points in sub-county, abatement, LULC 

classified geolocations of Hillsborough County.  

High-resolution NDVI, county-level signature models may 

be adapted to a system of simultaneous differential equations 

to investigate inhomogeneous, vegetation, LULC, and canopy 

radiation. For example, Iwamura, et. al., [2020] employed an 

ArcGIS deterministic model to distinguish, unmixed, 

directional, spectral reflectance of a capture point, LULC 

reclassified, vegetation, and intermittently canopied paradigm. 

In this experiment, effort total proportion of spectral reflection 

absorbed by the canopy system changed as a function of the 

solar zenith angle; the total global reflected spectral also 

changed. The solar zenith angle is the angle between the 

zenith and the center of the Sun's disc [Jensen 2015]. The 

deterministic models simulated the apparent reflectance in 

multiple, satellite data (Sentinel-2 at 10 m resolution) 

unmixed, LULC wavebands above the canopy, and this 

reflectance revealed varying solar zenith angles due to 

geometrical-radiation, signature interactions within the 

capture point, zip code grid-stratified, canopied LULCs. Many 

epi-entomological, vector arthropod NDVI studies for 

identifying unfamiliar prolific foci do not distinguish between 

unmixed, LULC capture point, global and directional, 

interpolative, unmixed, canopy, reflectance factors, (i.e., RGB 

sub-pixel, frequencies). This distinction here dictates the 

nature of the friability of georeferenceable, sub-county 

abatement, capture point, canopy-vegetated, bird bath, Ae 

aegypti, larval habitat, unmixed, spectral, signature radiance 

for identifying, unsampled, hyperproductive, seasonal, 

vegetated breeding sites in a stochastic iterative interpolation.  

Zip code stratified LULC reflectance, seasonal traits can 

dictate the nature of real-time, imaged, capture point, Ae 

aegypti, habitat, wavelength, reflectance alternativeness, and 

interrogatability. Such tactics within a real-time interactive 

iOS dashboard may allow categorizing temporal, resampled, 

RGB frequencies seasonal time frame for optimally 

geolocating unknown, unsampled, sub-county abatement, 

potential, and super breeder foci. Understanding the vertical 

pattern of LULC traits across residential homestead plant 

canopies may provide critical information on ecosystem 

functioning and structure and responses to climate change 

associated with seasonal, Ae. aegypti breeding site aquatic 

foci.  

The impact of vertical canopy position NDWI on unmixed, 

leaf spectral NDVI properties and subsequently leaf traits 

across the entire spectrum for a, sub-county abatement, 

potential, seasonal, super breeder, bird bath, Ae. aegypti, larval 

habitat is poorly understood. Real-time, dashboard, optical 

properties may track variability in leaf traits across, a bird bath, 

Ae aegypti, LULC eco-georeferenced, capture point, and 

generate a vertical canopy profile using Partial Least Square 

Discriminatory Analysis (PLS-DA) in a realtime, dashboard, 

ArcGIS or python module. In so doing, leaf spectral 

measurements together with leaf traits (nitrogen, carbon, 

chlorophyll, equivalent water thickness, and specific leaf area) 

may be studied at multiple, seasonal, vertical, canopy 

positions along the plant stem: lower, middle, and upper 

employing LULC, NDWI and NDVI Sentinel-2 maps. 

Observing, real-time, mappable remotely captured, foliar 

nitrogen (N), chlorophyll (Cab), carbon (C), and equivalent 

water thickness (EWT) may reveal, higher concentrations in 

the upper canopy leaves compared with lower shaded leaves 

in a potential, seasonal, Ae. aegypti, bird bath capture point, 

larval habitat, sub-county abatement, classified LULC, 

aquatic foci. Plants exhibit higher nutrient stoichiometry in the 

upper illuminated leaves that receive higher photon flux 

density compared to lower canopy-shaded leaves [26].  

The eigendecomposition, eigen-spatial filtering approach 

added a minimally sufficient set of eigenvectors as proxy 

variables to the set of evidential, observational, Ae. aegypti 

birdbath, capture point, sentinel site, prognosticators in the 

county-level, signature determinant, vulnerability-oriented, 

vector arthropod model by inducing mutual independence in 

the scaled-up, capture point, sentinel site, county-level, 

geosampled, potentially georeferenced, signature estimator 

determinants in eigenvector eigen-geospace. The hot/cold spot 

Ae. aegypti birdbath, capture point, sentinel site, residuals 

represented independent, sentinel site, county-level, 

stratifiable, prognosticative, variable, clustering tendencies. 

The spatial pattern in the eigenvectors was synthetic. At the 

county level, predictive, Ae. aegypti birdbath, capture point, 

sentinel site hot/cold spot, risk model, positive, global, 

eigenautocorrelation in the local patterns of the parameters 

exhibited only positive local eigen-autocorrelation and vice 

versa for negative global eigen-autocorrelation. The 

eigenvectors 
3 and 
� within each set of eigenvectors were 

mutually eigen-orthogonalizable employing symmetry 

transformation  (� + �4) which in this experiment was 

expressible employing a quadratic form as revealed in 

Equations (2.1) and (2.2).  

As mentioned previously, the eigen-spatial filter 

eigendecomposed eigenvectors of specification (2.1) were 

eigen-orthogonal to the georeferenced, geosampled, 

aggregation/non-aggregations-oriented, county-level, 

hot/cold spot, X of the regression-related, epidemiologic, 

prognosticative, county-level, specified, Ae. aegypti birdbath, 

capture point, sentinel site, signature determinant, the model 

constructed employing the operationalizable, stratified, 

scalable, sociodemographic and environmental, eigenized, 

signature determinants. Conversely, the interpolatable, 

eigenvectors of specification (2.2) were eigen-orthogonal only 

to the constant unity vector 1 in X. This eigenorthogonality 

had implications for predictive signature modeling geospatial 

misspecification terms in our stratifiable, Ae. aegypti birdbath, 
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capture point, sentinel site 

aggregation/non-aggregation-oriented, georeferenceable, risk 

model as they allow linking each collection of 

eigenorthogonalized eigenvectors to its specific 

autoregressable county-level, signature, model residuals by 

letting ���� be a matrix whose vectors are subsets of {
1,⊠, 

�}SAR ∙. Here we considered also within-group estimation of 

higher-order, autoregressive, panel signature models 

employing the stratified, georeferenced, time series, 

dependent, clustering/non-clustering, vulnerability-oriented 

Ae. aegypti birdbath, capture point, sentinel site regressors and 

fixed effects where the lag order was possibly misspecified. 

Even when disregarding the misspecification bias, the 

fixed-effect bias formula regressed differently from the 

correctly specified case though its asymptotic order remained 

the same under stationarity. A linear combination of this 

subset was approximatable by employing the misspecification 

term of the simultaneous autoregressive version of the 

vulnerabilityoriented, habitat-related, stratified, 

prognosticated, model output which was expressible as ���� � 

 6����) (2.3). 

The linear combination ���� � remained eigen-orthogonal to 

the geosampled exogeneous Ae. aegypti birdbath, capture 

point, sentinel site, signature variables X and, consequently, 

the estimated dependent, geo-sampled, sociodemographic, 

and environmental, stratified, predictor variables β8  were 

unbiased. Further, as a property of the OLS estimator, the 

approximated term ���� � was also eigen-orthogonal to the 

model residuals  The model y � Xβ8  + ESAR γ̂ + ε̂ 

decomposed the, eigenized, Ae. aegypti birdbath, capture 

point, sentinel site, stratified variable y into a systematic trend 

component, a stochastic signal component, and whitenoise 

residuals. The term ���� ̂� removed variance inflation in the 

mean square error term attributable to latent, 

eigenautocorrelation in the scalable, 

aggregation/non-aggregationoriented, geosampled, 

county-level, stratified, prognosticated, vector 

arthropod-related, capture point, sentinel site, eigenized 

determinants.  

Alternatively, for the spatial lag model (2.3), an 

aggregation/non-aggregation-oriented, autoregressive, 

predictive, vulnerability-oriented, Ae. aegypti birdbath, 

capture point, sentinel site, the model was constructible 

employing �&'( which was a matrix of those 

eigenorthogonalized eigen-spatial filter eigenvectors that were 

a subset of {
1,⊠, 
�}Lag The approximation of the 

misspecification term became �&'( � �0 6���(�+ + �). 

Since �&'( � was correlated with the variables X, its 

incorporation into the scaled-up, capture point, sentinel site, 

county-level, stratified, risk model corrected the bias of 

estimated plain OLS parameters  in the latent, spatial lag, 

eigen-spatial filter, hot/cold spot, eigenized, estimator, 

vulnerability-oriented, summary diagnostics in R. The model 

� � �+̂ + �&'( ̂� + �̂ was constructed from the geosampled, 

aggregation/non-aggregation-oriented, Ae. aegypti, bird bath 

habitat vulnerability-oriented, signature determinants which 

in this experiment was derivable from an eigendecomposition 

of the spatial lag model, However, for the georeferenced, 

scaled-up, capture point, hot/cold spot, geo-sampled, 

countylevel, prognosticative model, eigenized, Ae. aegypti, 

bird bath habitat estimator determinants we noted that the 

trend and the signature wavelength Sentinel-2 reflectance 

signals were no longer uncorrelated, and the mean square error 

was deflated. 

The set of eigenvectors {
1, ⊠, 
�} Lag of the spatial lag 

model (2.3) was calculable in R independent of the 

georeferenced, county-level, eigendecomposed, 

prognosticative variables X. This calculation was dependent 

on the underlying spatial link matrix V. We found that this 

eigen-spatial filtering approach was more adaptable to an 

exploratory specification search of the relevant stochastically 

interpolatable, county-level, Ae. aegypti birdbath, capture 

point, sentinel site, capture point, scalable, georeferenced, 

sentinel site, hot/cold spots, and spatial predictions rather than 

with the regressed temporal shifting, sociodemographic and 

environmental, prognosticated, 

aggregation/nonaggregation-oriented, geo-sampled, 

explanatory, eigenizable, estimator determinant, discrete 

values in the epidemiologic, prognosticated, risk model output. 

In contrast, for the simultaneous autoregressive model (2.2), 

the eigenvectors {
1,⊠, 
�}SAR depended through the 

projection of 1(x) on the approximated explanatory variables 

X. Thus, any change in the underlying model structure 

required a recalculation of the eigen-orthogonalized, 

eigen-spatial, filters, for generating robust tessellations. 

Eigen-spatial filtering of the spatial lag Ae. aegypti birdbath, 

capture point, sentinel site, model, or the simultaneous 

autoregressive model with a common factor constraint, 

thereafter, only required identification of one set of selected, 

eigenvectors, namely, ���� or �&'(, respectively. The relevant 

set of eigenvectors was applied simultaneously to the 

multivariate, scaled-up, capture point, sentinel site, stratified, 

aggregation/non-aggregation-oriented, georeferenceable, and 

signature determinants. For the generic autoregressive model 

(2.1), however, eigen-spatial filtering was applied individually 

to each geosampled, aggregation/non-aggregation-oriented, 

Ae. aegypti birdbath, capture point, sentinel site, stratified, 

signature determinant. The generic specification of 

autoregressive spatial models associated a specific spatial lag 

factor with the y variable and other lag factors for each 

additional, operationalizable, stratified, Ae. aegypti habitat 

geosampled signature determinants. We employed the 

eigenvectors {
1,⊠, 
�}Lag to filter latent geo-spatiotemporal, 

non-zero, eigenautocorrelation coefficients embedded in the 

scaled-up, generic, county-level, georeferenced, 

prognosticative, capture point, risk model for each 

aggregation/non-aggregationoriented, straifiable, sentinel site, 

semi-parameterizable Ae. aegypti birdbath, capture point, 

sentinel site, eigen-estimator determinant.  

The Ae. aegypti birdbath, capture point, sentinel site, model 

forecasts identified suitable and parsimonious subsets of 

eigen-orthogonalizable, eigen-spatial filters ���� and �&'( 

from the georeferenced, aggregation/non-aggregationoriented, 

stratified, environmental and sociodemographic, 

vulnerability-oriented, Ae. aegypti birdbath, capture point, 
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sentinel site, model specifications (2.1) or (2.2). We assumed 

that a particular subset of eigen-orthogonalized eigenvectors 

was suitable for optimally, heuristically, optimizing, 

georeferenceable, aggregation/non-aggregation-oriented, 

hot/cold spot, scaled-up, capture point, Ae. aegypti birdbath, 

capture point, sentinel site, county-level, sentinel sites if the 

optimizable residuals  of the resulting eigenfunction, 

eigenspatial filter, the eigen-autocorrelation model became 

independent with respect to the underlying geo-sampled 

spatial structure V. Here, parsimony in the model estimation 

was definable as the smallest possible subset of 

eigenorthogonalized eigenvectors which led to the 

independence in the geo-spatiotemporal, Ae. aegypti birdbath, 

capture point, sentinel site, prognosticated, risk model, 

hot/cold spot, aggregation/non-aggregation-oriented, 

stratified, estimator, determinant derivatives. We noted that 

the patterns of different eigenvectors expressed independent 

and filter eigenautocorrelation as interpreted from the model 

derivatives. This was formalized by an estimator determinant 

associated to the georeferenced, sentinel site, capture point, Ae. 

aegypti birdbath, capture point, sentinel site, hot/cold spot 

countylevel, foci. Positive and negative, latent, 

eigenautocorrelation pseudo-R2 values were subsequently 

reported by employing GLMM estimation results from the R 

summary diagnostics.  

Advances in the various semiparametric eigen-Bayesian, 

algorithmic Markovian, prognosticative, general 

autoregressive conditional heteroscedastice [GARCH] 

signature models may prove to be effective for 

geospatiotemporally quantitating the reflectance bias 

introduced by microstructure noise in georeferenceable, time 

series dependent, aggregation/non-aggregation-oriented, 

countylevel, stratifiable, Ae. aegypti-related, bird bath, capture 

point, sentinel site, scalable, signature determinants in an 

empirical geosampled arboviral dataset. A stochastic process 

is called Markovian if at any time t the conditional probability 

  of an arbitrary future event given the entire past of the 

process—i.e., given X(s) for all s ≤ t—equals the conditional 

probability of that future event given only X(t). They may be 

extendable into nonlinear patterns, including the 

exponential GARCH (EGARCH), heterogeneous, 

autoregressive GARCH (HAR-GARCH), and threshold 

GARCH (TGARCH) models. These models with skew 

Student’s t-distribution may be applicable for optimally, 

heuristically, optimizing, targeting, and prioritizing, 

aggregation/non-aggregation, georeferenceable, 

epidemiologic, Ae.aegypti-related, stratifiable, county-level, 

hot/cold spots, and their signature determinants. 

EigenBayesian, algorithmic, Markvian GARCH estimations 

can be constructed with all major software packages and with 

many numerical general-purpose platforms. In fact, 

for R alone there exist several packages that could be 

employed for prognosticative, epidemiologic, scalable, 

stratifiable, county or district-level, Ae.aegypti-related, bird 

bath signature determinant, eigen-Bayesian, Markovian 

algorithmic, GARCH, forecast modeling.  

In future research, we may generate a fully eigen-Bayesian 

probabilistic matrix factorization model in which model 

capacity is controlled automatically by integrating over the 

empirical geo-sampled dataset of county-level, 

georeferenceable, submeter-resolution [Worldview 4, 46 

centimeter visible and NIR spatial resolution], imaged Ae. 

aegypti habitat model parameters and hyperparameters. We 

may introduce priors for the hyperparameters and maximize 

the log-posterior of the model over both the parameters and 

hyperparameters, which may allow the Ae aegypti, bird bath 

habitat model complexity to be controlled automatically based 

on the training data [i. hyper/hypo-endemic, capture point, 

sentinel site, scaled-up, county-level, epidemiologic, 

aggregation/non-aggregation-oriented, capture point, sentinel 

site, eigenized, estimator determinants]. Though this approach 

has been shown to work in practice it is not wellgrounded 

theoretically hence it does not occur in the literature, however, 

we may employ this joint optimization technique to 

predictively geolocate, eigenBayesian, eigendecomposed, 

county-level, geo-referenceable, hyper/hypo-endemic, 

aggregation/non-aggregation, Ae, aegypti, stratifiable, 

eigen-spatial filter, estimator, determinant, capture points.  

We may begin with a "prior distribution" based on the 

relative likelihoods of the geosampled, sociodemographic, 

environmental, stratified, eigenized, time series, dependent, 

Ae, aegypti, habitat signature determinants. In practice, it is 

common to assume a uniform distribution over the appropriate 

range of values for the prior distribution [3]. Next, a research 

team calculated the likelihood of the observed asymptotical 

distribution as a function of the eigen-estimator, determinant, 

semi-parameterized, capture point, sentinel site, scalable 

county-level, stratified, discrete, integer values by multiplying 

the likelihood function by the prior distribution which may be 

subsequently normalized to obtain a unit probability over all 

possible geosampled, independent, signature determinant, 

unmixed, discrete, integer values (i.e., posterior distribution). 

The mode of the distribution approximated probability 

intervals in the empirical, signature determinant, geosampled 

dataset. In eigen-Bayesian inference, a probability interval is a 

probabilistic region around a posterior moment and is similar 

in use to a frequentist confidence interval (Jacob et al. 2023). 

An eigenBayesian model may capture spatial heterogeneity in 

an entomological, eco-epidemiological, vector, arthropod, 

submeter resolution signature resolution, model which may, in 

turn, reveal variation or instability in observational units (e.g., 

gridded, geo-referenceable discontinuously canopied, Ae 

aegypti, oviposition, bird bath, capture points) across a county 

region (high socioeconomic, neighborhood, agroirrigated 

floodplain) which may imply that the functional forms and/or 

behavioral parameters vary by LULC classified geolocation.  

The adaptation for oviposition preference may have been 

part of the overall evolution of domesticity that likely 

occurred in North Africa when ancestral sylvan Ae. aegypti 

became isolated from sub-Saharan Africa due to the Sahara 

Desert [30]. In general, oviposition choice in mosquitoes is 

mainly due to volatiles produced by the microorganisms in the 

larval (Yelfwagash et al. 2017). Thus, as long as appropriate 

volatiles are produced by a standing urban 

commercial/residential or rural commercial/residential rural 
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sparsely canopied artificial pool of water, an opportunistic 

species like Ae. aegypti may oviposit there. This is supported 

by situations where this domestic form outside Africa has 

reverted to developing in natural water. The results from this 

study provided a total of 50 predicted habitat geolocations of 

the Ae. aegypti mosquito throughout Hillsborough County, 

Florida, which when placed upon Uelmen et al.'s abundance 

hotspot model of Ae. aegypti aligned with the areas of high 

abundance gave us a more precise location of these habitats 

[27]. 

The climate and geophysical characteristics of the basin 

(such as topography and vegetation) and anthropogenic 

activities are the main factors influencing the ecohydrological 

biophysical processes in urban and nonurban basins. Thus, a 

seasonal LULC eco-cartographic realtime data management 

system may be able to determine determinants that influence 

the evolution of the surface of these basins (and hence any Ae. 

aegypti bird bath, immature, habitat, oviposition, capture 

point geosampled at the basin), will depend on retrieving 

geo-spatiotemporal capture point, sentinel site patterns of the 

precipitation and evaporation rates. The distribution of rainfall 

is one of the favorable factors that can influence the number of 

Ae. aegypti mosquito. Amongst the remotely sensed, high 

resolution, LULC, signature interpolation models, becoming 

well-established models for analyzing the impact of land 

management practices on water, sediment, and agricultural 

chemical yields in large complex watersheds, which can 

influence Ae. aegypti, immature, habitat, oviposition, capture 

point.  

Previous studies have collected Ae. aegypti abundance data 

via traps (BG-Sentinel, CDC light traps, suction, and Wilton) 

which allowed them to create heat maps that describe the 

population range of the mosquito throughout the county [27]. 

This data has allowed abatement districts to see population 

trends over the years, allowing them to focus their control 

efforts in areas that see higher mosquito populations in the 

peak seasons. This collection of data has been extremely 

useful in terms of mapping where the Ae. aegypti habitats tend 

to be in a general sense, which this paper used to validate our 

predicted habitats when comparing to Uelmen et al.'s results, 

which displayed a hot and cold spot map of the Ae. aegypti's 

abundance within the Tampa Bay Area, FL, many of our 

predicted habitats aligned with their confirmed habitat areas 

that they found [27]. Our model’s diagnostic field summary 

data revealed sensitivity and specificity approaching 100%.  

Worldview [Wv] 4 relatively high spatial resolution (~46 

cm) image data may be usable to define potential frequency 

increases in the duration of heat waves due to climate changes 

throughout Hillsborough County urban centers and 

agro-pastureland migrant farm worker communities. Spectral 

signatures may be generated using Wv-4data of surface 

temperature, NDVI, NDWI, LULC, etc. Future research 

efforts should incorporate daily GRIDMET gridded point data 

of weather variables such as maximum air temperature, 

relative humidity, and precipitation in the county. Wv-4 data 

may be photogrammetrically processed to derive a 

3dimensional Digital Elevation [DEM.] for determining 

watershed catchment variables and slope coefficients of 

ground-referenced Ae. aegypti bird bath, capture points that 

may be applicable to retrieve the land surface temperature 

(LST) distribution. The spatial pattern of LST in the 

Hillsborough County area may be retrieved to characterize 

their local effects on urban heat islands. In addition, the 

correlation between LST and the NDVI may be analyzed to 

explore the impacts of the green land [e.g., high-income urban 

parks, farmlands, grasslands, swamps, wetlands, etc.] and the 

built-up land on the heat islands by calculating the 

geoecological evaluation index of sub-urban region. Future 

research on Ae. aegypti birdbaths should include interpolation 

of the ground reference points of the meteorological variables 

using a Bayesian Maximum Likelihood Classifier [MLC] over 

a land use/land cover classified Hillsborough County map to 

determine a vulnerability index at the gridded zip code level 

using census data in Python.  

Combining artificial intelligence (AI) machine learning 

classifiers and interpolative ArcGIS [geo-AI] in an interactive, 

dashboard configurable, web-friendly smartphone application 

(app) may aid in optimally scaling up sentinel site capture 

points for predictively mapping unknown, countylevel, Ae. 

aegypti birdbaths, larval habitat, seasonal occurrence, 

abundance, and distribution. By employing realtime, 

unmanned aerial vehicles [UAV] or drones, real-time 

retrievable capture points, sentinel sites, wavelength, 

reflectance datasets of seasonal, imaged, high-resolution 

LULC classified, Ae. aegypti birdbaths larval habitat 

characteristics [e.g., water situation (turbid or clean, stagnant, 

or running), substrate type, (e.g., moist, or dry), site type 

(man-made or natural), sunlight situation, site situation 

(transient or permanent, with or without vegetation), etc.] a 

geo-referenceable, RGB, signature may be generatable 

employing geo-AI technologies infused into an iOS 

smartphone application [app]. This protocol has been 

employed to identify the aquatic sources for Black Fly larvae 

and pupae in West and East Africa (Cameroon and Uganda, 

respectively) as well as the potential geolocations for 

immature (larval) habitat sources of Chrysop species the 

vector of Loa Loa. Since these model systems are built on 

spectral signatures of habitats and employ a real-time larval 

source management system for geolocating those areas where 

seasonal, vector arthropod, larval habitat population is the 

most concentrated, immobile, and accessible, this method has 

several ramifications regarding its biological utility as a 

realtime tool for surveillance and monitoring the 

implementation of control applications by prioritization of 

nuisance. The sites in question could be specifically 

identifiable by georeferencable capture points and 

subsequently scaled up and treated via real-time dashboard 

technology or by standard mosquito operational tactics 

depending on the site's landscape. In addition, this system 

could also provide the specific geolocation for adult 

emergence, forecasting the where, when, and time to initiate 

an adult control operation. Thus, individuals would be treated 

before they disperse, and when the adult population is highly 

concentrated predispersal.  



 American Journal of Entomology 2024; 8(1): 1-17 15 

 

Some suggested solutions would be integrating Jacob et al.'s 

"Seek and Destroy" intervention method, which, within 31 days, 

was able to eliminate all Anopheles larval habitats in the Gulu 

district of Northern Uganda [14]. Similar to his intervention, we 

will train abatement district officers to map potential habitats 

using ArcGIS and Python. We can create an application [app] 

that displays real-time mosquito habitat data that can serve as a 

centralized reporting system. For those who own bird baths in 

their yards, we suggest flipping or flushing bird baths once or 

twice a week. Changing the water has been a long-time 

suggestion of many abatement districts, but upping the 

frequency can disrupt the larval cycle of Ae. aegypti.  

5. Limitations 

We used sentinel-2 10 m data, but we would like to use 

world-view 1 panchromatic 31 cm spatial resolution because it 

would allow us more discrimination of a capture point sentinel 

site – Ae. aegypti habitat. Predicted Ae. aegypti Habitats may 

have visual discrimination of the capture point of the habitat, 

we were not able to confirm water levels or water clarity in the 

capture point since it was on private property. We did not 

conduct larval tests. We did not use any tactics that involved 

image-based AI. However, in my following publication, I will 

incorporate a convulsion neural network infused into a 

smartphone dashboard application (app). This interactive app 

will be able to conduct all satellite data analysis, including 

land cover classification generation of elevation maps, 

generation of vegetation maps, and construction of 

autocorrelation matrixes. We would also like to implement a 

Bayesian probabilistic periodical model to determine 

significant levels of determinants associated with Ae. aegypti 

habitats. Further, we would like to incorporate a time series 

autoregressive error model (GARCH) to determine any 

violations of regression assumptions (multicollinearity, 

non-Gaussian error variance, etc.). 

 

Figure 7. Vulnerability Index map of Ae. aegypti in rural parts of Hillsborough County, FL.  

6. Conclusion 

In conclusion, a Sentinel-2, RGB signature of a 

georeferenced, capture points, bird bath habitat can be 

interpolated in Python which can map unknown aquatic 

breeding site foci of Ae. aegypti. These maps can allow local 

vector control abatement district officers to implement a 

larval source management program targeting zip code, grid 

stratified, and geolocations of seasonal Ae. aegypti bird bath 

habitats. 
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