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Abstract: China is vigorously promoting the reform of the electricity spot market after the notice on the development of pilot 

projects for the spot electricity market was issued in 2017. At the same time, china is upgrading and renovating its energy 

structure, in the context of structural reform on the energy supply side, the decentralized form of clean energy utilization will 

develop rapidly. With the continuous improvement of the trading mechanism in spot market, it has become an inevitable trend 

that many distributed power resources will be involved in electricity market to participate in market transaction. Therefore, in 

order to promote distributed energy to participate in spot market, virtual power plant technique is paid increasing attentions. 

Combining the current hot issue, this paper constructs a decision-making model of virtual power plant for participating in spot 

market transaction based on hybrid stochastic and robust method, which can provide a quantitative decision analysis tool for 

virtual power plant operators to participate in spot market transactions. The main contribution of this paper are as follows:1) we 

proposed a transaction decision model that based on hybrid stochastic optimization and robust optimization methods and 

example simulation was given to illustrate the effectiveness of the model; 2) this paper focused on the electricity market in 

china. 
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1. Introduction 

On August 28, 2017, the General Office of the 

Development and Reform Commission of the State Council 

and the Comprehensive Department of the National Energy 

Administration jointly issued the Notice on Piloting the 

Construction of the Power Spot Market, which clarified the 

eight spot pilot areas and stipulated that each market entity 

should be organized to carry out day-ahead, intraday and 

real-time electric energy trading, realizing the organic 

connection between dispatch operation and market trading as 

well as promoting the safe operation of power system and the 

effective operation of power market. Besides, in 2018, the 

Southern Regulatory Bureau of the National Energy 

Administration issued the "Regulations on the Collection of 

Power Spot Markets in the Southern provinces (Starting in 

Guangdong)" document, which laid the foundation for the 

simulation operation of the Southern Power Spot Market. 

These signals also marked the official launch of China's power 

spot market construction work. 

At the same time, with the continuous decline of new 

energy power generation costs, driven by the smart grid and 

energy Internet technology as well as the continuous 

improvement of the power market trading mechanism, many 

distributed power resources have become an inevitable trend 

in the power market transactions. In this context, virtual power 

plants are paid increasing attentions. Virtual power plant (VPP) 

is an integrated power plant that integrates the energy 

management system under the control of information, control 

and communication with small-scale distributed energy 

resources, and can effectively connect many distributed new 

energy projects into the power grid and realize their 
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participation in market transactions [1]. Yangyang Liu et al 

proposed hybrid method of stochastic optimization and 

robust optimization to manage the uncertainties of renewable 

energy [2]. Congying Wei proposed a bi-level scheduling 

model for VPP with a large number of distributed resources to 

reduce the net exchange power deviation [3]. Mahmoud M et 

al integrates different developed optimization algorithms 

based on modification of the big bang big crunch method for 

virtual power plant realization and the proposed model 

successfully minimize the purchased energy from the grid. [4]. 

Pandžić constructed a stochastic model of two-stage mixed 

integer linear programming with the maximum benefit of VPP 

as the objective function, and obtained the maximum benefit 

of VPP in the day-ahead and real-time market [5]. Morteza R 

integrated wind power plants, energy storage systems and 

demand response into “price-receiver” virtual power plants, 

and constructed a decision-making model for virtual power 

plants in the day-ahead market, real-time market and spinning 

reserve market based on robust optimization methods and 

calculated the optimal declaration output in each market 

through the simulation of the example [6]. Mashhour further 

explored the joint optimal bidding strategy for virtual power 

plants in energy market and rotating reserve market, and 

constructed a nonlinear mixed integer programming model 

with cross-time constraints [7]. 

Virtual power plants often contain new energy units such as 

distributed wind power and photovoltaics. Since these 

distributed power resources usually have randomness and 

volatility, it is necessary to consider the uncertainties of wind 

and solar outputs when studying the optimal scheduling of 

virtual power plants. The stochastic programming method and 

the robust optimization method are commonly used in 

uncertain optimization theory. Dantzig [8] is the first one who 

introduced the concept of stochastic optimization. In the field 

of power industry, stochastic programming method is 

commonly used to select representative discrete scenes by 

considering the probability distribution of wind-light 

uncertainty, and select the representative discrete scenes by 

scene generation and reduction to make optimization 

decisions [9]. Ying Chen [10] built a two-stage stochastic 

optimization model for real-time scheduling of distributed 

power supplies. With the deepening of research, stochastic 

optimization also shows some defects such as large 

computation and difficult to generate scene sets [11]. In order 

to ensure the safe operation of the grid, robust optimization is 

gradually favored by the academic community due to its 

safety and stability. Zhang Qianwen [12] used a scheduling 

mode based on wind power output prediction interval to 

consider the uncertainty of wind power output, and then 

established a robust optimal scheduling model. Jiang R [13] 

used robust optimization to establish a model that minimizes 

the output cost of thermal power units considering the worst 

wind power output scenario and hydropower units. However, 

most of the literatures usually only use random programming 

methods or robust optimization methods in the process of 

uncertain parameters, and rarely use the two together. In this 

way, the advantages of the two methods cannot be fully 

utilized, which also provides a certain research space for the 

construction of the decision-making model in this paper. 

2. Theoretical Basis 

2.1. Stochastic Optimization Method 

Stochastic programming is an operational research branch 

evolved from linear programming, which can solve 

mathematical programming problems with objective variables 

or constraints containing random variables to help people 

make decision-making problems in uncertain environments. G. 

Dantzig first proposed a two-stage stochastic programming 

model in the 1950s to study the random mobility of passengers 

when setting up flight times at airports [14]. 

A typical model for linear programming is expressed as: 

                  (1) 

Among them, A, B, and C are all determined constants, 

which can represent parameters such as production cost, sales 

price, total amount of resources, and raw material supply 

amount. However, these parameters tend to show a certain 

fluctuation trend due to the influence of uncertain factors such 

as policy environment and market changes, that is, the 

determined parameters A, B, and C become random variables. 

Accordingly, the determined linear programming problem 

becomes an uncertain stochastic programming problem. The 

fluctuation characteristics of these parameters can be described 

by a specific probability distribution through mathematically 

transformation. Obviously, if random variables are introduced 

in planning problems, the model and optimization results will 

be more in line with the actual situation, and the 

decision-making results are more reasonable.  

Since the coefficients of the model contain random 

variables, the solution to the stochastic programming problem 

becomes complicated. Based on probability theory, the most 

direct solution to the stochastic programming problem is to 

replace the random variables in the model with the expected 

values, transform the stochastic programming model into a 

general mathematical programming model without random 

variables, and then solve it with a deterministic mathematical 

programming algorithm. But Valentin Robu indicated that it is 

very difficult to get the expected value of a function that has a 

random variable in it [15]. The uncertainty of these random 

variables can often be classified into multiple different 

scenarios, and the number of occurrences of these scenarios 

can be described by a certain probability distribution.  

2.2. Robust Optimization Method 

This chapter will modify the model using the robust basic 

principles proposed by Bertsimas, and the basic principles of 

robust optimization will be explained in this section. In 

general, the form of the linear optimization model with 

min  

0

TC x

Ax B

x


 =
 ≥
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uncertain parameters in a coefficient matrix A is as follows:  

                 (2) 

               (3) 

                  (4) 

When there are also uncertain parameters in the objective 

function C and the constraint b, the above equation can be 

transformed into the following form: 

                    (5) 

                (6) 

                 (7) 

                (8) 

After the above transformation, the target coefficient matrix 

c as well as the constraint condition b can be regarded as the 

coefficient matrix A with uncertain parameters for a robust 

transformation. Suppose A is a matrix of m×n, and Ji is a set of 

column subscripts j of all uncertain parameters aij in i row of 

matrix A. Each uncertain parameter aij (j ∈ ��) can be regarded 

as a random variable that varies within bounded symmetric 

interval � �[ , ]ij ij ij ija a a a− + . Here, aij is uncertain, and its 

specific change trajectory and trend are unknown. Besides, 

ija represents the predicted value, and  represents the 

estimated value of the interval change. 

Defining the parameter �( ) /ij ijij ijz a a a= − , then zij is a 

symmetrically distributed random variable with values in the 

interval [-1, 1]. For each constraint i with uncertain parameters, 

that is, a robust uncertain budget control coefficient Γi is 

introduced in the row i of Ax b≥ , which values in [0, |Ji|] 

(where |Ji| represents the number of uncertain parameters 

contained in the constraint i), and does not have to take an 

integer. This parameter can be used to adjust the probability 

level of the solution violation with uncertain parameter 

constraints. Γi (not greater than the largest integer of Γi) 

uncertain parameters in the aij of the constraint i can be varied 

within the interval � �[ , ]ij ij ij ija a a a− + . 

The remaining coefficients are varied within the interval

� �[ ( ) , ( ) ]ij ij ij iji i i ia a a a      − Γ − Γ + Γ − Γ , and it is not 

specified that changed within � �[ , ]ij ij ij ija a a a− + . In addition, 

the uncertain parameter set U can be defined as: 

�{( ) | , , , }ij ijij ij ij iU a a a z a i j J= = + ∀ ∈ ∀ ∈z Z    (9) 

{ || | 1, , | | }

i

ij i ij i

j J

z j J z
∈

= ≤ ∀ ∈ ≤ Γ∑Z z
        (10) 

where: zij is an element of the vector Z. 

Therefore, the robust optimization correspondence of the 

linear programming problem represented by equations (2)-(4): 

Tmin c x                     (11) 

�

1

s.t. min
i i

i

n

ij ijj j ij i

j j J

a x a x z b i
∈

= ∈
+ ≥ ∀∑ ∑z Z

    (12) 

                   (13) 

Finally, the above formula is further transformed by the 

dual principle, and the final formula is: 

Tmin c x                     (14) 

1

s.t.

i

n

ij j i i ij i

j j J

a x p q b i
= ∈

− Γ − ≥ ∀∑ ∑      (15) 

� ,iji ij j ip q a y i j J+ ≥ ∀ ∀ ∈           (16) 

j j jy x y j− ≤ ≤ ∀                (17) 

, , 0 ,i ij i ip q y i j J≥ ∀ ∀ ∈            (18) 

∈x X                   (19) 

In equations (14)-(19), , and  are the 

supplementary decision variables introduced when the dual 

transformation is performed. In order to make the probability 

of violating the constraint  not to exceed εi, the robust 

control coefficient Γi needs to satisfy: 

          (20) 

where: Φ-1 is the inverse of the cumulative distribution 

function of the standard normal distribution; ni is the number 

of uncertain parameters contained in the constraint i.  

3. Model Construct 

3.1. Modeling of Units in Virtual Power Plants 

3.1.1. Distributed Wind Power 

The output of wind power is random, and its randomness is 

closely related to wind speed. Although wind speed is an 

intermittent and uncontrollable variable, a large amount of 

data indicates that the volatility of wind speed can be 

expressed by Weibull distribution function, and its probability 

density function is: 

( )
1v

(v, k, o) ( )( )

kv

k o
k

f e
o o

−
−=                (21) 

where v is the wind speed, k is the shape parameter, o is the 

scale parameter, and the corresponding Weibull probability 

distribution function can be expressed as: 

Tm in c x

s.t. ≥Ax b

∈x X

minω

s.t. 0Tw − ≥c x

0y− ≥Ax b

, 1y∈ =x X

�
i ja
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1
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i j j i

j
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0
( ) ( ) 1 exp( ( ) )

v
k

v

v
P v f v dv

o
= = − −∫       (22) 

Based on the historical data of local wind speed, the 

expected value wµ  and standard deviation wσ of the wind 

speed are obtained, and the value of the shape parameter k and 

the scale parameter o is obtained by the moment estimation 

method, that is, 

2
1.086( )w

w

k
σ
µ

−= , 1(1 )

wo

k

µ
=

Γ +          (23) 

The power generation of wind power varies with the wind 

speed, and is limited by the relevant technical conditions. 

When the wind speed is lower than the cut-in wind speed or 

higher than the cut-off wind speed, the wind turbine will not 

generate power. However, when the wind speed is between the 

cut-in and cut-out wind speeds, the output of the wind turbine 

is determined by the wind speed and generally has the 

following correspondence: 

3 3

3 3

0, 0
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 (24) 

3.1.2. Distributed Photovoltaic 

The randomness of photovoltaic power generation is 

closely related to the light intensity. Nevertheless, the light 

intensity is also an intermittent resource with randomness and 

volatility. According to the research, the intensity of the light 

radiation obeys the Beta distribution function and the 

probability density function is as follows: 

1 1( ) ( )
(1 ) 0 1, 0, 0

( ) ( ) ( )

0 others

pv pv
pv pv

pv pv

pv pvf

α βα β
θ θ θ α β

θ α β
− −Γ Γ

− ≤ ≤ ≥ ≥
= Γ + Γ







 (25) 

Among them, θ is the light intensity, and pvα , pvβ are the 

shape parameters, which can be calculated based on the 

historical data of the local light radiation. Firstly, the expected 

value pvµ  and standard deviation pvσ of the light intensity 

are obtained, and then the shape parameters are calculated 

according to the following formula: 

2

(1 )
=(1 ) [ 1] ,

1

pv pv pv

pvpv

pv
pv pv

pv

µ µ µ β

µσ
β µ α

× +
− × − =

−
    (26) 

Therefore, its probability distribution function can be 

expressed as: 

( ) ( )p f d
θ

θ
θ θ θ= ∫                (27) 

where θ  and θ  are the maximum and minimum values of 

the light intensity respectively. 

Finally, the output function of photovoltaic power 

generation is constructed based on the photoelectric 

conversion efficiency: 

t PVtPV S rθ=                   (28) 

This paper will calculate the corresponding shape 

parameters based on historical data of local wind speed and 

illumination, and construct a probability distribution function 

with significant statistical distribution characteristics based on 

Weibull and Beta functions, and then generate a certain 

number of wind speed and light intensity scenes based on 

these functions. According to the output function of the wind 

power and photovoltaic, the corresponding wind power and 

photovoltaic output scenes are generated, so that the simulated 

scene is more in line with the local scenery output 

characteristics and used as the predicted value of the real-time 

output of the scenery. 

3.1.3. Energy Storage Equipment Modeling 

The modeling nature of energy storage equipment is based 

on a state transition equation that defines the energy 

contained in the energy storage system at each time as a 

function of the charge or discharge power per unit time. The 

mathematical expression can be expressed as: 

1

1
( )c essc essd

t t e t td
e

E E P P tη
η−= + − ∆             (29) 

Where essc
tP  and essd

tP  are the charging and 

discharging powers of the energy storage battery respectively; 
c
eη and d

eη  are the charging and discharging efficiency 

factors, indicating the energy loss associated with the 

charging and discharging processes, in general, the value of 

them is less than 1; t∆ represents the time span. During 

operation, the capacity of the energy storage device and the 

charge and discharge power of the energy storage battery 

have upper and lower bounds, which are expressed as: 

, ,c essc min essc c essc max
t t t t tP P Pα α≤ ≤            (30) 

, ,d essd min essd d essd max
t t t t tP P Pα α≤ ≤         (31) 

min max
t t tE E E≤ ≤              (32) 

Where ,essc max
tP and ,essd max

tP represent the maximum 

charge and discharge power of the energy storage battery, 
,essc min

tP and ,essd min
tP  are respectively expressed as the 

minimum charge and discharge power of the energy storage 

battery, min
tE and max

tE  respectively represent the 

minimum and maximum capacity of the energy storage 

battery, c
tα and d

tα are the state variables of charge and 

discharge of the energy storage battery, which are 0-1 

variables. When the energy storage battery is in the charging 

state, c
tα  is 1, otherwise it is 0; when the energy storage 

battery is in the discharging state, d
tα is 1, otherwise it is 0. 
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Besides, the energy storage battery can`t be charged and 

discharged at the same time, so the following constraints 

should be added:  

0 1c d
t tα α≤ + ≤              (33) 

In addition, the energy storage battery will generate cost in 

the process of charging and discharging. For the sake of 

simplicity, the charge and discharge cost is defined as the 

following linear function: 

=ess essd essd essc essc
t t tC C P C P+          (34) 

where esscC  and essdC  are the charge and discharge cost 

coefficients of the energy storage battery. 

3.1.4. Distributed Gas Generator 

The cost of distributed gas units is mainly divided into two 

parts, namely operating cost and start-stop cost. The power 

generation cost function at t time can be expressed as: 

F Op Sud
t t tC C C= +                (35) 

where Op
tC is the operating cost and Sud

tC is the start- stop 

cost of the gas unit, which can be linearized as: 

=Op f f
t tC C G                 (36) 

=Sud sus on sud off
t it itC c cµ µ+             (37) 

-1 , t Toff c c on
it t t itµ µ µ µ= − + ∀ ∈          (38) 

{ }1; , 0,1on off on off
it it it itµ µ µ µ+ ≤ ∈           (39) 

Where f
tG is the power generation of the gas unit at time t, 

fC is the operating cost coefficient of the gas unit, susc and 

sudc represent the single cost of the start and stop of the gas 

unit respectively, c
tµ is the operating state of the gas unit, 

which is 1when the unit is running and is 0 when it is stopped, 
on
itµ and off

itµ respectively represent the start and stop signals 

of the gas unit, and they are also the 0-1 variables. When on
itµ

is 0, it means that the unit does not enter the start state at time t, 

and when it is 1, it means the unit starts at time t. However, 

when off
itµ  is 0, it means that the unit has not entered the stop 

state at time t, and when it is 1, it means that the unit enters the 

stop state at time t. After the above conversion, all the start and 

stop problems of the unit can be converted into linear equation 

and solved. Finally, the gas unit also needs to meet power 

constraints and climbing constraints: 

c fmin f c fmax
t t tG G Gµ µ≤ ≤            (40) 

1
fmax f max

t tG G G G−−∆ ≤ − ≤ ∆          (41) 

3.1.5. Demand Response 

The virtual power plant aggregated in this paper is 

“incentive demand response virtual power plant”, that is, only 

the user-side resource is subjected to incentive demand 

response, and its mathematical model can be expressed as: 

0 t t tIB Lη≤ ≤                    (42) 

1
max max

t tIB IB IB IB−−∆ ≤ ∆ − ∆ ≤ ∆          (43) 

Equation (42) represents an incentive type demand 

response constraint, in which tIB represents the demand 

response applied to the user at time t, that is, cutting off the 

load, tL is the user load at time t, and tη is the ratio of the cutoff 

load that the user can provide to the user load during the t 

period; Equation (43) represents the climbing constraint 

condition of the incentive type demand response in the 

adjacent time period, that is, the maximum cut off load power 

provided by the user in the adjacent time period. 

3.2. Decision-making Model of Virtual Power Plant for 

Participating in Spot Market 

The robust optimization method is suitable for dealing with 

the optimization problem with uncertain parameters in the 

constraint condition. In this problem, the objective function 

contains the uncertain parameters such as each period 

electricity price Da
tλ and Rt

tλ of day-ahead market and the 

real-time market, so the model needs transformation. According 

to the robust optimization principle introduced in the previous 

section, this section is about robust transformation in the model, 

and the objective function and constraints are: 

=vppR max ω                  (44) 

Introduce variables Da
tP , ,

Rt
t sP ’

and ,
Rt

t sP  to: 

=Da Da Da
t t t tP W PV L+ −             (45) 

, , ,=(1 ) (1 )Rt
t s t tP ω ωθ θ+ −− ∆ − + ∆’

          (46) 

, ,
, , ,= +Rt essd Rt essc Rt Da f

t s t s t s t t t t tP W PV P P P G IB+ − − + +  (47) 

, ,= { ,0}Rt
t s t smax P+∆             (48) 

, ,= { ,0}Rt
t s t smax P−∆ −            (49) 

In the above formula, (45) and (46) are variables introduced 

to facilitate the robust transformation of the model. Equation 

(47) represents the purchase/selling power of the virtual power 

plant in the real-time market, and (48) represents the positive 

deviation of the real-time market., that is, compared with the 

excess electricity declared in the day-ahead market, this part 

of electricity can be sold to the system in the real-time market 

and earned revenue. Formula (49) indicates the negative 

deviation of the real-time market, that is, compared with the 

insufficient electricity declared in the day-ahead market, this 

part of electricity needs to be purchased from the large grid in 

the real-time market. For the convenience of solving, (47) and 
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(49) needs to be converted into the following linear form: 

, 0t s
+∆ ≥                  (50) 

, ,
Rt

t s t sP+∆ ≥                 (51) 

, 0t s
−∆ ≥                 (52) 

, ,
Rt

t s t sP−∆ ≥ −                (53) 

Constraints are as follows: 

, , 1 , ,

1 1 1 1 1 1

( )

T N T N T N
Da Da Rt Rt F ess IB

s t t t s t s t t t t s t s

t s t s t s

P P C C C Z p qω γ λ λ
= = = = = =

≤ + − − − − Γ − −∑∑ ∑∑ ∑∑’

             (54) 

, ,
ˆDa

t s t t sZ p yλ+ ≥              (55) 

, ,
ˆRt

t s t t sZ q oλ+ ≥               (56) 

, ,
Da

t s t t sy P y− ≤ ≤               (57) 

, , ,
Rt

t s t s t so P o− ≤ ≤’               (58) 

, , , ,, , , , 0t s t s t s t sp q y o Z ≥               (59) 

, ,c essc min essc c essc max
t t t t tP P Pα α≤ ≤         (60) 

, ,d essd min essd d essd max
t t t t tP P Pα α≤ ≤       (61) 

min max
t t tE E E≤ ≤               (62) 

1c d
t tα α+ ≤               (63) 

c fmin f c fmax
t t tG G Gµ µ≤ ≤               (64) 

1
ff

t tG G G G−−∆ ≤ − ≤ ∆               (65) 

0 t t tIB Lη≤ ≤               (66) 

1
max max

t tIB IB IB IB−−∆ ≤ − ≤ ∆        (67) 

{ }1; , 0,1on off on off
it it it itµ µ µ µ+ ≤ ∈          (68) 

In above formulas, (54) to (59) are robust constraints, ,t sp
，

,t sq , ,t sy , ,t so  and Z  are dual variables introduced by the dual 

transformation for model robust transformation, that is, the 

auxiliary decision variables. Formula (60) to (68) are the 

normal operational constraints of the components contained in 

the virtual power plant. Therefore, decision-making model of 

virtual power plant for participating in spot market transaction 

based on hybrid stochastic and robust method has been 

constructed, and the solution flow is shown in the following 

figure: 

 

Figure 1. Solution flow based on stochastic robust optimization method. 
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4. Case Analysis 

4.1. Basic Data 

In order to verify the two-stage stochastic programming 

decision model constructed in this paper, the distributed wind 

turbine, the distributed photovoltaic unit and energy storage 

battery with specific parameters are selected as the example. 

The rated power of the distributed wind turbine is 8MW, of 

which the maximum output power is 10MW, and the ramp 

rate between adjacent period is 3MW/h. The distributed 

photovoltaic unit with rated power of 5MW has a maximum 

output power of 7MW and ramp rate is 1.5MW between 

adjacent periods. The maximum storage capacity of the 

energy storage battery is 10MW•h; the minimum storage 

capacity is 1MW•h; the initial capacity is 5MW•h; the 

maximum charging power is 1.5MW/h, and the maximum 

discharge power is 2MW/h. In addition, the incentive 

demand response cost is 500 yuan / MW, the maximum direct 

control load power does not exceed 20% of the user load, the 

gas unit start and stop cost 1000 yuan once, the gas unit rated 

output power is 5MW, the climbing speed is 1MW / h, the 

minimum output power is 1MW, the penalty factor is 0.4, and 

the error coefficient of electricity prices between day-ahead 

market and real-time market is 20%. Then the CPLEX solver 

is employed on matlab2016b for calculation. 

Table 1. Predictive value of electricity price at each moment in the day-ahead and real-time market. 

Trading hours Da
tλλλλ [yuan/MWh] Rt

tλλλλ [yuan/MWh] Trading hours Da
tλλλλ [yuan/MWh] Rt

tλλλλ [yuan/MWh] 

1 164.673 242.065 13 168.414 188.135 

2 137.584 317.607 14 206.26 245 

3 119.636 246.494 15 302.002 316.869 

4 108.922 159.166 16 285.103 321.223 

5 71.478 137.362 17 268.579 333.901 

6 89.793 146.904 18 441.263 521.991 

7 68.888 118.822 19 946.712 1185.145 

8 74.315 130.96 20 904.331 1146.879 

9 91.807 116.235 21 761.885 948.805 

10 96.474 132.754 22 632.965 639.663 

11 136.84 155.633 23 319.958 325.248 

12 151.5 163.32 24 288.078 298.382 

4.2. Analysis of Calculation Results 

4.2.1. Output Analysis of Virtual Power Plant 

 

Figure 2. Joint declaration output in day-ahead market of virtual power plant with different scenarios of robustness. 
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Figure 3. Wind power declaration output in day-ahead market of virtual power plant with different scenarios of robustness. 

 

Figure 4. Photovoltaic declaration output in day-ahead market of virtual power plant with different scenarios of robustness. 

Figure 3, Figure 4 respectively show the day-ahead market 

declared output curve of distributed wind power and 

distributed PV in the virtual power plant, and Figure 2 shows 

the final day-ahead declaration output plan to the system 

after meeting user's load demand. It can be seen from Figure 

2 to Figure 4 that the values of different robust control 

coefficients will affect the virtual power plant's day-ahead 

output plan, and finally contribute to different output curves. 

In general, the joint power output curves of virtual power 

plant under different robustness coefficients are relatively 

stable, and the output times are mainly distributed in three 

time periods, 0-6 period, 10-16 period and 18-22 period. 

Besides, the PV output curves are similar. Except when Γ = 0, 

the PV output curves under the remaining robust coefficients 

are almost the same, and the concentrated output times are 9, 

11, 14, and 16. In contrast, the wind power's declared output 

curves fluctuate greatly, because wind power itself has large 

volatility and strong randomness. Therefore, in order to 

ensure the robustness of the calculation results under the 

stochastic robust decision model, it is necessary to control the 

output of wind power. In addition, with the changes of 

robustness coefficient, the wind power output plan will be 

adjusted accordingly. 

4.2.2. Benefit Analysis of Virtual Power Plant 

Profit curves with different robustness coefficients and 

deviation penalty coefficients are shown in Figure 5. The 

joint profit curves of virtual power plant in day-ahead and 

real-time markets gradually decrease with the robust 

uncertain budget coefficient increasing. When the value of Γ 

is between 0 and 18, the profit values fluctuate greatly. Since 

then, with the value of Γ increasing, the profits of the virtual 

power plant are still decreasing, but the magnitude is 

gradually slowing down. Decision makers with strong risk 
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tolerance can choose the output plan when the value of Γ is 

small. Currently, the profits are higher, but they also need to 

bear the large risk of violating constraint probability. In 

addition, with the increase of deviation penalty coefficient, 

the profits of the virtual power plant are gradually increasing, 

which indicates that the profits of the virtual power plant in 

the real-time market are gradually increasing. Although it 

may affect the profits in day-ahead market, the joint profits in 

these two markets are still increasing, which also provides a 

reference of market selection for decision makers in virtual 

power plants. 

 

Figure 5. Profit curves with different robustness coefficients and deviation penalty coefficients. 

4.2.3. Performance Comparison Analysis Between 

Stochastic Robust Optimization and Deterministic 

Optimization 

Table 2 shows a comparative analysis between different 

forecasting error intervals of electricity prices in day-ahead 

and real-time markets. The error means that the predicted 

values of the various periods in the day-ahead and real-time 

markets deviate from the actual values by a multiple of the 

reference curve. With the prediction error coefficient 

increasing, the cost of real-time operation under the 

stochastic robust optimization method decreases. This is 

because the results of the robust optimization method are 

more conservative. When the market price fluctuates greatly, 

the decision makers of the virtual power plant hope to report 

the least possible output plan in the day-ahead 

decision-making, which will reduce the output of other 

balance units in the real-time market. The real-time running 

cost under the stochastic robust optimization method is 

obviously lower than the deterministic optimization method, 

but with the operating cost in the real-time phase decreasing, 

the profit of the virtual power plant is also greatly reduced. 

However, the deterministic optimization is due to the 

determination of the market price, of which optimization 

result does not change with the fluctuation of the market 

price. Therefore, the deterministic optimization result is fixed 

value, which is obviously not suitable for the needs of the 

virtual power plant decision makers. 

Table 2. Performance comparisons of optimization methods for different power price error coefficients. 

Predicti-on error 

Stochastic robust optimization（（（（ΓΓΓΓ=6）））） Deterministic optimization 

Real-time running 

cost (yuan) 
revenue (yuan) profit (yuan) 

Real-time running 

cost (yuan) 
revenue (yuan) profit (yuan) 

± 10% 8717.8 40889 32171.2 8717.8 43399.75 34681.95 

± 20% 4065.2 33802.22 29737.02 8717.8 43399.75 34681.95 

± 30% 2079.8 29527.55 27447.75 8717.8 43399.75 34681.95 

± 40% 1985.6 27233.34 25247.74 8717.8 43399.75 34681.95 

Table 3. Performance comparisons of optimization methods for different power price error coefficients. 

Time 
Performance comparisons of optimization methods for different power price error coefficients 

ττττ=0 ττττ=1 ττττ=6 ττττ=10 ττττ=18 ττττ=25 ττττ=30 ττττ=38 ττττ=77 

1 4.29  4.29  4.29  4.29  4.25  4.25  4.25  4.25  4.25  

2 3.65  3.65  3.65  3.65  3.60  2.35  3.08  3.65  3.65  

P
ro

fi
t/
Y

u
a
n



 American Journal of Environmental and Resource Economics 2019; 4(1): 32-43 41 

 

Time 
Performance comparisons of optimization methods for different power price error coefficients 

ττττ=0 ττττ=1 ττττ=6 ττττ=10 ττττ=18 ττττ=25 ττττ=30 ττττ=38 ττττ=77 

3 5.03  5.03  5.03  5.03  4.14  4.58  5.03  5.03  5.03  

4 3.67  3.67  3.67  3.67  3.67  2.74  2.74  3.01  3.67  

5 3.65  3.65  4.15  4.15  4.15  4.12  4.12  3.62  3.62  

6 3.59  3.59  3.59  3.59  3.59  3.59  3.59  3.59  3.59  

7 2.21  2.21  2.71  2.71  2.71  2.71  2.44  2.10  2.21  

8 1.02  1.02  1.02  1.02  1.02  1.02  1.02  0.96  0.96  

9 2.61  2.61  2.61  2.61  2.61  2.61  2.55  2.55  2.55  

10 3.22  3.22  3.22  3.22  3.22  2.71  2.62  2.62  2.62  

12 6.27  6.27  4.27  4.27  3.62  3.62  3.62  5.62  5.62  

13 4.96  4.96  6.96  6.21  5.90  5.90  5.90  3.90  3.90  

14 6.43  6.43  4.43  4.43  4.17  4.17  4.17  6.17  6.17  

15 3.58  3.58  5.58  5.33  5.33  5.33  5.33  3.33  3.33  

16 6.79  6.79  4.79  6.59  6.59  6.48  6.35  7.35  7.35  

17 5.30  5.30  5.08  3.30  3.08  3.08  3.08  3.08  3.08  

18 4.04  4.04  3.42  3.42  3.28  3.28  3.28  3.28  3.28  

19 6.73  6.73  5.53  5.53  5.25  5.53  5.53  5.53  5.53  

20 5.85  5.85  5.82  5.82  5.82  5.82  5.82  5.82  5.82  

21 5.76  5.76  5.76  5.76  5.76  5.76  5.76  5.76  5.76  

22 6.07  6.07  6.07  6.07  6.07  6.07  6.07  6.07  6.07  

23 6.45  6.45  6.00  6.00  6.00  6.00  6.00  6.00  6.00  

24 3.98  3.98  2.98  2.94  2.44  2.44  2.44  2.44  2.44  

Table 4. Wind power declaration output in day-ahead market of virtual power plant with different scenarios of robustness. 

Time 
Wind power declaration output in day-ahead market of virtual power plant with different scenarios of robustness 

ττττ=0 ττττ=1 ττττ=6 ττττ=10 ττττ=18 ττττ=25 ττττ=30 ττττ=38 ττττ=77 

1 4.50  4.50  4.50  4.50  4.46  4.46  4.46  4.46  4.46  

2 3.79  3.79  3.79  3.79  3.74  2.49  3.22  3.79  3.79  

3 5.08  5.08  5.08  5.08  4.19  4.63  5.08  5.08  5.08  

4 3.75  3.75  3.75  3.75  3.75  2.82  2.82  3.09  3.75  

5 3.77  3.77  4.27  4.27  4.27  4.24  4.24  3.74  3.74  

6 4.02  4.02  4.02  4.02  4.02  4.02  4.02  4.02  4.02  

7 3.12  3.12  3.62  3.62  3.62  3.62  3.35  3.01  3.12  

8 2.56  2.56  2.56  2.56  2.56  2.56  2.56  2.50  2.50  

9 0.85  0.85  0.85  0.85  0.85  0.85  0.79  0.79  0.79  

10 4.89  4.89  4.89  4.89  4.89  4.38  4.29  4.29  4.29  

12 3.25  3.25  1.25  1.25  0.60  0.60  0.60  2.60  2.60  

13 6.97  6.97  8.00  8.00  7.91  7.91  7.91  5.91  5.91  

14 7.67  7.67  5.67  5.67  5.41  5.41  5.41  7.41  7.41  

15 4.73  0.00  1.73  1.48  1.48  1.48  1.48  0.00  0.00  

16 2.74  7.74  5.74  7.54  7.54  7.43  7.30  8.00  8.00  

17 6.19  3.19  2.97  1.19  0.97  0.97  0.97  0.97  0.97  

18 4.05  5.25  4.63  4.63  4.49  4.49  4.49  4.49  4.49  

19 8.00  8.00  7.10  7.10  6.82  7.10  7.10  7.10  7.10  

20 8.00  8.00  7.97  7.97  7.97  7.97  7.97  7.97  7.97  

21 8.00  8.00  8.00  8.00  8.00  8.00  8.00  8.00  8.00  

22 8.00  8.00  8.00  8.00  8.00  8.00  8.00  8.00  8.00  

23 8.00  8.00  7.55  7.55  7.55  7.55  7.55  7.55  7.55  

24 4.92  4.92  3.92  3.88  3.38  3.38  3.38  3.38  3.38  
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Table 5. Photovoltaic declaration output in day-ahead market of virtual power plant with different scenarios of robustness. 

Time 
Photovoltaic declaration output in day-ahead market of virtual power plant with different scenarios of robustness. 

ττττ=0 ττττ=1 ττττ=6 ττττ=10 ττττ=18 ττττ=25 ττττ=30 ττττ=38 ττττ=77 

1 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

2 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

3 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

4 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

5 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

6 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

7 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

8 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

9 3.00  3.00  3.00  3.00  3.00  3.00  3.00  3.00  3.00  

10 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

12 5.00  5.00  5.00  5.00  5.00  5.00  5.00  5.00  5.00  

13 0.00  0.00  0.97  0.22  0.00  0.00  0.00  0.00  0.00  

14 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

15 0.00  4.73  5.00  5.00  5.00  5.00  5.00  4.48  4.48  

16 5.00  0.00  0.00  0.00  0.00  0.00  0.00  0.30  0.30  

17 0.00  3.00  3.00  3.00  3.00  3.00  3.00  3.00  3.00  

18 1.20  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

19 0.30  0.30  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

20 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

21 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

22 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

23 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

24 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

Table 6. Profit curves with different robustness coefficients and deviation penalty coefficients. 

ττττ 
Profit curves with different robustness coefficients and deviation penalty coefficients 

θθθθ=0.36 θθθθ=0.38 θθθθ=0.4 θθθθ=0.42 θθθθ=0.44 

0 34170.28 34334.61 34681.95 35087.71 35552.76 

1 33063.62 33228.33 33574.30 33980.05 34445.11 

6 29401.15 29569.23 29737.02 30027.55 30402.67 

10 28401.78 28565.08 28728.33 28891.24 29060.64 

18 27212.27 27375.82 27541.52 27710.78 27882.66 

25 26719.29 26884.10 27050.42 27220.94 27396.57 

30 26518.57 26674.26 26831.74 26991.60 27163.52 

38 26364.77 26512.85 26661.58 26810.75 26967.48 

77 26318.49 26463.54 26608.59 26754.66 26907.57 

 

5. Conclusion 

The model is validated by the example data. The results 

show that the model proposed in this paper can obtain the 

most robust day-ahead declaration decision-making plan by 

introducing robust method based on the uncertainty of the 

day-ahead and real-time market electricity price and the 

distributed energy output. By changing the robust uncertainty 

coefficient, the conservativeness of the virtual power plant 

optimization scheme can be flexibly adjusted, which is 

beneficial for decision makers of virtual power plant to make 

a reasonable choice between probability of operating revenue 

and violation of constraint risk. The advantage of the 

optimization method over the deterministic optimization is 

enhanced with the increase of the prediction error, and the 

obtained day-ahead declared output scheme has strong 

robustness and the ability to withstand the risk of market 

electricity price fluctuations, which verifies the validity of 

the model constructed in this paper. 
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