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Abstract: This paper is concerned with the adaptive impulsive synchronization for a class of delay fractional-order chaotic 

system. Firstly, according to the impulsive differential equations theory and the adaptive control theory, the adaptive impulsive 

controller and the parametric update law are designed, respectively. Secondly, by constructing the suitable response system, the 

original fractional-order error system can be converted into the integral-order one. Finally, based on the Lyapunov stability 

theory and the generalized Barbalat’s lemma, some new sufficient conditions are derived to guarantee the asymptotic stability of 

synchronization error system.  
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1. Introduction 

Fractional-order calculus is a 300-year-old mathematical 

notion, as a generalization of integer order differentiation and 

integration to arbitrary non-integer order. The major 

advantage of the fractional-order derivatives is that they 

provide an excellent instrument for the description of memory 

and hereditary properties of various materials and processes. It 

is recognized that the fractional derivative is more suitable for 

describing system characteristics of numerous real world 

fields than integer order [1-4]. For this reason, some 

specialists and scholars have incorporated fractional calculus 

into chaotic system and investigated the rich dynamics of 

fractional chaotic system, meanwhile, abundant literatures 

have been reported in succession [5–8]. Particularly, the 

chaotic synchronization of fractional-order chaotic system is 

becoming the hot topic of in the fields of nonlinear science [9–

11], based on its wide applications in control processing and 

secure communication. Because impulsive control allows the 

stabilization and synchronization of chaotic systems to use 

only small control impulsive, it has been widely used to 

stabilize and synchronize chaotic systems [12–14].  

In 2012, a novel impulsive control method [15] based on 

comparison system was proposed to realize complete 

synchronization of a class of fractional-order chaotic systems. 

Liu [16] obtained a new synchronization criterion of 

fractional-order chaotic systems by using the stability theory 

of impulsive fractional-order system. In 2008, Zhang et al. [17] 

investigated the adaptive impulsive synchronization for a 

class of non-autonomous integral-order chaotic systems with 

an unknown Lipschitz constant according to the generalized 

Barbalat’s lemma and the Lyapunov stability theory. In 2012, 

Li et al. [18] discussed the issue of adaptive impulsive 

synchronization and parameter identification for a class of 

integral-order chaotic systems, and derived some sufficient 

conditions to synchronize the systems with different impulse 

distances. Xi et al. [19] investigated the adaptive impulsive 

synchronization for a class of fractional-order chaotic and 

hyper-chaotic systems with an unknown Lipschitz constant, 

and derived a new sufficient criterion to guarantee the 

asymptotical stability of synchronization error system by the 

Lyapunov stability theory and the generalized Barbalat’s 

lemma. On the other hand, delayed differential equations have 

been abundantly studied by many researchers [20, 21]. 



70 Changyou Wang et al.:  Adaptive Impulsive Synchronization for a Class of  

Delay Fractional-Order Chaotic System 

Furthermore, time delays are also introduced to fractional 

differential chaotic systems [22, 23]. In 2007, Deng et al. [24] 

studied the stability of n-dimensional linear fractional 

differential equation with time delays, and also considered the 

synchronization between the coupled Duffing oscillators with 

time delays by using the linear feedback control method and 

their theorem. Gu et al. [25] investigated the global 

synchronization for fractional-order multiple time-delayed 

memristor-based neural networks with the parameter 

uncertainty, and derived the synchronization conditions of 

fractional-order multiple time-delayed memristor-based 

neural networks with the parameter uncertainty. More 

Zhang et al. [26] studied the drive-response synchronization 

fractional-order memristive neural networks with switching 

jumps mismatch, and obtained some lag 

quasi-synchronization conditions by the Laplace transform 

and linear feedback control. 

However, to the best of the authors’ knowledge, to this day, 

still less scholars consider the adaptive impulsive 

synchronization of delay fractional-order chaotic systems. 

Motivated by the above works, the adaptive impulsive 

synchronization for a class of fractional-order chaotic systems 

with an unknown Lipschitz constant and time delay is 

discussed. The rest of this paper is organized as follows: In 

Section 2, some preliminaries of fractional derivative are 

briefly introduced. A new adaptive impulsive synchronization 

method of delay fractional-order chaotic systems is proposed 

in Section 3, based on the theory of Lyapunov stability and 

impulsive differential equations. Finally, conclusions are 

addressed in Section 4.  

2. Preliminaries of Fractional Derivative 

The theory of the fractional order calculus is the arbitrary 

order calculus theory, where the order can be integer or 

fractional, or even complex. At present, there are several 

definitions of fractional-order differential operator, such as 

Grünwald-Letnikov (GL) definition, Riemann- Liouville (RL) 

definition, Caputo definition, and Jumarie definition. Among 

them, the method defined by GL is the most direct numerical 

one to solve the fraction-order system. For continuous 

function ( )f t  in the integral interval 0[ , ]t t , the GL 

definition [27] is defined as  

0[( )/ ]

0
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Eq. (1) can be reduced to 
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recursively approximated as follows: 
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3. Description of Adaptive Impulsive 

Synchronization 

Consider the following fraction-order system with delay 

( ) ( ) ( ( )) ( ( ))tD t A t Bf t Cf tα τ= + + −x x x x ,      (3) 

where 0 1α< < , , , n nA B C R ×∈ , : n nf R R→ is nonlinear 

vector function, τ is a positive constant representing delay, 

and ( ) nx t R∈ represent the state vectors of the system. System 

(3) is regarded as the drive system. 

Remark 3.1: When 0τ = , the system (3) is reduced to the 

system (3) proposed in the literature [19]. 

Assumption 3.1 For any , nx y R∈ Ω ⊆ , 0L∃ >  such that  

( ( )) ( ( )) ( ) ( )f t f t L t t− ≤ −y x y x .   (4) 

In order to obtain self-synchronization of fractional-order 

system (3), the following controlled response system is 

constructed 
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where ( ) ny t R∈ is the state vector of system (5), 

( , ( ), ( ), ( ), ( )) nu t x t y t x t y t Rτ τ− − ∈ is the adaptive controller, 

and T
k kδ δ=  are n n×  gain matrices. The discrete time set 

kt satisfies 1 20 kt t t< < < < <⋯ ⋯ , lim k
k

t
→∞

= ∞ , and the 

initial time 0t satisfies 0 10 t t≤ < . Set ( ) lim ( )
k

k
t t

y t y t
+

+

→
= , 
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( ) lim ( )
k

k
t t

t y t
−

−

→
=y , and further assume that the solution of ( )y t

is left continuous at the points of impulse, that is, 

( ) ( )k ky t y t− = . Now, let 

1 1 2 2( ) ( ) ( ) [ ( ) ( ), ( ) ( ), , ( ) ( )]Tn ne t t t t t t t t t= − = − − −⋯y x y x y x y x  

be synchronization error vector. then the impulsive synchronization error system between system (3) and system (5) can be 

described as 
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where ( ( ), ( )) ( ( )) ( ( ))f t t f t f t= −x y y x , ( ( ), ( )) ( ( )) ( ( ))f t t f t f tτ τ τ τ− − = − − −x y y x  

According to Assumption 3.1, it follows that  

( ( ), ( )) ( )f t t L e t≤x y , ( ( ), ( )) ( )f x t y t L e tτ τ τ− − ≤ −  

Thus, the synchronization problem is to design the adaptive controller and the parametric update law to achieve the 

asymptotical synchronization of the drive system (3) and the response system (5), that is, lim ( ) 0
t

e t
→∞

= .  

To solve this problem, a new controlled response system is constructed as follows 
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where ( ( )) ( ) ( )tN x t x t D x tα= −ɺ , ( )x tɺ  and ( )tD x tα  are from system (3). Then the following new synchronization error system 

can be obtained by systems (3) and (7) 
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It is obvious that the synchronization of fractional-order chaotic system (3) can be converted into the impulsive control of 

integral-order synchronization error system (8) by constructing the response system (7). 

The adaptive impulsive controller is designed as follows 

( , ( ), ( ), ( ), ( )) ( ) ( ( ) ) ( )u t t t t t LCe t L t e tτ τ τ β− − = − − + − Γ −x y x y ,                      (9) 

where 0β >  is a constant, the parameter ( )tΓ  is used to 

approach the unknown parameter L , and its update law is 

given as  

2
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where 0γ >  is the adaptive rate. 

Remark 3.2: When 0, C Eτ = = (unit matrix), the 

controller (9) is reduced to the controller (10) proposed in 

work [19], but the controller of the literature [19] can’t be used 

in this manuscript. 

The following generalized Barbalat’s lemma is used to 

obtain the main result. 

Lemma 3.1 (See, [17]). Suppose a sequence kt  satisfies 

1 2 10 k kt t t t−< < < < < <⋯ ⋯  and lim k
k

t
→∞

= +∞ , 

1inf{ } 0k k
k

t tλ −= − > . And suppose ( )f t  is defined on the 

interval 0[ , )t +∞  and differentiable on interval 1[ , )k kt t− . If 

( )f t  and ( )f tɺ  are uniformly bounded for k  on the interval 

1[ , )k kt t− , that is, 0 1, 0M M∃ > , 1[ , )k kt t t−∀ ∈ , k N∈ , one 

has 0( )f t M≤ , 1( )f t M≤ɺ , and the generalized integration 

0
( )f t dt

+∞

∫  is convergent, then lim ( ) 0
t

f t
→+∞

= . 

Next, the main result and its proof are given. 

Theorem 3.1 Let TA A
λ +  be the largest eigenvalue of 
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TA A+ , 0ε  is a sufficiently small positive number. If the 

adaptive impulsive controller (9) and the parametric update 

law (10) are adopted, as well as the following conditions are 

satisfied 

1 1( ) inf{ } 0k k
k

H t tλ −= − > , 

2 max( ) (( ) ( )) 1T
k kH E Eλ δ δ+ + ≤ , 

3 0 min( ) ( ( ))T
T

A A
H L B Bλ β ε λ+ − + < − + , 

then the synchronization error system (8) is asymptotically 

stable, that is, the impulsive controlled response system (5) 

and the drive system (3) asymptotically synchronize. 

Proof. Let the Lyapunov candidate function be 
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For any 1[ , )k kt t t−∈ , k N∈ , its dini-derivative along the 

trajectory of the error system (8) is given by 
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From aboveanalysis, so ( )V t  is monotonically decreasing on the interval [0, )+∞ . Based on the fact ( ) 0V t ≥ , therefore 

limit lim ( )
t

V t
→+∞  exists. Moreover, by the Cauchy convergence principle, it holds that for any 0ε > , exists M N∈ , such that 
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when '' 't t M> > , it holds that ( ') ( '')V t V t ε− < .  

Hence, it follows that 

1 2

1

1 2

1

1 1 2

'' ''

0 0
' '

''

'

1 1
( ( )) ( ) ( ( ( )) ( ) ( ( )) ( ) ( ( )) ( ) ))

2 2

( ( ) ( ) ( ) ))

( ') ( ) ( ) ( ) ( ) ( '')

( ')

k k

k ks

k k

k ks

s

t t t t
T T T T

t t t t

t t t

t t t

k k k k

e t e t dt e t e t dt e t e t dt e t e t dt

D V t dt D V t dt D V t dt

V t V t V t V t V t V t

V t V

ε ε

+ + +

− −

= + + +

≤ − + + +

= − + − + + −

= −

∫ ∫ ∫ ∫

∫ ∫ ∫

⋯

⋯

⋯

1 1
( '') ( ) ( ) ( ) ( )

( ') ( '') .

s sk k k kt V t V t V t V t

V t V t ε

− −+ − + + −

≤ − <

⋯

 

Thus, by the Cauchy convergence principle, it follows that

0
0

1
( ( )) ( )

2

T
e t e t dtε

+∞

∫ is convergent, that is, 

0
( ( )) ( )

T
e t e t dt
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∫  is convergent. Since chaotic system is 

bounded, ( )e t and ( )e tɺ  are uniformly bounded for k  on the 

interval 1[ , )k kt t− , so ( ( )) ( )Te t e t  and ( ( )) ( )Te t e tɺ  are 

uniformly bounded for k  on the interval 1[ , )k kt t− . 

According to Lemma 3.1, it holds that lim ( ( )) ( ) 0T

t
e t e t

→+∞
= , 

that is, lim ( ) 0
t

e t
→∞

= . 

4. Conclusions 

In this paper, a class of delay fractional-order chaotic 

system is proposed and investigated. On the strength of the 

theory of control system, the theory of impulsive differential 

equation and the theory of fractional differential equation, 

some sufficient conditions to ensure the asymptotic 

synchronization of the drive system and the response system 

are obtained by applying the generalized Barbalat’s lemma 

and developing some new analysis methods as well as 

constructing a suitable Lyapunov function. Some known 

results are extended and improved. Particularly, it is worth 

pointing out that the proposed method can also be applied to 

synchronize other fractional-order chaotic systems with delay 

or without delay. 
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