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Abstract: A practical scheduling method is developed and implemented to determine the optimal allocation of technicians to 

candidate tour types and start times in a field service environment. Historical data is aggregated to determine a weekly work 

volume distribution and technician availability profile. These and other quantitative factors populate a mixed integer 

programming model for determining the distribution of technician tours that will minimize queueing delay in completing 

service, subject to side constraints on tour type quantities. The approach has been successfully implemented to schedule 

installation and maintenance technicians at a major telecommunication service provider and could easily be adapted to other 

operational contexts. 

Keywords: Scheduling, Mixed Integer Linear Programming, Operations Management 

 

1. Introduction 

Many commercial enterprises and public agencies employ 

field service technicians to provide timely on-site service for 

patrons. When total workforce capacity is consistent with 

work volume, the response time and appointment window 

performance for provided services are determined primarily 

by the efficacy of the employee scheduling process. The 

scheduling environment is normally characterized by a 

variable demand pattern and a requirement to assign 

technicians to “tours” that are constrained by labor rules. 

Hence, the fundamental problem is to schedule tours such 

that resulting time-varying staff quantities maximize service 

quality, or achieve a target service quality at minimum cost. 

Efficient management of a technician workforce involves 

decision making (and supporting modeling and analysis) on 

three primary time horizons: annual planning, weekly 

scheduling, and daily execution. Annual planning deals with 

strategic concerns such as forecasting long-term work 

volume trends and associated personnel requirements, 

managing an employee accession and training pipeline, and 

planning for work volume seasonality. Daily execution 

encompasses tactical matters such as consideration of 

schedule change requests, monitoring of schedule 

compliance and field performance metrics, and responding to 

unpredicted fluctuations in work volume by offering 

discretionary time-off or overtime to appropriate technicians. 

This article focuses on weekly scheduling, which involves 

confirming forecast work volume and total technician 

quantities, adjusting for nonproductive activity requirements 

(estimating technician “availability”), creating a schedule, 

and then populating the schedule with particular employees 

based on skills, seniority, and preferences. Specific attention 

is directed toward the technical task of creating an optimal 

weekly schedule, which is derived as an optimal 

quantification of tours by type and start time. 

The importance of the personnel scheduling problem is 

indicated by a large body of relevant literature. Cogent 

reviews are presented by den Bergh et al. [1] and Brunner 

[2], and a comprehensive bibliography is provided by Ernst 

et al. [3]. Reported application areas include retail sales [4, 

5], manufacturing [6], transportation [7, 8, 9], health care 

delivery [10, 11, 12], and the telecommunications industry 

[13, 14]. Solution approaches have incorporated diverse 

industrial engineering methods such as mathematical 

programming [15, 16, 17], simulation [18], dynamic 

programming [19], genetic algorithms [20], and other 

heuristic procedures [21, 22]. Lesaint et al. [23] document 

development and deployment of a dynamic scheduler which 

employs a combination of heuristic search and constraint-
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based reasoning to schedule 40,000 telecommunication 

service technicians with estimated cost avoidance of $250 

million per year. In this article, a practical schedule 

optimization method is developed and implemented to 

minimize average job completion delay where work volume 

and technician availability both follow known time-varying 

profiles. 

2. Model Parameters 

A forecast weekly volume distribution for a typical service 

area can be accurately constructed by aggregating multiple 

weeks of historical data. Figures 1a and 1b display 

distributions of repair and installation service volume across 

a circular set of 30-minute intervals I = {1, 2, …, 336} for 

products offered within a particular geographical area 

serviced by a major telecommunication company. Since all 

service technicians are qualified to perform both types of 

work, the data can be combined as shown in Figure 1c. The 

aggregate volume distribution vi, i ∈ I, suggests that, if all 

technicians were scheduled to work only Monday through 

Friday, the significant amount of work arriving over the 

weekend would be backlogged to Monday. Since Monday is 

already the day with highest volume, substantial job delay 

would be cascaded throughout the week unless mitigated by 

overtime. Similarly, if all technicians were scheduled for 

identical start times, substantial amounts of repair work 

become would be inaccessible and consequently backlogged 

to the next day. 

 

Figure 1. Typical Work Volume Profiles. 

Figure 2 displays a representative technician availability 

profile, which captures interval-dependent variability in the 

average fraction of time that a scheduled technician is 

actually available to work in the field after accounting for 

nonproductive activities such as absences, breaks, meetings, 

training, and other administrative functions. An approximate 

availability factor for interval i can be computed as fi A, 

where the profile values fi are aggregated from annual 

interval data and A is the overall availability estimate for the 

week. Since the exact technician quantities scheduled on 

each interval are not initially known, the optimization model 

must incorporate a normalization process to ensure that 

overall availability for the optimal schedule equates to A. By 

decoupling A from the associated profile, trends and 

seasonalities which do not appreciably affect the relative 

magnitudes across intervals can be conveniently modeled. It 
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is noteworthy that the volume and availability profiles must 

be periodically and simultaneously updated due to interaction 

between work volume, technician availability, and 

implemented schedules. 

 

Figure 2. Typical Technician Availability Profile. 

3. Schedule Optimization 

In any given week and geographic area, a specified 

number of technicians t must be scheduled in shift groupings 

called “tours” that span multiple intervals. Each tour is 

characterized by its combination of start time and workday 

schedule, and each technician is scheduled for five daily 

shifts per week of 8.5 consecutive hours (8 hours of work 

with 30 minutes for lunch). Eligible start times align with a 

one-day interval lattice so that specified operational hours are 

maintained. For operations between 7:30 AM and 6:00 PM 

(intervals 16 through 37), the eligible start times Tj would 

include {16, 17, …, 20} or any selected subset thereof. A 

coverage parameter cij indicates which intervals i are covered 

by tour type j when artificially assuming a start time of 

midnight (interval 1). This parameter is generally binary, 

though we represent the lunch period with a 90-minute notch 

(…, 1.00, 1.00, 0.75, 0.50, 0.75, 1.00, 1.00, …) rather than a 

30-minute slot (…, 1.00, 1.00, 0.00, 1.00, 1.00, …) to 

acknowledge the likely tactical staggering of lunch periods 

for technicians scheduled for the same shift. Lunches could 

be staggered explicitly by introducing more tour types, but 

the resulting schedules would be far more complex and could 

create technician expectations that inhibit tactical flexibility 

in responding to unpredicted fluctuations in workload.  

Diversity of the available tours ensures that each 

technician works five days in each week, Saturdays and 

Sundays are adequately staffed, and higher volume days 

employ more technicians. In any feasible schedule, some 

technicians may be assigned to simple Monday through 

Friday tours (from the set denoted S5). Other technicians will 

be assigned a Saturday or Sunday tour (from the set S1), 

along with a weekday tour with an off-day (from the set S4). 

Each technician’s weekday start time will not vary within the 

week. However, a technician assigned to an off-day tour may 

have a different tour type and start time on the assigned 

Saturday or Sunday. For notational convenience, we define 

the weekly number of intervals covered by a scheduled 

technician as C = 80, and define a constant h = 30 minutes as 

the technician work capacity for each interval. 

The modeling objective is to generate a tour distribution 

that minimizes the total amount of work backlogged. 

Additional constraints are included to restrict the number of 

type j tours to values no greater than specified limits nj (for 

example, Saturday and Sunday tours may be limited due to 

their higher cost and lower desirability). To capture these 

requirements, we formulate a mixed integer linear program 

(MILP) in which each decision variable xjk is the number of 

technicians assigned to a tour of type j with start time k ∈ Tj. 

Letting auxiliary variables yi be the resulting scheduled staff 

and zi be the work backlog variables for all intervals i ∈ I, we 

write the formulation 

Minimize ∑
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Figure 3. Spreadsheet Implementation of the Scheduling Model. 
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Equation 2 defines the relationship between interval 

staffing levels and scheduled tours, while equation 3 ensures 

equivalency of off-day and weekend tour quantities. Equation 

4 guarantees that exactly t technicians are scheduled, and 

equation 5 enforces the optional limits on tour type 

quantities. Equation 6 defines a scaling variable w to correct 

availability approximation error for realized values of yi, and 

this scaling is applied to the work volume parameters vi in the 

backlog equation 7. Equations 7 and 8, in conjunction with 

minimization of the objective function, are functionally 

equivalent to the backlog defining expression 

},0max{ 1 iiiii yhAfwvzz −+= −                       (10) 

The availability correction scaling must be applied to 

determine true backlog as zi′= zi /w, i ∈ I. Applying Little’s 

Law [24], average work delay D can be derived as 
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4. Implementation and Results 

The complete method for determining an optimal schedule 

and predicting performance has been implemented in a 

Microsoft Excel spreadsheet environment. Figure 3 displays 

key components of the model, including a schedule matrix, 

global input parameters and results, a coverage parameter 

matrix, and interval performance results. Error checking (type 

and range) is performed on all data inputs. The work volume 

profile is an aggregation of 52 weeks of historical data which 

can be imported from company systems using an interface 

ribbon accessible from the Excel main menu. For operational 

simplicity, only two selectable start times (“early” and “late”) 

are considered in the implemented model. Tours can be entered 

manually and the model will check for feasibility, alerting the 

user to discrepancies through warning messages. Consistent 

with the optimization model formulation, interval staffing 

levels are computed using equation 2 and the work volume 

must be scaled to enforce static overall availability for each 

schedule evaluated. The scaling factor is determined as 

Ct

yf
w Ii ii∑ ∈=                                       (12) 

The available staff on each interval i can then be calculated as 

wyAfa ii /=                                         (13) 

and backlog is computed as 

},0max{ 1 iiii havzz −+′=′ −                      (14) 

An optimal schedule can be generated by a single mouse 

click on the “Optimize Schedule” button. Optimal solutions 

are obtained using the OpenSolver application [25] with the 

default MILP algorithm and settings. Large problems with 

more than 500 technicians solve in less than 5 seconds. Any 

optimal schedule can be modified manually, and the effect on 

predicted performance can be immediately observed. 

 

Figure 4. Sensitivity of Average Delay to Tour Diversity. 

The scenario modeled in Figure 3 schedules 47 technicians 

with 80% overall availability, and yields an average job delay 

of 1.79 hours. If the same technicians were all scheduled for 

Mon-Fri tours at the early start time (7:30 AM), the average 

job delay would be 13.19 hours. This seven-fold difference 

powerfully illustrates the value of schedule optimization. The 



82 Dennis Charles Dietz:  Optimal Scheduling for a Service Technician Workforce with Time-varying  
Work Volume and Technician Availability 

sensitivities of average delay to tour diversity for the same 

scenario at various levels of technician utilization are 

illustrated in Figure 4. To isolate various effects, late tours 

are unconstrained in the left graphs and weekend tours are 

unconstrained on the right. Weekend scheduling clearly 

produces much more substantial reduction in average delay 

than late shift scheduling. When Saturday and Sunday tours 

are permitted, most of the delay reduction can be obtained 

from the first 70% of the optimal tour quantities. When 

Sunday tours are excluded, the delay reduction from 

Saturday tour scheduling is nearly linear until the optimal 

tour quantity is scheduled. These general insights are quite 

helpful in selecting eligible start times and manually 

adjusting schedules to accommodate additional operational 

factors such as daylight, customer preferences, and the 

availability of staff in supporting organizations. 

5. Conclusions 

Optimization theory and practical considerations have 

been integrated to create a spreadsheet-based model for field 

technician scheduling. The model has been successfully 

implemented by a major telecommunications company, 

resulting in more efficient workforce utilization, reduced 

service interval, and improved uniformity in service quality. 

In some geographic areas, the model has been expanded to 

accommodate additional tour types and varying operational 

practices. Hence, cumulative experience suggests that the 

approach is quite flexible and could be applied to myriad 

field service environments. 
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