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Abstract: We have modelled a neutral non-homogeneous anisotropic stellar compact object with two distinct equations of state 

in general relativity framework. We have considered the macroscopic features of a general relativistic gravitating compact object. 

The equation of state is quadratic in the core and linear in the envelope. There is smooth matching between the core, envelope and 

the vacuum exterior regions. We found the masses, radii and compactness of some compact objects such PSR J1614-2230, PSR 

J1903+0327, Vela X-1, SMC-X-1, Cen X-3; which are in agreement with previous investigations. The gravitational potentials and 

the matter variables are well behaved throughout the stellar structure. We present in particular the variation of the radius in the 

core and the envelope of the star by changing some parameters values. Physical features of the pulsars PSR J1614-2230 are 

presented in more details. It observed that the radial pressure in the core is higher than the radial pressure in the envelope. The 

investigation reveals that the model is physically relevant for the study of observed compact stars. 
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1. Introduction 

The study of the gravitational behavior in superdense 

astronomical objects is an important area of research in 

astrophysics in a general relativistic setting. It is believed that 

the high central densities at the core provide an environment 

for the relativistic nucleons to convert to hyperons or to 

generate condensates. The modeling of the interior of stars 

with a quart has been first performed by the studies [1, 2]. The 

exact constitution for the matter distribution in the core regions 

remains a question for deeper investigation. In most studies of 

highly compact bodies the core is surrounded by an envelope 

or nuclear crust consisting of baryonic matter. An example of 

such physical situation is provided by the model with 

concentric layers of different phases, an inner deconfined 

quark phase and an outer less compact baryonic layer [3]. In a 

core envelope model for a relativistic stellar configuration the 

matter distributions of the two regions have different physical 

features. In our approach the composition of matter is 

contained in the equations of state for the envelope and the 

core. We are concerned with the macroscopic behavior of the 

matter distribution; it is not possible to completely describe the 

microphysics in this approach. 

Several exact core envelope models in general relativity 

have been found in the past [4, 5]. Precise details of the 

behavior of matter in superdense compact objects are not 

fully understood. Particular core envelope models for 

massive relativistic spheres in general relativity have been 

found in the past. The first exact interior solutions with 

different energy densities for the core and envelope were 

found [6-8]. Nonterminating exact solutions for isothermal 

neutron star interiors which are gravitationally bound and 

stable were presented by [9]. Models with a parabolic energy 

density distribution at the core were analyzed by the papers 

[10, 11]. The core envelope model related to the compact X-

ray binary pulsar Her X-1 for a quark-diquark mixture in 

equilibrium were investigated by [12]. Exact core envelope 

models with the core layer having either isotropic or 

anisotropic pressures were found by [13, 14]. They also 

specified the space-time geometry to be parabolic, spheroidal 

or pseudo spheroidal to solve the field equations. 

Modeling a highly compact relativistic gravitating object 

with a core envelope description is desirable in relativistic 

astrophysics. The investigations of [15] concerning realistic 
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stellar models demonstrate that at very high density ranges 

beyond 10
14

 gcm
3
, the nuclear matter may have anisotropic 

pressures and its interactions should be treated relativistic ally. 

[16] included non-homogeneous matter for describing stellar 

compact object like neutron stars. The non-homogeneous 

matter with anisotropic pressures is important feature for a 

superdense star in hydrostatic equilibrium which satisfies all 

physical constraint for the core and the envelope [5]. Another 

important source of anisotropy is intense magnetic fields 

observed in compact objects like neutron stars, white dwarfs 

and strange quark stars as pointed out by [17]. The matter 

distribution should satisfy a barotropic equation of state 

throughout the star. In our stellar model the equation of state is 

quadratic in the core region; this ensures that the radial 

pressures are higher close to the center. Stellar models with a 

quadratic equation of state have been studied by the studies [19, 

20]. The equation of state is linear in the envelope; this also 

ensures that the radial pressure in the envelope is lower than 

the core. Stellar models with a linear equation of state have 

been recently investigated by the studies [21-24]. 

In this work we find a new core envelope model for 

astrophysical objects by matching two inner regions with 

different equations of state. The outer region is described by the 

Schwarzschild metric. We review the Einstein field equations in 

Sec. 2. In Sec. 3, we present the exact solutions for the core and 

the envelope. In Sec. 4, the matching conditions between regions 

are explored. Masses and radii for the astronomical objects are 

presented in Table
 
1. And the matter variables are plotted in Sec. 

5. In sec. 6, we analyze the physical features of the model in 

connection with the pulsar PSR J1614-2230 and the results are 

shown in Table 2 and Table 3. We briefly summaries the results 

obtained in this work in Sec. 7. 

2. The Model 

For the interior description of the stellar uncharged non-

homogeneous body, the physical relevant energy momentum 

tensor is given by 

��� = diag	
– �, �� , �� , ���                      (1) 

with �, ��  and ��  being the energy density, radial pressure 

and the tangential pressure respectively. These quantities are 

the matter variables. It is convenient to introduce the degree 

of anisotropy Δ = �� − ��  which vanishes for isotropic 

pressures. In our study we choose a static field for which the 

interior metric is given as 

��� = −������ + ������ + ������ + sin� � � �!   (2) 

with " = "��!  and # = #��!  being the gravitational 

potentials. The line element (2) is a reasonable 

approximation for a highly compact gravitating body such as 

a neutron star. 

The Einstein field equations governing the gravitational 

behavior of an uncharged sphere with non-uniform matter 

distribution, give the following 

� = $
�% &�
1 − �(���)*,                      (3) 

�� = − $
�% 
1 − �(��� + ��+

� �(��,                (4) 

�� = �(�� ,"** + "*� + 	-+
� 	− 	 	�

+
� − .*#*/,         (5) 

where primes represent differentiation with respect to r. The 

nonlinear character of Einstein’s field equations makes it 

difficult to solve them analytically. To find a solution, we need 

to restrict the behavior of the potentials, prescribe the form of 

the matter variables and choose a specific equation of state. 

In many relativistic stellar configurations the inside matter 

distribution is made up with two regions: an inner core and 

outer envelope with different pressures. To model a core 

envelope star or hybrid star we need to separate space-time 

into three regions. The three regions consist of the core 

(region I, 0 ≤ � ≤ 23), the envelope (region II, 23 ≤ � ≤ 233) 
and the exterior (region III, 233 ≤ �). The line elements for 

the three regions are given by 

���|3 = −���5��� + ���5��� + ������ + sin� � � �!  (6) 

���|33 = −���55��� + ���55��� + ������ + sin� � � �! (7) 

���|333 = −,1 − �6
� /��� + ,1 − �6

� /
($ ��� + ������ + sin� � � �! (8) 

In the above (8) is the Schwarzschild exterior solution 

which relates to the region III which is the exterior of the 

gravitating star. The stellar boundary has to match smoothly 

to the Schwarzschild region III for consistency which implies 

vanishing radial pressure; the condition must hold in all 

general relativistic models for an isolated matter source. 

For physical viability the model should comply with the 

following requirements in all three regions (core, envelope 

and exterior): 

i. The gravitational potentials and matter variables should 

be well defined at the centre and regular throughout the 

star, 

ii. The energy density � > 0 and the gradient of density �* < 0 in the core and the envelope. 

iii. The radial pressure �� > 0 , the tangential pressure 

�� > 0, the speed of sound 
9:;
9< ≤ 1 and the gradient of 

pressure 
9:;
9� < 0 in the core and the envelope, 

iv. At the stellar boundary ���233! = 0, 

v. The metric functions of the core region should match 

smoothly with the metric functions of the envelope 

region, and 

vi. The metric functions of the envelope region should 

match smoothly to the Schwarzschild exterior metric. 

3. The Interior 

We use the neutral subcase of the exact solution of [19] 

with a quadratic equation of state for the core region. 

Incorporating a nonlinear term in the equation of state leads 

to a consistent model and generates expressions for the mass, 

radius and central density consistent with observed stellar 
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objects. This quadratic choice of the equation of state ensures 

that the pressure is higher in the core region. This is the 

motivation for choosing the results of [19] for region I. In the 

range 0 ≤ � ≤ 23 we have the potentials 

���5 = $=>�%
$=?�%,                           (9) 

���5 = @�1 + A��!�B5�1 + C��!�D5 expH2J3��!K,  (10) 

where 

J3��! = L M���?(>!
$=>�%�=�?(>!��$=>�%!% N,           (11) 

O3 = LH2�A − C!K� M ?%
�?(>!P + ?

�?(>!% + $
QN,           (12) 

R3 = �>(?!
Q? + LH2�A − C!K�	x	 M ?%

�?(>!P + ?
�?(>!% + $

QN.      (13) 

The parameter L arises in the exact models of [19] and we 

have retained the same parameter for consistency. The 

various parameters will be constrained when we perform the 

matching across the different regions is Sec. 4. Then the 

matter variables are given by 

� = �>(?!
S=>�%�
�$=>�%!% ,                       (14) 

�� = L��,                            (15) 

This form of the equation of state produces core densities 

consistent with earlier treatments as shown by [22]. We note 

that the gravitational potentials and matter variables are 

regular and well defined in the core. 

We utilize the neutral subcase of the exact models [21] 

with a linear equation of state for the envelope. This class of 

solutions is helpful in describing non-homogeneous stars, 

quark stars and distributions with strange matter. [23] in a 

comprehensive treatment showed that these models actually 

generate mass and radius values consistent with recent 

updated estimates for relativistic compact objects. This is our 

motivation for selecting the results of [21] for region II. The 

potentials in the range 23 ≤ � ≤ 233 are 

���55 = $=>�%
$=?�%,                          (16) 

���55 = T�1 + A��!�B55�1 + C��!�D55 expH2J3��!K,    (17) 

where 

J33��! = >U�%
Q? ,                          (18) 

O33 = V
�,                             (19) 

R33 = V�>=?!
Q? + �>(?!�?=U!

Q?% .                     (20) 

The parameter W and X arise in the solution of [21] and we 

retain the same parameters for consistency. These parameters 

will be constrained later in Sec. 4 when we perform the 

matching. The matter variables are 

� = �>(?!
S=>�%�
�$=>�%!% ,                            (21) 

�� = W� − X,                           (22) 

The gravitational potentials and matter variables are 

continuous and well behaved in the envelope. 

4. Matching Conditions 

The line elements (6) and (7) must match smoothly 

at	� = 23. This produces the conditions 

���5�Y5! = ���55�Y5!, ���5�Y5! = ���55�Y5!          (23) 

The line elements (7) and (8) should match smoothly 

at	� = 233. This produces the conditions 

���55�Y55! = ,1 − �6
Y55/

($ , ���55�Y55! = 1 − �6
Y55      (24) 

The radial pressure should be continuous at � = 23 
L���23! = W��23! − X,                    (25) 

is satisfied. The radial pressure must vanish at the boundary 

of star � = 233 which gives 

W��233! − X = 0,                               (26) 

The physical relevant quantities are the mass M and the 

radius 233 of the star. From system (24)-(26), we obtain 

Z = �>(?!Y55P
�
$=>Y55% �,                                    (27) 

which is the mass of composite. In addition the quantity 

233 = [√V		√>(?	]V�>(?!=^U�VU − $
V + V�>(?!

�VU ,       (28) 

defines the radius of the star. Then the constants	C, T and @ can 

the written in terms of Z and 233. The constants are given by 

C = − >PVY5_=`>%	VY5a
�b
>%Y5a=c>	Y5%=d� −


>Y5%=$�%	
>Y5%=S�]V%(QUb
�b
>%Y5a=c>	Y5%=d� − e>	VY5%=SV

�b
>%Y5a=c>	Y5%=d� + A                              (29) 

T = �Y55(�6!
$=>Y55% �fg %⁄ ifgjk5
%

alm
Y55 x	�1 + C233� !(j�lfn!al%m (g�gop!al =Pga =pa                                    (30) 

@ = q rstu(v�n
alk5f%nk5fP�owl%
nk5op�%
(njk5%%l x

[>Y5%(Y5%�>(?!=$a x	�1 + C23�!v�nfPl!
%

a�nfl! =g�gop!%l (j�nfl!%l% ( n
al=Pg% x	�1 + A23�!V(v�nfPl!

%
a�nfl!                 (31) 
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In (27)-(31) the constants a, W , X , L , and 23  are free 

parameters. 

5. Stellar Objects 

We can show that the core envelope model generated in 

this paper is consistent with observed astronomical objects. 

We achieve this by generating masses for particular compact 

stars. We introduce the following transformations 

	A	y = Az�, 	C	{ � Cz�, 

where z  is a parameter with dimension of length, which 

helps in comparing with the results of earlier investigations. 

With the choice of 	A	y � 1, X � 0.00162 and the values of 

	C	{ , W  and L  given in Table
 
1, we can generate specific 

numerical quantities for the core radius 23 , the envelope 

radius 233 and the stellar mass Z for the objects PSR J1614-

2230, Vela X-1, PSR J1903+0327, Cen X-3 and SMC X-1. 

We find the values for the stellar radius 233  is in the range 

9.13 – 10.30 km and the mass is the range 1.29 – 1.97Z⊙. 

We note the consistency of these values with the treatment 

of [20] who considered exact solutions to the Einstein 

equations with equation of state in the absence of charge. We 

note that similar values for the mass were obtained by [20, 

23. 25]. We have also given the mass-radius 
6

Y5
 relationship 

for the five compact objects in Table 1. We find that the [26] 

limit of 
�6

Y55
8

^

d
 is satisfied. 

 

Figure 1. Energy density � versus radius � for PSR J1614-2230 (	A	y � 1, 

	C	{ � �25.7351 , W � 0.1029 , 23 � 6.87  km, L � 0.1245 , X � 0.00162 , 

233 � 10.30 km, Z � 1.97Z⊙). 

 

Figure 2. Radial pressure �� versus radius � for PSR J1614-2230 (	A	y � 1, 

	C	{ � �25.7351, W � 0.10296, 23 � 6.87 km, L � 0.1245 , X � 0.00162, 

233 � 10.30 km, Z � 1.97Z⊙).  

 

Figure 3. Tangential pressure ��  versus radius �  for PSR J1614-2230 

( 	A	y � 1 , 	C	{ � �25.7351 , W � 0.10296 , 23 � 6.87  km, L � 0.1245 , 

X � 0.00162, 233 � 10.30 km, Z � 1.97Z⊙). 

 

Figure 4. Anisotropy �  versus radius �  for PSR J1614-2230 ( 	A	y � 1 , 

	C	{ � �25.7351, W � 0.10296, 23 � 6.87 km, L � 0.1245 , X � 0.00162, 

233 � 10.30 km, Z � 1.97Z⊙). 

 

Figure 5. Speed of sound 
9:;

9<
 versus radius � for PSR J1614-2230 (	A	y � 1, 

	C	{ � �25.7351, W � 0.10296, 23 � 6.87 km, L � 0.1245 , X � 0.00162, 

233 � 10.30 km, Z � 1.97Z⊙). 

6. The Object PSR J1614-2230 

The astronomical object PSR J1614-2230 has been studied 

by [25]. It has the feature that the recent accurate 

measurement of its mass gives one of the strongest 

constraints on the equation of state of superdense matter. The 

compactification factor for PSR J1614-2230 is 
6

Y55
� 0.191. 

This value lies in the range for neutron stars and ultra-

compact stars. Similar values of the compactification factor 

have been obtained by [20] when analyzing the field 

equations for anisotropic compact stars with a linear equation 

of state, and [23] when studying the field equations by 
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incorporating the effect of a nonlinear term in the equation of 

state. We now perform a detailed physical analysis of the 

pulsar PSR J164-2230 with a core envelope description. 

In order to have detailed analysis of various physical 

conditions throughout the star we have considered a 

particular star PSR J1614-2230 having mass 1.97Z⊙ . We 

choose the radius of the envelope to be 233 = 10.30 km. The 

same radius value was found analytically in previous 

investigations by [20] when analyzing the field equations for 

a non-homogeneous stellar body with a linear equation of 

state and [23] when studying the non-homogeneous field 

equations with a quadratic equation of state. Recently [27] by 

using the [20] model; have studied the stability of the object 

PSR J1614-2230 by using the same radius and mass values 

mentioned above. We have assumed the core radius to be the 

two-thirds of the envelope 23 = �
S233 = 6.87  km. The 

variation of ��� ��⁄  represented in Table 1 for different 

choices of parameterC , can be interpreted as response of 

geometry to a variation of equation of state for given values 

of mass and radius of a star. The values of the core radius 23 
and the envelope radius 233  depend on the choice of 

parameters in the model. We fix the stellar mass to be 1.97 Z⊙ and the radius of the envelope to be 233 = 10.30 km in 

Table 2. We find that the core radius changes and the 

envelope radius is fixed. Therefore it is possible for the core 

to become smaller and more compact. In Table 3 the mass 

stellar is 1.97 Z⊙ and the radius of the core is taken to be 23 
= 6.87 km. In order to keep the value of the mass 1.97 Z⊙ 

constant, we allow the parameters W and L to vary and fix the 

core radius23 . We note that as W  increases, the envelope 

radius 233 increases as well, however the parameter 	C	{ which 

is related to the central density decreases. We find the 

envelope radius changes and the core radius is fixed. Thus 

the envelope becomes larger and less compact. 

The gravitational potentials ��� and ��� are well behaved 

throughout the star with smooth matching between the core, 

envelope and the Schwarshild exterior. Figures 1-5 are 

schematic representations of the energy density � the radial 

pressure �� , the tangential pressure �� , the measure of 

anisotropy ∆ and the speed of sound
9:;
9< . These figures have 

been generated for the parameter values 	A	y = 1 , W =0.1029, 23 = 6.87 km, L = 0.1245 and X = 0.00162. 

In figures 1-5 the dotted line represents the core and the 

solid line represents the envelope. In all figures there is 

smooth matching at the interface between the core and the 

envelope when 23 = 233. The matter variables are all finite at 

the centre. In Figure
 
1, we observe that the energy density � 

is a decreasing function so that �* < 0 throughout the star. 

The radial pressure �� is also a decreasing function in Figure 

2; the pressure ��  decreases slightly in the core and more 

rapidly in the envelope. The rectangular box inside Figure 2 

shows the zoom profile for ��  in the core which is 

decreasing. The radial pressure vanishes at the boundary so 

that ��(10.30) = 0. In Figure 3, the tangential pressure ��  is 

also a decreasing function. This behavior for ��  is also 

evident in the works of [24]. The profile for the anisotropy ∆ 

is given in Figure 4. We observe that ∆ is initially decreasing 

in the core and becomes an increasing function in the 

envelope. The anisotropy ∆ vanishes at the center which is 

necessary for stability. The profile for the speed of sound 
9:;
9<  

is given in Figure 5.  

The gradient is largest in the core and least in the 

envelope. However 
9:;
9< < 1 throughout the star and the speed 

of light is greater than the speed of sound. Therefore the 

matter variables are regular and well behaved in both the core 

and the envelope regions. 

Table 1. Mass-radius relationship of some pulsar stars. 

	�	{  �  �  �� (km) ��� (km) �� (�⊙) 
�
���  STAR 

-25.7351 0.1029 0.1245 6.87 10.30 1.97 0.191 PSR J1614-2230 

-25.2941 0.1238 0.1237 6.56 9.99 1.77 0.177 Vela X-1 

-25.055 0.105 0.1236 6.39 9.82 1.667 0.170 PSR J1903-327 

-24.6104 0.1068 0.1226 6.08 9.51 1.49 0.157 Cen X-3 

-24.023 0.109 0.1219 5.70 9.13 1.29 0.141 SMC X-1 

 

Table 2. Changing core radius values for PRS J1614-2230 structures. 

	�	{  �  �  �� (km) ��� (km) �� (�⊙) 

-25.7351 0.1029 0.1245 6.87 10.30 1.97 

-25.7351 0.1029 0.1381 6.37 10.30 1.97 

-25.7351 0.1029 0.1490 5.94 10.30 1.97 

-25.7351 0.1029 0.1583 5.54 10.30 1.97 

-25.7351 0.1029 0.1670 5.14 10.30 1.97 

Table 3. Changing envelope radius values for PRS J1614-2230 structures. 

	�	{  �  �  �� (km) ��� (km) �� (�⊙) 

-25.7351 0.1029 0.1245 6.87 10.30 1.97 

-22.2398 0.1188 0.1943 6.87 10.30 1.97 

-19.3339 0.1362 0.2944 6.87 10.30 1.97 

-16.8980 0.1554 0.4348 6.87 10.30 1.97 

-14.8405 0.1762 0.6281 6.87 10.30 1.97 

7. Conclusion 

In this work we used the core envelope description in order 

to study an uncharged non-homogeneous star. We chose two 

different equations of state for the two inner regions. The 

quadratic equation of state in the core and the linear equation 

of state in the envelope were utilized. The pressure in the 

core is higher than the pressure in the envelope. We showed 

explicitly that the core, envelope and the exterior match 

smoothly at their interfaces. The masses, radii and 

compactification factors of five stellar compact objects PSR 

J1614-2230, PSR J1903+0327, Vela X-1, SMC X-1, Cen X-3 

were found. These results are consistent with the works of 

[20] and [23]. We plotted some physical quantities related to 
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the compact star PSR J1614-2230. The matter variables and 

potentials are well behaved throughout the star, and match 

smoothly between the two inner regions. We showed that 

values for the radius of the core and the radius of the 

envelope can vary by selecting different parameters values. 

This enables us to consider hybrid models with varying 

compactness in the core and the envelope. In future work it 

would be interesting to investigate the effect of different 

equations of state and other forms of energy momentum 

tensor on the core envelope model. Finally we remark that in 

our approach we have considered the macroscopic features of 

a general relativistic gravitating object; a general description 

will require an analysis of the microscopic physics which 

would assist in constraining the equation of state of nuclear 

matter. 
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