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Abstract: As the current agricultural challenges, including climate change, population growth, and water availability, 

become more pronounced, regions that are highly dependent on agriculture are seeking new ways to track productivity in an 

effort to boost agricultural output. Hence, an emerging concept of data-driven agriculture, or "Smart Farming," is becoming 

increasingly relevant in these regions. However, due to variations in available resources and technology across countries, it is 

difficult to objectify the effectiveness of these methodologies. Therefore, this paper aims to evaluate the potential effectiveness 

of Smart Farming in countries across different regions of the world to determine which nations have the strongest potential for 

driving gain through the use of such technology. The potential effectiveness of Smart Farming is assessed by 1) creating and 

using an index from a selection of datasets that represents every nation's agricultural environment, economic status, and 

resources available for the application; and 2) running Principal Component Analysis (PCA) on the dataset to weigh each 

nation's relations to the application and determine their rankings. The top 5 nations for the applicability of Smart Farming are 

Iceland, New Zealand, Australia, Norway, and Finland. These countries present a viable model for other nations to follow in 

order to achieve sustainable growth through the adoption of data-driven farming techniques. 
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1. Introduction 

With data science improving, Artificial Intelligence (AI) and 

the Internet of Things (IoT) are providing realistic solutions to 

the challenges in many fields of study [10]. Agriculture is 

among those fields, and the new concept of “smart farming” 

emerged. The application of this concept is anticipated to help 

handle current challenges in agriculture, such as climate 

change and water availability. With the increasing demand for 

such technology, smart farming is advancing through the use 

of improved sensors, more-accurate computer vision systems, 

and powerful AI [8]. Smart farming will help farmers to 

precisely select the input and improve their knowledge of 

factors that affect agriculture by (1) managing planting; (2) 

measuring productivity effects and management measures; (3) 

tracing and controlling farm produce security; and (4) 

monitoring plant growth [9]. However, agriculture differs a lot 

depending on the site of farming, as most of the impactful 

resources and factors are related to the environment. Also, 

there could be limitations to apply smart farming in regions 

where internet infrastructure is not sufficient. Moreover, 

regions that are dependent on agriculture and are willing to 

invest more in the industry will more effectively adapt to the 

change. Due to these reasons, the effectiveness of smart 

farming will be divergent among all nations. In this context, 

this paper will evaluate the potential effectiveness of smart 

farming in each nation by creating an index that regards the 

country's resources, dependence on agriculture, internet 

infrastructure, and economic status. 

Our paper is related to several others in the existing 

literature. In one such study, titled Digital Transformation for 

a Sustainable Agriculture in the US: Opportunities and 

Challenges Khanna et al. (2021), analyzes the emerging 

technologies that address the challenges of agriculture, such 

as herbicide resistance, waste of nitrogen and irrigation water, 

and cover crop planting [3]. The authors discuss the factors 

which might affect the application of these technologies and 

the methodologies for adopting them. They examine these 

technologies in enhancing economic and environmental 

sustainability. The analysis of emerging technologies 

provides a reason to research how it will affect each nation, 

but it does not address this. 

In another paper, a review by Wolfert et al. (2017), the 
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authors investigate how big data can be applied in agriculture, 

and how the future of the industry will be shaped [4]. The 

paper predicts the future of smart farming in two extreme 

scenarios, which are a closed system where the farmer is 

integrated into the food supply chain, and an open system in 

which farmers and stakeholders can flexibly choose business 

partners and technologies. According to these scenarios, the 

paper suggests business models which can be successful in 

each scenario. This review consists of a more general 

estimation of the impact of smart farming, but it does not 

show which region will be successful. 

Maru et al. (2018) address the challenges that smallholders 

in agriculture go through, and how those challenges can be 

overcome via data-driven agriculture [5]. The challenges 

include gaining access to relevant data and services and 

risking themselves when opening their own data. Data-driven 

agriculture can help overcome them by helping farmers to 

find balance and mitigate many situations, such as climate 

change. This paper analyzes the impacts of data-driven 

agriculture on individual farmers, while it does not view the 

macroeconomic impacts. 

Jouanjean (2019) evaluates the impact of digital 

transformation on the food system [6]. It discusses how the 

agriculture and food sector is changing due to the new 

technologies and opportunities to share information, and how 

this change impacts cross-border trade processes. It also 

emphasizes the current constraints regarding trade and new 

opportunities for agriculture in the digital economy. This 

paper’s analysis is limited to the general application of smart 

farming in the digital economy, which can be improved by 

focusing on regions. 

Finally, the UN (2017) looks at the establishment and 

development of a national e-agriculture plan [7]. It monitors 

and evaluates some of the implementations of e-agriculture, 

and it encourages nations to develop such plans. It puts 

emphasis on the fact that these strategies can develop and 

revitalize a country’s approach in using ICT to achieve and 

widen its agriculture goals and priorities. This paper analyzes 

how each nation can utilize e-agriculture, but it does not 

provide information specific to a nation. 

The reviewed literatures discuss the general impact and the 

future of smart farming. Building upon the existing literature, 

the current paper agrees on the positive impacts discussed in 

the literatures that smart farming can potentially bring. Our 

goal is to evaluate which nation is the most suitable to adapt 

and accommodate the current smart farming trend in 

agriculture. 

The rest of the paper is organized as follows: In the next 

section, we discuss the conceptual framework. In section III, 

we present my data and the empirical method we use. In 

section IV, we present my results. Finally, in the last section, 

we provide some concluding remarks. 

2. Conceptual Framework 

To create an index that successfully represents the 

potential effectiveness, I select datasets that will be used as a 

basis of the index. The selected datasets can be classified into 

three categories: a nation’s agricultural environment, 

economic status, and resources and infrastructure available. 

The datasets which are included in the agricultural 

environment are Plant Species Threatened, Land for Cereal 

Production per capita, Water Productivity, and Emissions per 

capita. Plant Species Threatened shows the numbers of 

endangered species, and this value demonstrates if the nation 

is an environment where plants can thrive in. If this value is 

high, then it indicates that the environment is not very 

suitable. Land for Cereal Production per capita is important 

as agriculture requires some land for the crops to grow, and 

therefore, it is an important aspect when determining the 

potential output. Water Productivity shows the output of 

crops when a certain amount of water is put in, and therefore 

high values suggest it is a suitable environment for 

agriculture. Emissions per Capita is important, as researchers 

have found a remarkably consistent negative association 

between nitrogen dioxide and crop growth in major cropping 

regions [14]. High values suggest that the environment is not 

suitable for agriculture. 

The datasets which are included in the economic status are 

GDP per capita, Agricultural Output per capita, and 

Agricultural Employment. GDP per capita shows how much 

wealth each person possesses, and this is important as 

investment is needed to apply this new concept to the 

agriculture industry. Agricultural Output per capita is selected 

because it shows how productive the nation is in agriculture, 

which suggests the ability in the industry. Agricultural 

Employment is also directly linked to the application of 

Smart Farming, as it shows the available workforces in the 

industry which can be used to adopt this concept. 

The datasets which are included in resources and 

infrastructure available are Internet Users, Secure Internet 

Servers, R&D Spending, Energy Use per capita, Renewable 

Resources per capita, and Human Capital. Internet Users and 

Secure Internet Servers demonstrate the internet 

infrastructure of the nation, and for the interaction of data, 

the internet is needed. Thus, these values show if it is 

plausible to adopt Smart Farming. R&D Spending is 

important as it shows the available capital which might be 

used as an investment in this field. Energy Use per capita 

demonstrates the electricity infrastructure, and this is crucial 

in the same context as the internet infrastructure. Renewable 

Resources per capita is important as the persistent population 

growth requires ever-increasing energy consumption and 

other natural resources [11]. As the energy sources are 

currently being depleted, expecting a critical depletion within 

50 years at current use levels [12, 13], the application of 

renewable resources is necessary as energy sources in the 

future, where Smart Farming will be active. Human Capital 

demonstrates the workforce available, but not limited to this 

industry. This overall workforce shows how other 

infrastructures can be improved, so that the potential output 

of Smart Farming can increase. 

The created index will be useful for nations to determine 

how actively they should adopt this new concept of Smart 
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Farming. If a nation has a high value in this index, it will 

experience a high output compared to the investment it put in 

to adopt this concept, and vice versa for a low value. Also, it 

can show what each nation should improve to increase the 

output of Smart Farming. 

3. Data and Methods 

To construct the overall index, we use 13 variables. All 

these variables, as well as their descriptive summary statistics, 

are presented in Table 1. These variables are as follows: GDP 

per capita, Internet Users, Agricultural Output per capita, 

Secure Internet Servers, R&D Spending, Energy Use per 

capita, plant species threatened, renewable resources per 

capita, Agriculture Employment, Land for Cereal Production 

per capita, Emissions per capita, Human Capital, and Water 

Productivity. The datasets for all these variables were 

collected from World Development Indicators, which is part 

of the databank which the World Bank provides. 

Following standard PCA procedure, the tails of all 

variables are reduced
i
 by 1% up and down to eliminate the 

influence of extreme values. According to Table 1, all 

variables exhibit significant standard deviations, indicating 

that they can be subject to PCA. In order to be as 

comprehensive as possible, our index includes 13 variables. 

Previous studies have used various methods for index 

creation with multiple variables, of which one of the 

commonest is PCA. We, therefore, applied PCA to the 16 

variables following the standard methodology of Baxter 

(1995) and Joliffe (2002) [1, 2]. 

Table 1. Descriptive Summary Statistics. 

Variable Mean Median Std. Dev. Min. Max. # of Countries 

GDP per capita 18747.90 7233.39 27570.22 236.80 173688.20 213 

Internet Users 61.21 69.79 28.12 0.00 100.00 209 

Agricultural Output per Capita 486.91 351.69 903.36 5.84 9436.63 196 

Secure Internet Servers 16911.43 514.09 59242.33 0.08 741078.8 215 

R&D Spending 0.92 0.46 1.06 0.01 5.44 124 

Energy Use per capita 2243.41 1233.32 2876.32 9.56 17922.70 172 

Plant Species Threatened 79.19 18.00 186.26 0.00 1859 215 

Renewable Resources per Capita 15071.01 2516.03 46300.01 0.00 481967.3 183 

Agriculture employment 23.32 17.37 21.59 0.03 86.21 187 

Land for Cereal Production Per cap 0.09 0.06 0.11 0.00 0.78 180 

Emissions per cap 0.0005 0.0003 0.0005 0.00 0.004 189 

Human Capital 0.56 0.56 0.14 0.29 0.88 174 

Water Productivity 83.29 21.48 184.69 5.44 1348.11 176 

 

After first comparing all inter-variable correlations, we 

check the normality of all variables and transform any that 

require it.
ii
 Normalization and trimming outliers (1 percent) 

from the data is required because PCA is not scale-invariant. 

We then adjust all variables to the same scale and index them 

within a range of 0-100. To do this, we calculate the ratio of 

the difference between the actual value of a variable and its 

minimum value to the difference between the maximum and 

the minimum value and multiply this ratio by 100. 

We then run the PCA using all 13 transformed variables. 

The PCA produces the same number of components as the 

number of variables used in the analysis, which is 13 in this 

study. These components are basically linear combinations of 

the variables. The number of components chosen for the final 

index should be such that the associated eigenvalue does not 

go beyond 1. For all statistical analyses, we use STATA 

version 17. 

Table 2 presents the eigenvalues and proportions of the 

explained variance in the dataset for each component. The 

table notes present various test results for PCA. The value of 

the Kaiser-Meyer-Olkin (KMO) index, which compares the 

correlations between the variables and the partial correlations, 

resulted in 0.84, where a value for the KMO test above 0.8 is 

considered to be ‘good’ and ‘adequate’ [15], thereby 

indicating the efficiency of the PCA and adequate sampling. 

Similarly, Bartlett’s test of sphericity is also satisfactory, 

rejecting the null hypothesis that the observed correlation 

matrix does not deviate significantly from the identity matrix. 

Finally, the scale variability is also acceptable, with a 

Cronbach’s alpha value of 0.77. The principal components 

(eigenvectors) are presented in full in Table A1 in the 

appendix. 

As Table 2 shows, the analysis indicates using six 

components since component 6 has an eigenvalue below 1. 

With five components, the analysis can account for about 81% 

of the variance in the overall data. 

Table 2. Eigenvalues in the Principal Component Analysis. 

Component Eigenvalue Difference Proportion Cumulative 

Component 1 5.25 3.41 0.40 0.40 

Component 2 1.84 0.41 0.14 0.54 

Component 3 1.43 0.40 0.11 0.65 

Component 4 1.03 0.03 0.08 0.73 

Component 5 1.01 0.30 0.08 0.81 

Component 6 0.71 0.17 0.05 0.87 

KMO test=0.84, Bartlett’s test of sphericity: approx., Chi-Square= 420.12 Significance=0.001, Cronbach’s alpha=0.77. 
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The final index is calculated using the following formula, where PCAx for x = 1, 2, 3, 4, 5, refers to each principal 

component: 

Index = ��.���.���PCA1 + ��.���.���PCA2 + ��.���.���PCA3 + ��.���.���PCA4 + ��.���.���PCA5 

Notice that the coefficient of each principal component is 

equal to the proportion of variation explained individually by 

each principal component divided by the total cumulative 

proportion of variation in the whole data explained by all six 

principal components. 

As an alternative to the PCA-based index measure, we also 

create an alternative index using the unweighted arithmetic 

average of all 13 (0-100) transformed variables and finally 

transforming it to a 0-100 range. Since the correlation 

between the two indices is 0.81, we only continue with the 

PCA-based index in the subsequent analysis. Table A1. in the 

appendix presents both series by country. 

Table 3. Descriptive Summary Statistics of the Indices. 

 Mean Median Std. Dev Min. Max. 

PCA Index 17.79 13.27 14.76 0.00 100.00 

Unweighted Average 33.52 31.46 19.63 0.00 100.00 

 

Figure 1. Global heat map of the PCA Index. 

 

Figure 2. Histogram and the Associated Normal Distribution of the Smart 

Farming Index. 

Figure 1 is a global heat map of the PCA index, which 

shows which part of the world is ranked high for the potential 

effectiveness of smart farming. The top five nations that are 

ranked high in the index are Iceland (100), New Zealand 

(70.05063), Australia (55.90287), Norway (44.22781), and 

Finland (42.50343). 

Next, in Figure 2 is the histogram and associated normal 

distribution of the index. The density of the index in the 

range of 0 to 20 is very high, and the density decreases as the 

value of the index increases. 

Finally, Figure 3 shows the percentage improvement in the 

index after a 10-percent improvement in each component, 

ordered from lowest to highest. Thus, the top five improvers 

in terms of the policy are increasing human capital (13.22 

percent), R&D spending (12.32 percent), internet users 

(11.10 percent), water productivity (11.10 percent), and 

secure internet servers (9.98 percent). 
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Figure 3. Potential Improvements of the Overall Index. 

4. Conclusion 

For the evaluation of the potential effectiveness of smart 

farming in each nation, we constructed an index. The data 

collected and used for the construction of my index represented 

the nation’s agricultural environment, economic status, and 

resources and infrastructure available. With those datasets, we 

used the Principal Component Analysis to weigh each dataset 

differently based on their relation and contribution to the 

application of smart farming. The top five nations rated by this 

index are Iceland, New Zealand, Australia, Norway, and Finland. 

With the index constructed and the general evaluation 

provided in this paper, further research in this broad 

emerging field of smart farming is possible. Some 

suggestions include case studies about smart farming 

application specific to a single or limited number of nations, 

or the exploration of the socioeconomic effects which a 

successful adaptation of smart farming can bring. Also, 

nations can use this index for their objectification of 

problems existing to adopt smart farming, and can potentially 

improve their environment for a more effective application. 

Appendix 

Table A1. Index Values by Country. 

Country Benchmark Index Alternative Index 

Algeria 13.88574 12.21216 

Angola 10.67195 11.88784 

Argentina 23.94448 18.84329 

Armenia 13.19273 14.64959 

Australia 55.90287 34.27734 

Austria 23.7311 24.76957 

Country Benchmark Index Alternative Index 

Azerbaijan 11.16593 16.95602 

Belarus 18.81532 20.5539 

Belgium 13.30251 24.58793 

Bosnia and Herzegovina 9.48016 14.98654 

Botswana 5.282246 12.07302 

Brazil 21.61626 18.93529 

Brunei Darussalam 13.91322 20.11406 

Bulgaria 12.04702 17.5962 

Cambodia 6.559508 11.49371 

Canada 31.58702 30.64041 

Chile 14.96192 16.90711 

China 34.69871 22.00089 

Colombia 13.94525 15.10345 

Congo, Dem. Rep. 1.410195 10.40566 

Costa Rica 19.07543 15.50217 

Cote d'Ivoire 8.315577 9.775088 

Croatia 16.5219 18.59873 

Cyprus 11.29265 18.44352 

Czech Republic 19.35826 22.20513 

Denmark 33.62543 31.92797 

Ecuador 34.26243 22.37587 

Egypt, Arab Rep. 12.01647 13.00261 

El Salvador 3.129885 10.93008 

Estonia 15.89082 24.911 

Eswatini 7.48402 6.844073 

Ethiopia 6.6447 11.74874 

Finland 42.50343 28.64306 

France 23.02323 23.71976 

Gambia, The 0 8.580935 

Georgia 10.70267 16.07079 

Germany 14.98742 25.04656 

Greece 22.73216 18.7761 

Guatemala 11.51037 11.57403 

Honduras 7.102434 10.75909 

Hungary 17.52092 20.75447 

Iceland 100 40.96629 

India 10.99523 13.99463 

Indonesia 18.03086 14.75162 
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Country Benchmark Index Alternative Index 

Iran, Islamic Rep. 18.02903 17.04939 

Iraq 4.733222 9.565526 

Ireland 38.98674 29.60965 

Israel 24.94854 26.63718 

Italy 20.07475 18.73087 

Japan 13.10561 23.24453 

Jordan 2.704244 10.20928 

Korea, Rep. 24.53427 26.67118 

Kuwait 3.30238 17.96603 

Kyrgyz Republic 1.245996 11.72748 

Lebanon 7.378401 11.96226 

Lithuania 25.44544 24.86341 

Luxembourg 33.53133 33.07529 

Malaysia 32.1326 20.44571 

Malta 5.813711 17.56125 

Mauritius 8.322129 12.42916 

Mexico 12.53246 16.08146 

Moldova 11.80777 17.3808 

Mongolia 41.77635 22.02386 

Mozambique 3.0103 11.15691 

Myanmar 7.365685 12.85668 

Namibia 12.85871 11.60839 

Netherlands 29.31794 24.93286 

New Zealand 70.05063 28.37308 

Nicaragua 11.13061 11.98786 

North Macedonia 10.89179 14.04227 

Norway 44.22781 28.62652 

Oman 11.35493 16.65384 

Pakistan 7.474359 8.701845 

Panama 12.76728 13.16162 

Paraguay 21.06693 16.99236 

Peru 15.9318 15.98449 

Philippines 8.575476 11.87173 

Poland 12.33843 21.02604 

Portugal 14.41162 18.93844 

Saudi Arabia 13.78871 17.28726 

Senegal 4.922134 10.3014 

Serbia 13.23857 18.96556 

Slovak Republic 12.62857 19.18706 

Slovenia 16.29754 21.53259 

South Africa 4.705297 11.99981 

Spain 26.90811 21.77836 

Sri Lanka 8.108745 11.7282 

Sweden 31.80776 28.17735 

Switzerland 25.6003 28.18319 

Tajikistan 4.549869 9.862195 

Tanzania 13.0019 14.56131 

Thailand 17.86778 19.13346 

Togo 1.274165 9.208184 

Trinidad and Tobago 3.422761 18.01272 

Tunisia 9.875833 13.53151 

Turkiye 25.91071 18.22976 

Ukraine 8.653941 17.9555 

United Arab Emirates 12.00403 21.20257 

United Kingdom 15.97016 23.56787 

United States 37.42968 30.98636 

Uruguay 40.85581 20.8212 

Uzbekistan 25.85125 15.43904 
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i
 We also replicated our analysis without dropping the 1-percent tail of the 

distribution. The results did not change significantly. This additional analysis is 

available upon request from the corresponding author. 
ii

 None of the variables satisfy the normality assumption. Therefore, all are 

transformed. 


