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Abstract: The different Economic Dispatch (ED) problems have non-convex/non-smooth total fuel cost function with 

equality and inequality constraints which make it difficult to be effectively solved. Different heuristic optimization algorithms 

and stochastic search techniques have been proposed to solve ED problems in previous study. This paper proposes the Chaotic 

Modified Imperialist Competitive algorithms (CMICA) based on chaos maps to solve different ED problems in power systems. 

The proposed CMICA methods framework is applied to 10-, 15-, and 40-unit generator systems in order to evaluate its 

feasibility and efficiency. Simulation results demonstrate that the proposed CMICA methods were indeed capable of obtaining 

higher quality solutions efficiently in ED problem. 
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1. Introduction 

The main objective of Economic Dispatch (ED) problem is 

to allocate power demand among power systems generators 

in the most economical manner, while satisfying the 

operational and physical constraints as valve-point effects, 

prohibited operating zones, and multi-fuel options [1-2]. In 

the previous studies various classical optimization techniques 

and mathematical programming have been used. The 

classical optimization techniques are based on the 

assumption that the incremental cost of generator 

monotonically increases [3-13]. Classical methods are very 

sensitive to the choosing of the first point and therefore often 

they converge to a local optimum or even diverge with each 

other [14].  

In the last few years, various evolutionary algorithms have 

been applied to solve ED optimization problem, such as Tabu 

Search (TS) [15], Genetic Algorithms (GA) [16-17], Particle 

Swarm Optimization (PSO) and Teaching–Learning-Based 

Optimization (TLBO) algorithms [18–25], Differential 

Evolution (DE) [26], Simulated Annealing (SA) [27], Hybrid 

GA (HGA) [28], combination of Biogeography-Based 

Optimization (BBO) and DE (DE/BBO) [29-30], 

Evolutionary Strategy Optimization (ESO) [31-32], hybrid 

SA and PSO (SA-PSO) [1], the hybrid PSO algorithms 

(PSO-SQP) [33-34], Variable Scaling Hybrid Differential 

Evolution (VSHDE) [35], BBO algorithm [36], Hybrid 

Hopfield Neural Network Quadratic Programming based 

technique (HNN-QP) [37] and New PSO (NPSO) [38] have 

been used to solve ED problems. These methods have shown 

that can be efficiently used to eliminate most of the 

difficulties of classical ones. 

ICA technique [39] is one of the modern heuristic 

optimization algorithms by Atashpaz-Gargari and Lucas in 

2007. The performance and effectiveness of ICA algorithm 

have been continuously reinstated by successful utilization in 

many engineering applications [40-46]. In this paper, the 

effectiveness of the CMICA techniques has been 

demonstrated on three medium and large sized power 

systems with 10-, 15-, and 40-unit generator systems, 

respectively. The experimental results on the different ED 

problems have been compared to recently published results 

and found to be superior. 

2. Formulation of ED Problems 

The main objective of practical ED optimization problem 

is to minimize the total operating costs of a power system 

over an appropriate period which is subject to satisfy various 
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constraints of a power system. 

The basic objective function of basic ED problem can be 

mathematically formulated by a single quadratic function [1-2]: 
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Subject to: 
Active power generation-demand balance: The total active 

power output of generating units of power system must be 

enough to meet the total load demand PD and power system 

total active power losses PL which is an equality constraint. 

The active power balance including losses is written as: 
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where network power losses PL can be calculated using loss 

coefficients B as follows [29, 36]: 
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Generation limits: The active power output of each 

network generator limits will be: 

,min ,maxi i iP P P≤ ≤                           (4) 

Ramp Rate Limits: The actual operating range of all the 

online units output should be in an acceptable range and is 

limited by the corresponding ramp rate limits, i.e.: 

0 0
i i i i i iP P UR and P P DR− ≤ − ≤        (5) 

where 0
iP  is the previous generation output of the ith 

generator; iDR and iUR  are the down-ramp and up-ramp 

limits of the ith generator, respectively. 

To consider the units output limits and ramp rate limits 

constraints at the same time, (4) and (5) can be rewritten as 

an inequality constraint as follows: 
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2.1. Objective Functions for ED Problem 

2.1.1.    ED Problem Considering Valve-Point Effects 

In power systems, the generators with multi-valve stream turbines have Valve-Point Effects (VPE), the characterized in the 

form of a quadratic function plus the absolute value of a sinusoidal term corresponding to the VPE [45]. The objective function 

of this problem can be formulated as follows: 
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2.1.2. ED Problem Considering Multiple Fuels 

Also, in practical power system operation conditions, any 

given unit with Multiple Fuel (MF) cost curves needs to 

operate on the lower contour of the intersecting curves. 

Therefore, unlike the conventional total fuel cost function, 

the fuel cost function of each power generating units should 

be presented with a few piecewise functions reflecting the 

effect of fuel type changes such as oil, natural gas and coal 

[2]. The costs function considering multi-fuel of unit i
th

 is 

represented in [46] and as follows: 
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2.1.3. ED Problem Considering Prohibited Operating Zones 

The input–output curve of practical thermal generating 

units may have Prohibited Operating Zones (POZ) because of 

faults in the generators themselves or in the associated 

auxiliaries such as feed pumps, boilers, etc [1, 2]. The POZ 

constraints can be described as follows: 
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The equation (9) indicates that if ith generator and ni is the 

number of POZ of the i
th generator, it will have (ni +1) 

feasible disjoint operating regions which will form a non-

convex set. 

3. Proposed ICA Method 

3.1. ICA Method 

Since this paper proposes the Chaotic Modified Imperialist 

Competitive Algorithms (CMICA) for solving the ED problem 

with considering real power loss and bus voltage deviation in 

the standard IEEE power systems, this section presents some 
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fundamental concepts about these proposed algorithms. 

ICA technique, proposed by Atashpaz and Lucas [39]. The 

ICA method has proven its superior capabilities and 

effectiveness, such as better global minimum achievement 

and faster convergence, applicability in various domains are 

currently being extensively investigated [40-44].  

3.1.1. Generating Initial Empires 

The goal of optimization is to find and optimal solution in 

terms of variable values which should be optimized. In ICA 

technique, a country is a 1 × Nvar array which is defined as 

follow: 

var1 2 3[ , , ,..., ]Ncountry P P P P=                   (10) 

where Pis are considered as the variables of the cost function 

that should be optimized. 

The country includes a combination of some socio-

political characteristics such as, welfare, culture, economic 

and academic education.  

The optimal solution is the maximum power (minimum 

cost) which can found by evaluating the cost of a country as 

follow, 

var1 2 3cos ( ) ( , , ,..., )i Nt f country f P P P P= =           (11) 

In the first step of this technique, ICA algorithm starts 

with a randomly initial population of size Ncountry.  The Nimp 

is selected from the strongest initial countries to form the 

empires, and the remaining Ncol of the initial countries will 

form the colonies. The normalized cost of an imperialist state 

to divide the colonies among imperialists is explained as 

follows: 

max{ }n i n
i

c cC = −                         (12) 

where cn is the cost of nth imperialist and Cn is the 

normalized cost which is the portion of colonies that must be 

possessed by the imperialist. The normalized power of each 

imperialist's state can be evaluated as follows: 
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To divide the early colonies among the imperialist by their 

power, some of initial colonies are given to each imperialist. 

The initial colonies are distributed among empires according 

to their power, so, the initial number of colonies for nth 

empire can be explained as follows, 

. . { . }n n colN C round P N=                      (14) 

where N. C. n factor is the initial population number of 

colonies of the empire and Ncol presents the total number of 

existing colonies countries in the initial countries crowds, 

where the bigger and powerful empires have greater number 

of colonies and weaker empires have less number of 

colonies.  

3.1.2. Absorption Policy Modeling 

The imperialist states tried to absorb their colonies and 

make them a part of themselves by pursuing assimilation 

policy. In other words, the central government attempts to 

close colony country to its own imperialist by applying 

attraction policy. More precisely, imperialist states force 

their colonies to move toward themselves along different 

socio-political axis. In the ICA, this process is modelled by 

moving all of the colonies toward the imperialist along 

different optimization axis. In Figure 1, d is distance among 

colony and imperialist who presents distance between 

imperialist and colony countries,  and x is the accidental 

number with steady distribution, and θ is a random number 

with uniform distribution. The x variable can be defined as 

follows: 

~ (0 , )x U dβ ×                             (15) 

where β is an assimilation factor which can be a number 

bigger than one and nears to two, and a good selection can be 

β=2. The θ parameter is defined as follows: 

~ ( , )Uθ γ γ− +                              (16) 

where  γ is a vector and its elements are uniformly distributed 

random numbers between zero and one, which is an ideal 

parameter that its growth causes increasing in searching 

area around imperialist and reduction of its value causes 

colonies close possibly to the vector of connecting colony to 

the imperialist, and usually the value of γ is arbitrary and 

about π/5 (Rad).  

 
Figure 1. Giving a move to the colonies toward their corresponding 

imperialist in an accidental deviated orientation. 

3.1.3. Total Power of an Empire 

Total power of an empire is mainly related by the power of 

imperialist country; however the power of colonies of an 

empire has a little effect on the sum power. The sum cost of 

an empire depends on the power of imperialist and its colony 

by considering of the both above mentioned factors that can 

be calculates as follow,  

. . ( ) { ( )}n n nT C Cost imperialist mean Cost colonies of empireξ= +  (17) 

where T. C. n is the total cost of the nth empire and ξ 
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which the power of colonies on the empire power is tuned by 

it, is a positive number that has value between zero and 

one and near to zero. The value of 0.15 for ξ has shown 

good balanced results in most of the implementations. 

3.1.4. Imperialistic Competitions 

This competition is modelled by just choosing the weakest 

colony of empire and making a competition among all 

empires. Finally, the most powerful empires take possession 

of others. In the first step of modeling of the competition 

between the empires for possessing these colonies, the 

weakest empire is selected to start the competition. Then the 

possession probability of each empire (PP) is estimated 

proportional to the total power of the empire. The 

normalized total cost of an empire is determined by: 

. max{ . . } . .. . n i n
i

C T C T CN T = −                    (18) 

where T. C. n is total cost of nth empire and N. T. C. n is 

normalized cost of that nth empire. 

By having the normalized total cost, the possession 

probability of each empire is defined by: 

1

. . .

. . .

n imp

n
p N

i

i

N T C
P

N T C

=

=

∑
                                    (19) 

Next, the mentioned colonies will be divided 

accidentally between the empires with a certain 

probability. In order to divide the given colonies among the 

empires, vector P is formed as follows: 

1 2 3
, , ,...,

Nimp
p p p pP P P P P =

  
                           (20) 

After that, the vector R should be defined with the 

same size of vector P, and the arrays of this vector are 

accidental number with the same distribution in [1]. 

1 2 3, , ,...,
impNR r r r r =

                              (21) 

Then, vector D is constructed by subtracting R from P. 
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3.2. Chaos Maps 

The choice of chaotic sequences is justified theoretically 

by their unpredictability. The nature of chaos is apparently 

random and unpredictable, and mathematically, it is 

randomness of a simple deterministic dynamical system and 

can be considered as sources of randomness [47, 48]. Table 1 

describes ten distinguished 1-D maps, in which the k means 

the index of the chaotic sequence, and xk represents the k
th 

number in the chaotic sequence. 

3.3. CICA Method 

New algorithms called chaotic algorithms can be created 

by using chaotic behavior [49-50]. The random-based 

optimization algorithms which use chaotic variables are 

called Chaotic Optimization Algorithm (COA). The COA 

technologies can accomplish overall searches at higher 

speeds than stochastic searches that depend on probabilities, 

due to the non-repetition and periodicity of chaos [48-56]. In 

CICA way, the entire colony move towards their imperialist 

with a constant speed that increases the probability of the 

algorithm being trapped in a local optimum. And therefore, 

the choice of the initial value of β in the algorithm will be 

very important and also one of the important characteristics 

of chaotic algorithms is having the less sensitivity to the 

initial value. In this paper, for enhancing the performance of 

ICA algorithm and reducing the sensitivity to initial value of 

the β, chaotic variables are used. As a result, the equation of 

motion of the imperial colonies can be rewritten as follows: 
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Table 1. Chaotic sequences [78-82] for CMICA method. 

Map name  Method  Definition Details 

Logistic CMICA/M1 1 (1 )k k kx x xα+ = −  α = 4; x0 ∈ (0, 1) and x0 ≠ {0.0, 
0.25, 0.75, 0.5, 1.0} 

Cusb CMICA/M2 
0.5

1 1 (2 )k kx x+ = − ∗  - 

Sinus CMICA/M3 2sin( )

1 2.3( )kx
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π
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0.7
0.7

10
(1 ) 0.7

3

k
k

k

k k

x
x

x

x x
+

 <= 
 − ≥


 - 

Gaussian  CMICA/M5 1
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Singer  CMICA/M6 

2

1

3 4

(7.86 23.31

28.75 13,3028.75 )

k k k

k k

x x x

x x

µ+ = −

+ −
 

where µ is a control parameter, and 
is between 0.9 and 1.08. 

Cubic  CMICA/M7 
2

1 (1 )k k kx x xα+ = −  α = 2.59 
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Map name  Method  Definition Details 

Circle  CMICA/M8 1 ( / 2 ) sin(2 ) mod(1)k k kx x xβ α π π+ = + −  With α = 0.5 and β = 0.2. 

Chebyshev  CMICA/M9 1

1 cos( cos ( ))k kx k x
−

+ =  - 

Sinusoidal  CMICA/M10 
2

1 sin( )k k kx x xα π+ =  With α = 2.3. 

 

3.4. Modified CICA Method 

Another important tip on ICA algorithm is the movement 

of colony towards its imperialist which are not affected by 

the colonies of its own imperialist. In this paper, some of the 

colonies move towards their imperialist in a way that they 

can be affected by other colonies of their own imperialist. 

Actually, in the modified algorithm, the imperialists try to 

reduce the average distance of their colonies and pull the 

whole set towards them. The equation of this motion can be 

shown as follow, 
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and the general equation of absorbing colonies by their imperialist is as follows: 
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4. Simulation Results 

In this section of study, the CMICA methods have been 

applied to different ED problems in three different test cases 

(10, 15, and 40 thermal units). The initial population size of 

all proposed methods were fixed as 100, the maximum 

iteration number was set as 600. Generally, in order to 

employ CMICA algorithms on different ED problems, we 

should follow the below procedure: 

Step 1: Calling the needed information for power system 

and CMICA algorithm. 

Step 2: Production of chaotic algorithm’s initial population 

of countries. 

Step 3: Calculation of ED problem objective function with 

imposing the constrained different ED problems, power 

generation-demand balance and the power limit constraint, 

for every available answer in population of initial countries 

of CMICA. The flowchart of constraint-handling procedure 

is given in [68]. 

Step 5: Selection of empires and distributing population of 

initial countries on empires with consideration to calculated 

normalized value of objective function in previous step. 

Step 6: Movement of colonies towards imperialists and 

absorption action. 

Step 7: Position replacement between imperialists and 

colony with consideration to calculated normalized value of 

objective function. 

Step 8: Imperialistic competition between empires, fall of 

weak empire and repeat of 6th to 8th steps until end of total 

number of repetitions. 

4.1. Case A: ED Problem Considering VPE and MFs 

The first test system of simulation, which consists of 10 

generators, is an ED problem with both valve point effects 

and multiple fuels supplying to a load demand of 2700 MW 

[67].  

The fuel cost function of thermal unit ith can be expressed 

as: 

2
1 1 1 1 1 1,min ,min 1

2
2 2 2 2 2 2,min 1 2

2
,min 1 ,max

sin( ( )) , 1,

sin( ( )) , 2,
( )

...

sin( ( )) , ,

i i i i i i i i i i i i

i i i i i i i i i i i i
i i

ij i ij i ij ij ij ij i ij i i

a P b P c e f P P fuel P P P

a P b P c e f P P fuel P P P
F P

a P b P c e f P P fuel j P P P−

 + + + × × − ≤ ≤

 + + + × × − ≤ ≤= 

+ + + × × − ≤ ≤





                                 (26) 

The comparison between best results using CMICA 

algorithm are shown in Table 2. For this test system, the best 

of minimum total fuel costs is $/h 623.8507 using CMICA 

method based on tent map (CMICA/M4). The computational 
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efficiency results of the fuel cost minimum, the fuel cost 

maximum, the fuel cost mean, the standard deviations and 

the average CPU time (s) among the 50 runs of solutions 

satisfying the system constraints obtained by the proposed 

CMICA algorithms for 10 thermal units test system are 

compared to those from other previous reported results such 

as CGA-MU [67], CBPSO-RVM [68], NPSO-LRS [38] and 

CSA [71], as shown in Table 3. It is clearly visible that the 

proposed CMICA algorithms outperform all previous 

reported algorithms in terms of achieving the fuel cost. 

Table 2. Best solutions obtained by proposed ICA algorithms for 10 unit system (case A). 

Unit Fuel 

Unit power output (MW) 

ICA MICA 

Chaotic MICA methods 

CMICA/

M1 

CMICA/

M2 

CMICA/

M3 

CMICA/

M4 

CMICA/

M5 

CMICA/

M6 

CMICA/

M7 

CMICA/

M8 

CMICA/

M9 

CMICA/M

10 

1 2 221.6751 218.594 219.6265 217.567 217.5663 219.6223  220.648 217.567 218.594 210.6986 218.594  216.542 

2 1 210.4739 211.9593 210.4739 210.7215 209.7312 209.9788 210.7215 213.1971 212.4544 205.6421 212.2069 211.9593 

3 1 279.6493 279.5828 279.6489 281.6651 280.6562 280.6571 278.6406 281.6653 279.6489 279.7871 279.6489 282.6732 

4 3 237.2207 240.9831 239.6394 239.3707 240.0425 240.0425 239.3707 240.8488 239.1019 240.9954 241.5206  240.58 

5 1 275.9598 275.8557 279.8774 279.6876 282.2783 280.0155 279.9505 280.5375 276.9936 280.5915 280.0039 280.2367 

6 3 240.9831 239.1019 239.2363 238.6988 240.1769 240.4457 240.1769 240.8488 240.3113  241.087 239.5051 239.1019 

7 1 292.4704 287.4507 292.4696 287.6959 287.5789  287.728 287.7277  287.794 292.4697 299.1469 290.0985 287.7505 

8 3 241.5206 240.4457 240.7144 240.8488  240.58 239.1019 240.1769 239.1019 240.7144 234.6658 239.1019 239.6394 

9 3 421.2979 426.6803 425.5196 427.1749 425.4462 426.4931 426.3422 425.6264 423.8219 417.3747 422.9117 425.4072 

10 1 278.7482 279.3465 272.7677 276.5697 275.9403  275.914  276.245 272.8132  275.888 289.9813 276.4085 276.1058 

Total cost ($) 623.9874 623.8978 623.8549 623.861 623.8819 623.8507 623.8578 623.8752 623.8711 625.1359 623.8735 623.8539 

Table 3. Comparison of best solutions obtained by proposed ICA algorithms and reported solutions for 10 unit system. 

Method Minimum cost ($/h) Maximum cost ($/h) Mean cost ($/h) Standard deviation Average CPU time (s) 

CGA_MU [67] 624.7193 633.8652 627.6087 - 26.64 

IGA_MU [67] 624.5178 630.8705 625.8692 - 7.32 

CPSO [68] 624.1715 624.7844 624.5493 0.1278 - 

PSO-GM [68] 624.305 625.0854 624.6749 0.158 - 

CBPSO-RVM [68] 623.9588 624.293 624.0816 0.0576 - 

PSO-LRS [38] 624.2297 628.3214 625.7887 - 0.88 

NPSO [38] 624.1624 627.4237 625.218 - 0.35 

NPSO-LRS [38] 624.1273 626.9981 624.9985 - 0.52 

CSA [71] 623.8684 626.3666 623.9495 0.2438 1.587 

PSO [69] 624.3506 629.1037 625.8198 - - 

APSO [69] 624.0145 627.3049 624.8185 - - 

ICA 623.9874 626.0024 824.3711 0.2357 1.64 

MICA 623.8978 824.6258 624.1096 0.1085 1.67 

CMICA/M1 623.8549 623.9554 623.9178 0.0571 1.19 

CMICA/M2 623.861 623.9596 623.9081 0.0564 1.81 

CMICA/M3 623.8819 623.966 623.9311 0.0573 1.38 

CMICA/M4 623.8507 623.9699 623.883 0.0549 1.49 

CMICA/M5 623.8578 623.9744 623.8978 0.0815 1.54 

CMICA/M6 623.8752 623.9475 623.9165 0.0469 1.05 

CMICA/M7 623.8711 623.9225 623.8985 0.038 1.65 

CMICA/M8 625.1359 628.0922 626.9547 0.5682 1.47 

CMICA/M9 623.8735 623.9806 623.9214 0.0563 1.15 

CMICA/M10 623.8539 624.146 623.9274 0.0907 1.36 

The convergence characteristics for proposed CICA algorithms of 10 unit test system for ED problem for case A are shown 

in Figure 2. 

 
Figure 2. Convergence characteristics of proposed algorithms for 10 unit system (case A). 
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4.2. Case B: ED Problem Considering Generators 

Prohibited Operating Zones and Transmission Network 

Power Losses 

The case B of simulation for ED problem consists of 15 

generators and is a network with power system thermal units 

prohibited operating zones and transmission network power 

losses supplying to a load demand of 2630 MW [74].  

The best solutions of generation output of each system unit 

using proposed ICA algorithms are provided and shown in 

Table 4, the best of minimum total fuel cost is $/h 

32,543.2882 using CMICA method based on Chebyshev map 

(CMICA/M9). Comparison of simulation results using 

proposed algorithms and previous reported results best for 15 

unit system (case B) are shown in Table 5, the best previous 

reported results is $/h 32,544.9704 using proposed CSA [71] 

method. The proposed CMICA algorithms perform better 

than original ICA algorithm in all accounts. Amongst all the 

reported results, proposed CMICA algorithms yield better 

results than previous listed algorithms in all accounts. 

Table 4. Best solutions obtained by proposed CMICA algorithms for 15 unit system (case B). 

Unit  

Units power output (MW) 

Chaotic MICA methods 

CMICA/M1 CMICA/M2 CMICA/M3 CMICA/M4 CMICA/M5 CMICA/M6 CMICA/M7 CMICA/M8 CMICA/M9 CMICA/M10 

1 455 455 455 455 455 455 455 455 455 455 

2 455 455 455 455 455 455 455 455 455 455 

3 130 130 130 130 130 130 130 130 130 130 

4 130 130 130 130 130 130 130 130 130 130 

5 231.5103 232.3193 231.4876 231.7559 231.4876 229.6902 233.3073 232.9779 231.4839 231.7684 

6 460 460 460 460 460 456.5507 460 460 460 460 

7 465 465 465 465 465 465 465 465 465 465 

8 60 60 60 60 60 60 60 60 60 60 

9 25 25 25 25 25 25 25 25 25 25 

10 35.715 35.3739 35.5584 35.5414 35.5584 41.1988 34.0864 35.3901 35.4436 35.713 

11 74.0987 73.6505 74.2783 74.033 74.2783 73.8171 73.9789 72.9905 74.3972 73.8484 

12 80 80 80 80 80 80 80 80 80 80 

13 25 25 25 25 25 25 25 25 25 25 

14 15 15 15 15 15 15 15 15 15 15 

15 15 15 15 15 15 15 15 15 15 15 

Losses 

(MW) 
26.3241 26.3438 26.3243 26.3303 26.3243 26.2635 26.3726 26.3586 26.3248 26.3298 

Total cost 

($/h) 
32,543.2888 32,543.2913 32,543.289 32,543.2889 32,543.289 32,544.5605 32,543.3005 32,543.2992 32,543.2882 32,543.2901 

Table 5. Comparison of best solutions obtained by proposed ICA algorithms and reported best solutions for 15 unit system. 

Algorithms Minimum cost ($/h) Maximum cost ($/h) Mean cost ($/h) Standard deviation Average CPU ime (s) 

RDPSO [72] 32,652.3357 32,944.3089 32,739.7165 56.707 - 

DSPSO-TSA [2] 32,715.06 32,730.39 32,724.63 8.4 2.3 

MDE [76] 32,704.9 32,711.5 32,708.1 - - 

APSO [77] 32,742.7774 - 32,976.6812 133.9276 - 

IHSWM [75] 32,693.1304 32,721.3988 32,699.5168 4.6937 - 

CIHBMO [74] 32,548.585876 32,548.585876 32,548.585876 - 3.1 

IHBMO [74] 32,552.4613 32,554.6649 32,552.8961 - 2.8 

MsEBBO/mig [73] 32,692.3972 32,692.4913 32,692.4043 0.0176 - 

MsEBBO/mut [73] 32,692.3973 32,692.4211 32,692.4019 0.0063 - 

MsEBBO/sin [73] 32,692.3972 32,692.4435 32,692.4029 0.0092 - 

MsEBBO [73] 32,692.3972 32,692.3975 32,692.3973 6.09e-05 - 

CSA [71] 32,544.9704 32,546.6734 32,545.0068 0.2386 0.589 

ICA 32,545.8185 32,553.3592 32,548.794 5.059 0.82 

MICA 32,544.559 32,548.2506 32,546.0017 3.416 0.86 

CMICA/M1 32,543.2888 32,546.6852 32,545.924 0.9108 1.04 

CMICA/M2 32,543.2913 32,546.5714 32,545.8815 0.8275 0.79 

CMICA/M3 32,543.289 32,547.1281 32,545.9093 2.1163 0.86 

CMICA/M4 32,543.2889 32,546.6347 32,545.773 1.7042 1.1 

CMICA/M5 32,543.289 32,544.5962 32,543.9014 0.2295 0.94 

CMICA/M6 32,544.5605 32,554.7583 32,550.2175 5.6314 0.76 

CMICA/M7 32,543.3005 32,548.9595 32,545.7942 0.805 0.95 

CMICA/M8 32,543.2992 32,548.1266 32,544.275 0.8349 0.92 

CMICA/M9 32,543.2882 32,545.6838 32,543.899 0.2691 0.83 

CMICA/M10 32,543.2901 32,546.1258 32,544.3915 0.4726 0.97 
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4.3. Case C: ED Problem Considering Valve Point Effects 

Using Large-Scale Generating System 

In case C of simulation, the CMICA algorithms have been 

applied to the ED problem with 40-generating unit, the 

system is presented in [16]. 

The results best for CMICA algorithms are provided in 

Tables 6. According to Table 6, it can be observed that the 

best results obtained by ICA algorithms is $/h 121,412.5376 

which is obtained by the proposed CMICA/M2 method. The 

CMICA algorithms always provide the same solution in more 

simulations, which shows the reliability of the proposed 

methods. The convergence performance of ICA algorithms 

for 40-unit test system plotted in Figure 3.  

Table 6. Comparison of best solutions obtained by proposed ICA algorithms and reported best solutions for 40 unit system. 

Algorithms Minimum cost ($/h) Maximum cost ($/h) Mean cost ($/h) Standard deviation Average CPU time (s) 

CBPSO-RVM [68] 121,555.32 123,094.98 122,281.14 259.99 - 

DEvol [70] 121,412.91 121,464.4 121,430.0 - - 

MDE [76] 121,414.79 121,466.04 121,418.44 - - 

DE/BBO [29] 121,420.8948 121,420.8963 121,420.8952 -  

IHSWM [75] 121,412.57 121,415.78 121,413.3879 - - 

CIHBMO [74] 121,412.57 121,412.63 121,412.5919 - 16.8 

IHBMO [74] 121,517.8 121,711.8526 121,589.1827 - 15.2 

BBO [36] 121,426.953 121,688.6634 121,508.0325 - 1.1749 

MsEBBO/mig [73] 121,415.52 121,521.6899 121,476.2517 36.4077 - 

MsEBBO/mut [73] 121,416.2885 121,585.0186 121,500.9279 32.7428 - 

MsEBBO/sin [73] 121,415.309 121,479.3657 121,421.6556 11.5696 - 

MsEBBO [73] 121,412.5344 121,450.0026 121,417.1877 5.7996 - 

CSA [71] 121,412.5355 121,810.2538 121,520.4106 63.5705 3.03 

ICA 121,425.6295 121,680.6004 121,515.8134 54.32 3.93 

MICA 121,419.9407 121,505.1538 121,432.524 43.17 3.75 

CMICA/M1 121,422.7704 121,428.9514 121,424.2761 1.76 4.18 

CMICA/M2 121,412.5376 121,414.265 121,413.0084 0.85 4.58 

CMICA/M3 121,412.5421 121,416.3812 121,414.075 0.82 3.62 

CMICA/M4 121,412.5421 121,414.4127 121,412.8592 0.97 4.05 

CMICA/M5 121,412.541 121,415.7735 121,413.2618 0.74 4.2 

CMICA/M6 121,434.2654 121,474.985 121,445.2107 4.58 3.69 

CMICA/M7 121,412.5421 121,414.6913 121,414.0204 0.66 4.14 

CMICA/M8 121,416.2547 121,901.5275 121,518.4232 40.12 3.94 

CMICA/M9 121,412.5452 121,415.886 121,412.9415 1.03 4.05 

CMICA/M10 121,412.5445 121,414.7892 121,412.7604 0.53 3.72 

  

Figure 3. Convergence characteristics of proposed algorithms for 40 unit system (case C). 

5. Conclusion 

This paper proposes CMICA algorithms based on different 

chaotic maps for solving ED problems. Many nonlinear 

characteristics of the ED problems. The comparative and 

application studies of different chaotic maps have been done 

for improving the global searching capability and escaping 

from a local minimum of ICA method. The simulation results 

clearly demonstrated that proposed CMICA algorithms 

which are capable of achieving global solutions is simple 

with computationally efficient and has stable and better 

dynamic convergence characteristics.  
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