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Abstract: Many algorithms have been used to track the MPP in a PV generator. Although these algorithms have proved their 
worth, the fact remains that they still have limits in terms of stability, response times and significant presence of oscillations, 
especially for sub-Saharan conditions where the climate variation is very sudden and has a considerable impact on the power 
delivered at the generator output. In this article, the objective is to develop a maximum power point tracking (MPPT) controller 
based on an Adaptive Neuro-Fuzzy Inference System (ANFIS) to improve the performance of the Felicity Solar photovoltaic 
module FL-M-160W submitted to varying environmental conditions. The specifications of the FL-M-160W module are used to 
analyze and model the PV generator and boost converter located between the panel and the load in Matlab / Simulink. After the 
experimental tests, a database was set up to develop the neurofuzzy controller. The proposed ANFIS model was tested and 
validated under the Matlab / Simulink environment and then inserted into the PV system. The optimum voltage Vopt provided 
by this model is compared to the reference voltage Vpv provided by the PV generator and the error obtained is used to adjust 
the duty cycle of the DC-DC boost converter. After simulations, the results obtained reveal a good performance of the ANFIS 
controller compared to conventional P&O, InC and HC controllers in terms of stability, convergence speed, accuracy, 
robustness, and response time even under unstable environmental conditions with an efficiency of about 98%. 
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1. Introduction 

The sun is an inexhaustible source of renewable energy, 
generating little or no waste or polluting emissions. It is used 
to produce energy in two forms (thermal and photovoltaic). 
Photovoltaic solar energy is the transformation of part of the 
light from solar irradiation into electrical energy using a set 
of elements constituting a PV system whose basic 
phenomenon implemented is the photovoltaic effect. This 

form of energy has the advantage of stabilizing global 
warming, preserving our fossil fuel reserves and ensuring 
energy security for the planet. Compared to conventional 
energy resources, photovoltaic solar energy systems still 
presents a large area of competition due to its high 
installation cost and low power consumption due to the 
conversion efficiency of PV cells. In addition, during the 
operation of the PV generator, the P-V and I-V characteristics 
vary. Indeed, the maximum power point (MPP) changes 
position with the change of light intensity or temperature, and 
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therefore the optimal voltage changes value. An adaptation 
stage is generally introduced to operate the PV generator 
optimally to ensure its profitability. The voltage at the panel 
terminals must be continuously regulated to its optimum 
value to work at maximum power: this is the Maximum 
Power Point Tracking (MPPT). In a PV system, the MPPT 
command can be defined as an algorithm which associated 
with an adaptation stage allows the system to operate in its 
optimal operating point and this whatever the atmospheric 
conditions (temperature and global sunshine) and of load 
value [1]. Many algorithms have been used to track the MPP 
in a PV generator. Although these algorithms have proved 
their worth, the fact remains that they still have limits in 
terms of stability, response times and significant presence of 
oscillations especially for sub-Saharan conditions where the 
climate variation is very sudden and has a considerable 
impact on the efficiency of the solar generator. Unlike 
standard methods where the stability of the system cannot be 
ensured due to the fluctuations around the MPP that they 
cause, higher precision of systems, especially nonlinear 
systems, can be ensured with artificial intelligence methods. 
Fuzzy logic controller (FLC) and artificial neural networks 
(ANN) have been used successfully to track the peak power 
point of PV systems [2, 3]. Fuzzy controllers are fast 
converging and have minimal oscillations around the MPP 
but their effectiveness is highly dependent on the skills of the 
designer. On the other hand, neural networks allow to follow 

the MPP with precision [4, 5]. Nevertheless, the complexity 
of implementing this technique remains. To solve this 
problem, many MPPT controllers combining fuzzy logic and 
neural networks have been developed to establish a 
compromise between complexity and precision in the 
implementation of MPPT. In this work, the ANFIS controller 
is used to extract the maximum power in a Felicity Solar 
photovoltaic module FL-M-160W. This document is divided 
into 5 sections. After introducing this work, section 2 
presents the PV system consisting of a panel and the 
adaptation stage. A review on the MPPT commands used for 
the maximum power point research is presented in section 3 
and section 4 develops and models the neuro-fuzzy MPPT 
controller uses. Finally, after modeling and simulation, 
results and discussion are presented in section 5. 

2. Modeling of the Photovoltaic System 

A photovoltaic system is a set of elements that are used to 
produce solar energy [6]. Figure 1 illustrates the overall 
block diagram of the proposed system. The proposed model 
is a standalone PV system that includes a PV array use as a 
power generation source. This PV array is connected to the 
DC-DC boost converter that use ANFIS algorithm as MPP 
tracking technique to ensure the adaptation between the panel 
output voltage and the load. 

 

Figure 1. Overall block diagram of the PV system proposed. 

2.1. Electrical Modeling of the Solar Panel 

A photovoltaic (PV) cell can be represented by the 
equivalent circuit shown in figure 2. In the case of an ideal 
solar cell, the equivalent electrical circuit consists of a 
current source Iph, generated by light in parallel with a 
single-diode. But in practice, no solar cell is ideal. Therefore, 
a shunt and series resistance are added to the model in order 
to take into account all the phenomena present during the 
conversion of light energy. In practice, the maximum current 
is delivered to the load when the serie resistance Rs is very 
small and the shunt resistance Rsh is very large. 

 

Figure 2. Equivalent diagram of a PV cell with a diode. 
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The power supplied to the output of a solar cell is 
generally very low. To increase the output power of solar PV 
systems, solar cells are connected in series and parallel 
configurations to form PV modules whose equivalent model 
is discribed in figure 3. 

 

Figure 3. Equivalent circuit of a PV module. 

Using the theory of semiconductors and photovoltaic, the 
non-linear relationship between current voltage of the PV 
module can be described mathematically using basic 
equations 1, 2, 3, 4, 5 and 6. 

Saturation current: 
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Reverse saturation current: 
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Photocurrent: 
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with ∆0 = 0 − 0� = 0 − 298. 
Current through the shunt resistance: 
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Output Current of a solar cell: 
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The output current of the considered PV module is given by: 

�A5 = BA��' − BA�� ��
� �C. 597:������
 − 1� − �597:�7�8 �   (7) 

where D� is the series resistance of the solar cell and V is the 
output voltage of the cell and BA  is the number of cells in 
parallel. 

Figure 4 represents the block diagram of the photovoltaic 
generator designed in Matlab/Simulink using previous 
equations. 

 

Figure 4. Block diagram of the photovoltaic generator. 

At the Standard Test Condition (STC, AM = 1.5, G = 1KW 
/ m² and Tc = 25°C), the characteristics of the FL-M-160W 
module chosen for modeling and simulation are shown in 
table 1. 

Table 1. Characteristics of the FL-M-160W solar module. 

Parameters Values 

Production tolerance +/-3% 
Maximum power (Pmpp) 160W 
Maximum power voltage (Vmpp) 18.20V 
Maximum power current (Impp) 8.80A 
Short-circuit current (Isc) 9.33A 
Open circuit voltage (Voc) 21.84V 
Number of cells in series (Ns) 36 
Number of cells in parallel (Np) 1 

2.2. Analysis of PV Module Characteristics 

The Characteristics of the solar module FL-M-160W are 
shown in figures 5, 6 and 7. 

 

Figure 5. I (V) and P (V) characteristics of the photovoltaic module. 
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Figure 6. Irradiation variation on I (V) and P (V) characteristics. 

 

Figure 7. Temperature variation on I (V) and P (V) characteristics. 

Figure 5 illustrates the non-linearity of the output power 
characteristic of a photovoltaic panel as a function of the 
voltage at its terminals. There is a point of the curve where 
the power is maximum called maximum power point (MPP). 
As we can see in figure 6 and 7, the I (V) and P (V) 
characteristics change with irradiance and temperature. A 
decrease of irradiation G causes a decrease in the current 
followed by a very slight decrease in the voltage Voc and 
therefore a shift of the maximum power (Pmax) of the solar 
panel towards lower powers. When the temperature 
increases, the open circuit voltage Voc considerably 
decreases while the current is almost unchanged. This has the 
immediate consequence of reducing the maximum power. 

To take advantage of the maximum energy conversion, it is 
necessary to operate the PV panel around this MPP. To work 
at maximum power point, it is necessary to continuously 
adjust the voltage across the panel to its optimum value, this 
is called Maximum Power Point Tracking (MPPT). 

2.3. DC-DC Boost Converter 

The boost regulator is strongly recommended to follow the 
MPP because of its advantages over the buck converter [7]. 
This switching power supply enables a higher value variable 
DC voltage source to be fabricated from a fixed input DC 
voltage source. The principle is to change the duty cycle of a 
rectangular signal to create a variable average voltage called 
Pulse Width Modulation (PWM). Figure 8 illustrates the 
boost converter model produced on Simulink, the 
specifications of which are contained in table 2. The output 
voltage Vs is expressed by equation 8: 

@� = 5E
)�&F1	                                          (8) 

With α the duty cycle such that 0 < I < 1. 

 

Figure 8. Simulink model of the boost converter. 
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Table 2. DC-DC boost converter parameters. 

Parameters Values 

Switching frequency (khz) 20 
Inductance L (µH) 10694.10e-8 
Input voltage (V) 18.20 
Capacitors C and Ce (µF) 31575.10e-8 

3. Maximum Power Point Tracking  

The direct connection of a PV source to a DC load poses 
the problem of transferring the maximum power when the 
irradiance changes suddenly [8]. To maximize the power 
produced by the PV generator, an impedance adapter stage is 
very often used and controlled by one or more control laws 

commonly referred in the literature as “Maximum Power 
Point Tracking”. A MPPT command is a command 
associated with an adaptation stage which makes it possible 
to monitor the maximum power point of a photovoltaic 
module by making the PV module operate in its optimum 
operating point, whatever the atmospheric conditions 
(temperature and sunlight) and the value of the load [9]. 

3.1. Perturb and Observe (P&O) MPPT Command 

The MPPT P&O algorithms are widely used to track MPP 
in PV systems. It allows to determine the point of maximum 
power for a solar irradiation and a temperature or for a level 
of degradation of PV system characteristics given. Figure 9 
gives the flowchart of this algorithm [10]. 

 

Figure 9. Perturb and Observe (P&O) algorithm [10]. 

The P&O algorithm is a classical algorithm widely used 
for its simplicity and ease of implementation, its precision, 
and its speed of reaction [11]. However, in the case of sudden 
variations in temperature and / or illumination (clouds), the 
poor convergence of the algorithm is noted [12]. This 
algorithm also presents some problems related to the 
oscillations around the MPP that it generates in steady state 
because the MPP search procedure must be repeated 
periodically, forcing the system to constantly oscillate around 
the MPP, once the latter is reached. These oscillations can be 
minimized by reducing the value of the disturbance variable. 
However, a low increment value slows down the search for 

MPP, so you have to find a compromise between precision 
and speed when choosing this update step that makes this 
command difficult to optimize. 

3.2. Incremental Conductance (InC) MPPT Command 

It is a widely used and easy to implement method. This 
technique addresses the problem of the P&O divergence in the 
case of a rapid change in sunlight. To calculate the MPP, the 
algorithm compares the conductance G with the incremental 
conductance ∆G, and this by looking for the point of 
cancellation of the derivative of the power. A schematic 
description of this algorithm is shown in figure 10 [8, 13]. 
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Figure 10. Incremental Conductance (InC) algorithm [13]. 

 

Figure 11. Hill Climbing (HC) algorithm [14]. 
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The accuracy and speed with which the algorithm tracks 
the MPP depends on the size of the reference voltage 
increment or the duty cycle reference. Two main handicaps 
are reconciled with this method. The first is the oscillation of 
the operating point around the steady state MPP, the second 
is that the algorithm can easily lose track of the MPP if the 
solar radiation changes rapidly. When the irradiation varies 
instantly over time, the monitoring of the MPP evolves 
correctly. But, if the irradiation changes at a slope, the 
tracking will be poor. The algorithm is unable to determine 
whether the change in power is due to the voltage disturbance 
or the change in solar radiation. This principle is illustrated in 
Figure 9. Several authors, to verify the performance of this 
proposed method, choose an irradiation profile of different 
shapes for the simulations. 

3.3. Hill Climbing (HC)MPPT Command 

Hill Climbing (HC) method consists of making the 
operating point rise along a characteristic to reach the 
maximum of the power function of the GPV against the duty 
cycle of the converter. This is to give a disturbance on the 
duty cycle which results in a displacement of the operating 
point along the power-duty cycle characteristic of the 
photovoltaic generator. The Hill Climbing algorithm is 
developed in figure 11 diagram [14]. 

With an efficiency between 95.5% -99.1%, this technique 
is easy to implement. In addition, its main limitations are 
oscillations around the MPP in steady state and an occasional 
loss of the search for MPP during rapid change in weather 
conditions.  

To remedy the various problems associated with the 
various classical algorithms, artificial intelligence techniques 
such as fuzzy logic and neural networks have been 
introduced. 

3.4. Adaptive Neuro-Fuzzy Inference System (ANFIS) 

ANFIS is an adaptive neuro-fuzzy inference system that 
uses a 5-layer MLP neural network to refine the fuzzy rules 
already established by human experts and readjust the 
overlap between the different fuzzy subsets to describe the 
input-output behavior of a complex system using a database 
for learning. It combines the advantages of two machine 
learning techniquesartificial intelligence techniques (Fuzzy 
Logic and Neural Network). In this system, fuzzy logic 
transforms input data into a desired output via a highly 
interconnected neural network, weighted to map the digital 
inputs to an output. As shown in figure 12, this network 
which integrates both the Takagi-Sugeno Kang fuzzy 
inference system (FIS) and an artificial neural network has a 
structure composed of five layers representing the network 
architecture artificial neural. Square nodes represent adaptive 
parts while circular nodes represent non-adaptive sections. 
The parameters of the adaptive nodes will be modified during 
the ANFIS learning process [15]. The learning is done by a 
hybrid technique based on the principle of backpropagation 
[16] and the least squares method. The role of learning is the 
adjustment of the parameters of this fuzzy inference system. 
This model provides very good approximation results for 
nonlinear functions. 

 

Figure 12. Two-entry ANFIS architecture for two rules [17, 18]. 

The functions of nodes and layers are (9) and (10): 
Rule 1: If 
 is J� and K is L� then, 

M�)	
, K	1 = O�	
 + C�	K +	P�                     (9) 

Rule 2: If 
 is JQ and K is LQ then, 

MQ)	
, K	1 = OQ	
 + CQ	K + 	PQ                  (10) 

Where 
  and K  are the inputs, and J� , JQ , L�  and LQ  are 
the fuzzy sets that represent linguistic values such as small, 
medium, large. These fuzzy sets would be determined during 
the learning process. O� , C� , P� , OQ , CQ , PQ  are design 
parameters also determined during the learning process. 

The ANFIS structure consists of five layers: 
Layer 1: The first layer represents the fuzzy membership 

functions. Each node of this layer has a Gaussian-type 
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membership function according to Jang's model (6): 

 RS-� = TU-)
1, V = 1,2	
S-� = TW-)K1, V = 1,2	                         (11) 

S-�  are the fuzzy membership levels used to specify the 
membership degree of net entries 
	 and y in terms of 
linguistic valuesJ- and L- .  

Layer 2: Each neuron V of this layer is a circular fixed node 
with the label π which generates as output the product of its 
inputs (fuzzy rules) and generates the product X-  (12). 

S-Q = X- = TU-)
1. TW-)K1, V = 1,2                (12) 

Layer 3: Each neuron makes it possible to calculate the 
ratio between the weight of the rule and the sum of the 
weights of all the rules (13). 

S-� = XYZZZ = [\
[]9[^                            (13) 

The obtained value represents the contribution of the fuzzy 
rule to the result. 

Layer 4: Each neuron V  of this layer is connected to a 
corresponding normalization neuron and to the initial inputs 
of the network. This layer calculates the coefficients of the 
first order equation of a Takagi-Sugeno rule for each fuzzy 
rule (14). 

S-_ = XYZZZM- = XYZZZ)O- 	
 + C- 	K + 	P-1, V = 1,2      (14) 

Where XYZZZ is the output of layer 3, and {O- , C-, P-} is the set 
of output parameters of the first order rule i, which are called 
consequent parameters. 

Layer 5: Includes a single neuron that represents the output 

layer that provides the output of ANFIS by calculating the 
overall weighted output of the system (10). 

S-̀ = M = ∑ XYZZZM-� = ∑ [\b\\
∑ [\\                    (15) 

Subsequently, a hybrid learning algorithm that combines 
the backpropagation learning algorithm and the least squares 
method makes is used to define the optimal values of the 
parameters of these membership functions and the 
consecutive parameters. These consecutives parameters are 
used to determine the ANFIS network output. An 
experimental database collected on a Felicity Solar PV 
module FL-M-160W is used to learn, test and check the 
neuro-fuzzy controller. 

4. Modeling of ANFIS  MPPT Controller  

4.1. Experimental Features 

In this work, ANFIS is used to track the maximum power 
point in a PV system under unstable environmental 
condition. The optimum voltage obtained at the outlet of the 
ANFIS network is used to build the duty cycle and allow the 
PV panel to deliver optimum power output. Figure 13 
illustrates the data acquisition device. A database is built 
using a Benning Sun 2 type pyranometer and an acquisition 
card which serve as equipment for the acquisition of data 
through experimental tests which will be optimized to 
approximate the output which corresponds to the maximum 
power, depending on variation of irradiance and temperature. 

 

Figure 13. Experimental data acquisition device. 

The experimental tests carried out for the day of November 04, 2020 made it possible to build a database including test, 
verification and learning data. Figure 14 illustrates the global irradiance G and the solar panel temperature TPV while figures 
15 and 16 illustrate the evolution of current and voltage recorded in relation to the global irradiance. 
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Figure 14. Weather data (irradiance and temperature) recorded. 

 

Figure 15. Evolution of the Vpv voltage 

 

Figure 16. Evolution of the Ipv current. 
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As can be seen in figure 14, the weather conditions 

fluctuate sharply throughout the day. The solar irradiance 
fluctuates between 114 W / m² and 1072 W / m². The 
irradiance peak value of 1072 W / m² is obtained under an 
ambient temperature of 41°C and corresponded for a 
temperature of 37°C on the panel surface. The temperature 
fluctuates daily between 30°C and 41°C. Figure 15 illustrates 
the voltage evolution recorded in relation to solar irradiance. 
It appears that the measured Vpv voltage tends to follow the 
profile of the overall irradiance and the Ipv current. This 
variation is quite normal because, according to Ohm's law, 
the voltage across the resistive load is proportional to the 
current intensity. 

Having our database, the ANFIS controller structure is 
developed as illustrated in figure 20 where irradiance (G) and 
temperature (0A5) are the input variables. The output variable 
which is the PV generator voltage at which the maximum 
power point occurs is taken as the reference voltage. The 
optimum voltage produced by ANFIS is compared to the 

reference voltage of the PV generator and the error is given 
to generate operating signals. The operating signal is then 
given to the PWM generator. The generated PWM signals 
manage the DC - DC converter duty cycle to adjust the 
operating point of the PV module. 

4.2. Modeling of ANFIS on Matlab / Simulink 

To build the ANFIS structure, 509 elements are used as 
training data, 120 as checking data and 120 as testing data. 
Each data is made up of input (Irradiance, Temperature) and 
output (voltage) variables. Then, the number and type of 
input membership functions are defined to configure our 
fuzzy system for training. Seven membership functions are 
used for the two input variables and each of the membership 
use the 'trimf' type functions. To generate the initial 
membership functions, the genfis1 command is used. Figure 
17 illustrates these initial membership functions. 

 

Figure 17. Initial membership function of ANFIS. 

 

Figure 18. Comparison between Vpv and ANFIS output Vopt. 

For the learning of the structure, a hybrid learning 
technique combining the backpropagation algorithm for the 
determination of the parameters of the premises (adjustment 
of the parameters related to the membership functions) and 
the method of least squares for the estimation substantial 
parameters is used. For an epoch number of 1000, the result 
of the training is checked. The syntax evalfis calculates the 
output of the fuzzy system where RMSE (Root Mean 
Squared Error) represents the root mean square error. Figure 
18 shows the ANFIS output as a function of the system 
training variables (@c�d). 

After training, completely unknown data parameters are 
presented to the model and the performance is tested. 
Figure 19 illustrates the new membership functions after 
training. 
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Figure 19. Final membership function of ANFIS. 

The structure of ANFIS, generated by the Matlab code is a 
five layer network as shown in figure 20. It has two inputs 
(irradiance and temperature), one output and seven 
membership functions for each input. Fourty Nine fuzzy rules 
are derived from fourteen input membership functions. These 
rules are derived according to the input and output mapping, so 
as to construct maximum output power for each value of input 
temperature and irradiance level. Figure 22 shows output of 
fuzzy rule for a specific value of operating temperature and 
irradiance level. it is shown that the MPP voltage (@e��) vary 
with the changes of PV cell temperature and solar irradiance.  

According to the geographical and meteorological 
position, an irradiance of 735w / m² and a panel surface 
temperature of 40°C are required to have an output voltage of 
18.2V which corresponds to the manufacturer's @e�� , we 
must, depending on our geographical and meteorological 
position, have an irradiance of 735w / m² and a panel surface 
temperature of 40°C. Figure 21 depicts the typical behavior 
of the ANFIS structure. It is three-dimensional plot between 

temperature, irradiance and maximum voltage. It is shown 
that with an increase in the irradiance level and a moderate 
temperature, the maximum available power of the PV module 
increases [19]. 

 

Figure 20. ANFIS structure. 

 

Figure 21. Surface view created by ANFIS. 

 

Figure 22. Rule base of ANFIS controller. 
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In the following section, the results presented show that the proposed ANFIS based MPPT is more stable and faster than the 
conventional MPPT algorithms. 

5. Results and Discussion 

The Simulink model of the standalone PV system is shown in figure 23. It consists of PV panel, DC-DC boost converter and 
load. The neuro-fuzzy MPPT control algorithm is associated to the converter to operate the generator at its maximum power 
point. 

 

Figure 23. PV system with ANFIS MPPT controller. 

5.1. Stable Environmental Condition 

Simulations are carried out under fixed conditions of illumination G = 1000 w / m² and temperature T = 25°C. The output 
characteristics of the neural controller are illustrated by figures 24, 25 and 26. 

 

Figure 24. Panel output power. 



 American Journal of Energy Engineering 2021; 9(3): 68-84 80 
 

 

Figure 25. Panel output voltage. 

 

Figure 26. Panel output current. 

As shown in Figure 24, the output power of the PV system 
using ANFIS MPPT controller has a significant stability with 
a very low response time of around 0.01s. 

the important oscillations present in the transient phase 
disappear after 0.007s. However, there are weak oscillations 
that remain because this power varies between 155.3 and 
156.7W. The output current is relatively low while the output 
voltage is very high with an average value of 37.5V. 

Figure 27 compares neuro-fuzzy and conventional 
controllers. The ANFIS controller can accurately track the 
maximum power point of the PV generator. 

Compared to conventional MPPT, the output power 
generated by ANFIS is more stable in both steady-state and 

transient conditions and closer to MPP. It converges quickly 
to the new MPP. Conversely, although the P&O, InC and HC 
controls follow the MPP perfectly, they are slower and only 
arrive at the MPP after a delay. The recovery time is 
approximately 0.018s for these techniques. The average 
values of the currents and voltages supplied by these 4 
controllers are almost identical, ie approximately 4.15A and 
37.5V. However, it should be noted that the currents and 
voltages supplied by conventional controllers exhibit 
significant oscillations. The ANFIS controller improved the 
transition state by reducing steady state oscillations and 
speeding up the tracking process. 
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Figure 27. Power output for various MPPT control in steady state. 

5.2. Variable Environmental Condition 

Under rapidly change conditions, there are sharp variations 
in irradiance and / or temperature. However, the variation in 
temperature has little influence on the output power 
compared to the variation in sunlight. simulations are realised 

with a constant temperature equal to 25°C for a solar 
irradiation which suddenly deviates from 1000 to 700 W / m² 
then from 700 to 1200 W / m² and this for 1s. Figure 28 
illustrates the output power of the generator in unstable 
conditions. 

 

Figure 28. Disturbed output power. 

In order to evaluate the robustness, the rapidity, the precision and the speed of convergence of the ANFIS technique 
developed as well as its capacity to follow the MPP under the conditions of abrupt variation of the environmental conditions, a 
comparison is made with the classical methods (figures 29, 30 and 31). 
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Figure 29. Comparison of output powers in unstable conditions. 

 

Figure 30. Comparison of output voltages in unstable conditions. 

 

Figure 31. Comparison of output currents in unstable conditions. 
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During rapid changes in climatic conditions, the output 

characteristics (maximum power, voltage and current) 
provided by the PV generator varies proportionally with 
irradiation as shown in Figures 29, 30 and 31. When 
irradiation is 1000W / m², the maximum power supplied by 
the GPV stabilizes around 156 W for the different MPP 
tracking techniques. When the sun goes from 1000 to 700W / 
m², this maximum power is 110 W for ANFIS, 99W for 
P&O, 88W for InC and finally 85W for HC. Finally, when 
going from 700 to 1200 W / m², Pmax becomes equal to 
190W for ANFIS, 170W for P&O and InC and 178W for HC. 
There are significant oscillations of conventional techniques 
compared to ANFIS first in transient and steady state as well. 
The sudden variation in sunlight greatly disturbs 
conventional controllers. In our case, for low irradiation, the 
HC controller is less cost effective compared to other 
conventional techniques, but it becomes better when the 
irradiation becomes greater. These results show that MPPT 
controllers allow adaptation of PV generator and load to MPP 
with optimal transfer of PV power. 

6. Conclusion 

In this work, a neurofuzzy controller is used to modelise the 
MPPT command for a PV generator in disturbed conditions. In 
order to achieve the goals, PV system elements have been 
modeled in Matlab / Simulink. A review on MPPT commands 
was developed and allowed to highlight the difficulties of 
classical MPPT commands in the MPP research and to give 
particular interest of using ANFIS as MPPT controller in PV 
system. From the experimental tests carried out on site, ANFIS 
controller has been developed and modeled using the 
temperature and solar irradiance as input variables and voltage 
as the output variable. The developed ANFIS model has been 
trained, tested and validated in Simulink/Matlab, then has been 
inserted into the system to regulate the DC-DC boost 
converter. Simulation of the behavior of the PV system under 
stable and disturbed environmental conditions has been carried 
out to analyze the characteristics obtained at the output of the 
panel. A comparative study between the ANFIS controller and 
conventional MPPT controllers reveals robustness, high 
stability and very low response time compared to conventional 
methods. The efficiency of the ANFIS MPPT controller is 
about 98%. 
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