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Abstract: Software and systems engineering for aerospace platforms presents many unique challenges. The decision if, and 

how, to employ software product line architectures is one recurring question. Real options analysis—applying option valuation 

techniques to budgeting decisions—can be a powerful tool for engineering managers, project leaders, and mission directors. In 

this paper, we demonstrate a real options valuation approach to explore this question. 
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1. Introduction 

On March 26, 2019 NASA Administrator Jim Bridenstine 

and Vice President Mike Pence came together for the fifth 

meeting of the National Space Council. The Vice President 

presented the Administration’s vision for space exploration 

and spoke to NASA’s progress on key elements to 

accomplish the President’s Space Policy Directives. 

Commenting on the meeting, Administrator Bridenstine 

stated, 

Among the many topics discussed during our meeting at 

the U.S. Space and Rocket Center in Huntsville, Alabama, 

was to accelerate our return to the Moon: 

i. NASA is charged to get American astronauts to the 

Moon in the next five years. 

ii. We are tasked with landing on the Moon’s South 

Pole by 2024. 

iii. Stay on schedule for flying Exploration Mission-1 

with Orion on the Space Launch System (SLS) rocket 

next year, and for sending the first crewed mission to 

the lunar vicinity by 2022. 

iv. NASA will continue to ‘use all means necessary’ to 

ensure mission success in moving us forward to the 

Moon [1]. 

NASA leadership, as well as most managers and 

engineers involved in the aerospace industry, are well 

aware that one of the major challenges for creating safety- 

and mission-critical space systems is the development of 

spacecraft software. Despite the high quality of design in 

the areas of electrical, mechanical, and materials 

engineering, a failure of control software can lead to a 

quick and expensive mission failure [2]. Software bugs can 

manifest in many ways, and trace back to different 

underlying hazards. However, it is very common for 

software safety hazards to arise from software process 

errors. There may be errors in specification, translation to 

design, coding, inadequate verification and validation. 

Additionally, problems may arise related to maintenance 

and modification, often a result of the accumulation of 

technical debt—the failure to restore code and artifact 

quality, consistency, and global structure after local, often 

rushed or kludgy, fixes to and extensions of the system [3]. 

The necessity of employing up-to-date, reliable software 

engineering methods is most evident. 

In general, American spacecraft have utilized custom 

software developed “from scratch.” Early attempts to 

employ a product line approach were generally not 

ultimately pursued. A product line in this case is a 
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fundamental architectural design that may be instantiated in 

a variety of different applications to suit mission needs. Of 

course, a software product line also implies a spacecraft 

product line because software is primarily a control 

mechanism. This approach further entails mutually aware 

evolution of the two product lines. Not only must the 

software change as the spacecraft design changes, but 

changes in the design (and construction) of the spacecraft 

need to take account of both the hardware (e.g., sensor-

computing-actuator, I/O, storage, and communication) used 

by the software and the control logic and other functionality 

of the software application. 

2. Software Product Lines 

The Carnegie Mellon Software Engineering Institute (SEI) 

defines a software product line as “a set of software-intensive 

systems that share a common, managed set of features 

satisfying the specific needs of a particular market segment 

or mission and that are developed from a common set of core 

assets in a prescribed way.” [4] SEI suggests that some of the 

benefits of product line architectures include improved 

productivity, increased quality, decreased cost, decreased 

labor needs, and decreased time to market. Software product 

lines may be distinguished from other efforts at software 

reuse in that the reuse is predictive rather than opportunistic. 

Instead of simply stockpiling generic software components in 

a database in the hope for future reuse, product lines indicate 

creation of software components only when reuse is planned 

in one or more products in a well-specified product line [5]. 

Moreover, the software design, validation and verification 

(including testing), and refactoring are focused on “points of 

protected variation,” characterized by one or more of the 

following: high likelihood of non-trivial change, high 

criticality, high risk (likelihood or consequences) of failure, 

possibly varying interaction with external systems, or 

product-line-specific problems such as tight timing 

constraints [6, 7]. Given the inherent risks of patching flight 

software bugs in deployed space systems, the highest 

standards of software and system quality assurance 

engineering is necessary. 

Significant advances in software engineering have taken 

place over the last twenty years. A noteworthy example is the 

research by Kathryn Anne Weiss. While a member of MIT’s 

Complex Systems Research Laboratory, Weiss developed a 

novel approach to spacecraft software engineering. Her 

approach focuses on incorporating a product line approach to 

software development as well as a software architecture-

centric design process to support that approach. Weiss 

created a systems engineering-based development, evaluation, 

and selection process for the construction of the software 

product line architecture: Multi-Attribute Software 

Architecture Trade Analysis (MASATA). MASATA helps to 

ensure that engineers achieve their desired quality attributes, 

e.g., “analyzability with respect to safety, ease of verification 

and validation, sustainability, affordability, buildability, 

ability to meet real-time requirements and constraints, and 

‘monitor’-ability.” [8]  

It is important to point out three contrasts in software vs 

hardware development: 

i. Software requirements can be refined during 

design and even later, although there are 

challenges with some extra-functional 

requirements including security, temporal 

constraints, and reliability. In fact, this is a major 

characteristic of agile software development. On 

the other hand, changes in the design of spacecraft, 

or of a plant to manufacture spacecraft, are both 

expensive and time-consuming, and later changes 

may be impossible or prohibitive in terms of 

resources. 

ii. Software replication is almost free, and after a change, 

all instances of a software product can be updated 

even on-site with minimal difficulty other than 

coordinating with ongoing processing or differing 

external interfaces. 

iii. The validation and verification of a software artifact, 

although necessarily ongoing, can occur on a single 

copy, after which all that needs to be checked for 

another instance is the fidelity of the copy, the 

correctness and integrity of its external connections, 

and the security of its environment. 

3. Options 

In light of the opportunities offered by MASATA and 

other software product line engineering developments, in this 

research we explicate an approach to apply real options 

analysis and compare product line architectures to the more 

common non-product line development projects. Flexibility 

can have great value. However, even if a product line 

architecture is well instantiated for a particular spacecraft and 

mission, it still may not be preferable to custom software for 

every spacecraft, or a hybrid in which some components are 

replaced or extended by specialized custom components, 

such as additional mission-appropriate sensors. In some 

scenarios, real options analysis has the potential to identify a 

winner, or similarly disqualify a loser. 

In the field of finance, an option is right, but not an 

obligation, to take an action now, or for a period into the 

future, for a predetermined price (strike price, K = exercise 

price). A premium must be paid to acquire the option. 

Options provide a formal way to define flexibility and yield 

asymmetric returns, e.g., all gain, no pain. They can also be 

nested or simultaneous. Option value asymptotically 

approaches immediate payoff for increasing stock price, S. 

Option value also increases with volatility as well as 

increasing time to expiration. There are both call and put 

options. A call is right to take advantage of an opportunity, 

i.e., buy an asset for a set price. The payoff is Max [0, S*–K], 

and so increases with asset price increases. Conversely, a put 

is a right to limit losses in a bad situation, i.e., sell an asset 

for a set price. The payoff is Max [0, K–S*], so it increases 

with asset price decreases [9].  
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Engineering projects often contain option-like flexibilities, 

involving “rights, not obligations” and providing asymmetric 

returns, i.e., they are exercised only if advantageous. Hence, 

we say that these flexibilities are “real” options. Traditional 

net present value (NPV) analysis has ignored these options 

because it assumes decisions are not possible or are pre-

determined, and also disregards the effect of intelligent 

management. Real options analysis includes valuation of 

flexibility by applying some form of options analysis that 

systematically increases value of projects, especially for 

engineering projects with great uncertainties, e.g., research 

and development projects, employing new technologies, etc. 

Richard de Neufville of MIT has done substantial work 

developing this field [10].  

4. Salient Uncertainties 

Now that spacecraft software product lines can be well 

executed, should they be done for a particular project or 

program? If so, to what degree should they be used? 

Exclusively? Perhaps real options can provide some answers. 

To begin, we identify some salient uncertainties: 

4.1. NASA Funding 

Federal spending on non-military space operations is a 

huge uncertainty. The budget history (and therefore mission) 

of NASA has varied tremendously since its inception. The 

implications of funding are tremendous. Funding dictates 

both mission goals and implementation. Both very low and 

very high funding might even lead policy makers not to 

pursue software product lines. 

4.2. Impact of Advances in Computer and Aerospace 

Engineering That Will Affect Spacecraft System 

Capabilities 

The effect of technological advances could range from 

insignificant to non-trivial. Specifically, if software 

engineering techniques and computational power do not 

increase significantly, pursuing a product line architecture to 

be used for the next thirty years might be a good idea. 

However, if technology makes large strides, the effect of 

committing to a product line could constrain future designs. 

“Moore’s Law” data, data on the utilization of increased 

computational power, the pace of software engineering 

advances, and the pace of aerospace design advances can 

clarify this uncertainty.  

As another consideration, the possible long-term future 

development of reliable and economically feasible quantum 

computing would most likely suggest complete re-

examination and possibly re-engineering of the entire product 

line. However, the uncertainties in the effect and the 

timeframe are large enough that we have not included this 

possibility in our current analysis. 

Complementarily, there have recently been investigations 

of the applicability of suitably modified and adapted agile 

techniques in hardware manufacture, in domains including 

automotive component and aeronautical product design and 

manufacture [11, 12]. Process developments that promote 

efficient and effective design, modification, and evolution of 

aerospace hardware will make development of spacecraft 

product lines more attractive, especially if these changes also 

improve, simplify, or facilitate testing of those products. 

Likewise, further improvements in software processes, 

especially for control and real-time systems, will tend to 

advantage such coordinated product lines. 

4.3. Involvement of Private Industry and Foreign 

Competitors in Space Activities 

For economic or national security reasons, the presence of 

private industry, e.g., SpaceX and Blue Origin, or foreign 

governments, e.g., China and Russia, in space can radically 

affect US space policy and therefore systems. NASA’s 

mission will certainly change as other players continue to 

enter the scene. For example, NASA’s historic role of 

launching satellites might be largely outsourced to private 

industry. However, NASA might also need to develop a new 

capability to develop a Moon base before the Chinese arrive 

there and set up their own. These considerations depend on 

the material, intellectual, and economic requirements to 

achieve particular space operations. Conversely, the United 

States may at some point decide to participate in one or more 

new international ventures, adding interoperability and 

interface constraints as well as new missions and objectives 

for both spacecraft and software. 

5. Decision Analysis 

In this paper, we analyze three different system designs. 

One is a traditional, inflexible architecture and the other two 

incorporate various levels of flexibility by using a product 

line approach. Software product lines provide great 

opportunity for reuse because they exploit the presence of 

shared requirements, architectural design, components, 

modeling and analysis, testing, and process. The principal 

activity associated with creating a product line architecture is 

to identify variation points and develop a design that supports 

them. Identifying variation points is a non-trivial process 

because the software architects must decide both what 

features of the architecture will be common to all instances of 

the product family as well as how much detail should be 

provided given the inherent tradeoff of rapid instantiation and 

deployment versus high customizability. 

Traditional Software Architecture—This design is the 

historic approach used by NASA to develop spacecraft 

software. Great effort goes into making the software safe and 

reliable, but little to no effort goes into creating a design that 

could be partially reused in the future for a different mission. 

With the traditional approach, consideration of a new mission 

includes a full analysis for its software suite, and committing 

to each new mission may require near total redesign and 

fresh implementation of the suite. Thus its long-term cost is 

affected by the diversity of missions under consideration and 

the number of mission types that reach planning stage or 
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implementation. 

Moderate Product Line Architecture—This design will be 

the first flexible approach. It is a compromise between 

flexibility and rigidity. For the purpose of this research, we 

define the following generic modules: 

a) Data manager. 

b) Task manager. 

c) Telemetry manager. 

d) Command manager. 

e) Memory manager. 

f) File System. 

g) Instrument manager. 

h) Attitude determination and control (ADCS). 

i) Propulsion. 

j) System manager. 

Extreme Product Line Architecture—This design is the 

most flexible, but directly supports the least functionality. 

More work must be done to instantiate it into an executable 

architecture, but it makes very few assumptions that would 

provide problems in even radically different future missions. 

Here we provide the following generic modules: 

a) Task manager. 

b) Telemetry manager. 

c) ADCS. 

Part of the intent is to support plug-and-play modules, 

either in a software and physical component repository, or 

provided through other sources, particularly for sensors and 

actuators for exploration of planets and minor bodies or their 

neighborhoods. It is thus also more compatible with 

international efforts, or collaborations between NASA and 

foreign or private space ventures, with the need for different 

software interfaces for new sorts of new instruments, or for 

radically different implementations of physical components 

incompatible with the former interfaces. 

In the coming decades, it is less likely (in the absence of 

major developments such as general-purpose quantum 

computing) that there will be opportunities for substantial 

change in the area of task scheduling, telemetry, and attitude 

determination and control. Scheduling algorithms and 

operating system design are relatively mature disciplines 

within software engineering and are not hindrances on 

current missions; changes may affect design or 

implementation of those components, but most likely not 

functionality. The telemetry system in use now will hopefully 

still exist in thirty years because of the infrastructure that has 

been deployed on the Earth and in the satellite network. It 

does not provide excellent bandwidth, but it is usually 

sufficient. The mathematics currently employed for 

computing attitude determination and control responses is 

also mature and will likely be instantiated in a similar way in 

the coming decades. 

Below is a decision analysis tree. It looks at two periods 

of uncertain funding for the three architectural approaches 

utilizing subjective probabilities. Like all decision trees, it 

enjoys the benefit of specificity—each possible scenario is 

represented by a clear fork and node so that all possible 

solutions clearly in a single view. A decision tree, as 

illustrated here, can help decision makers understand better 

the role of probability in their project as well as the nature 

of the interaction of chance events and management 

decisions. On the other hand, the decision tree analysis here 

suffers from the common draw backs of decision trees such 

as instability—sensitivity to parameters, complexity—large 

trees are unwieldy and time-consuming to construct and 

analyze, and the reality of sometimes displaying too much 

information. Also, given the lack of data from which to 

compute “objective probabilities,” decision trees are most 

often dependent on “subjective probabilities,” i.e., expert 

judgment. These probabilities are usually based on the 

experts’ domain knowledge and industry experience [13]. 

The tree below is primarily developed to show the benefit 

of the options analysis to follow. The authors’ intent here is 

ultimately to show the utility of real options analysis to the 

overall engineering management problem and so one should 

not read too much into the particular subjective 

probabilities.  

Outcomes in Figure 1 are in units of capability per 

dollar of investment. After carefully analyzing the tree, it 

is clear that the traditional design approach should be 

avoided. It is also clear that one should generally avoid 

scrapping the architecture and starting fresh because if 

subsequent funding is low, disaster will ensue. The 

moderate product line and extreme product line approach 

are very comparable with the current values in the tree. A 

small change in values would likely tip the optimal 

solution in one direction. Right now, the absolute highest 

expected value is found in the extreme product line. 

However, further analysis (expanding the tree or using 

other intellectual tools) is needed to better differentiate the 

two product line approaches. It seems that an optimal 

strategy includes pursuing a product line and making 

changes to it in the future, rather than abandoning it.  

One missing and possibly unknowable set of parameters is 

the likelihood of collaboration, the extent of sharing of 

knowledge and of components, and the possible 

opportunity/risk tradeoffs entailed. However, the first two of 

these parameters largely derive from policy decisions, and 

can be incorporated if desired; the third is likely to become 

clearer in the near future. In general, the higher these 

parameters, the clearer are the benefits of the extreme 

approach.  

Note: In Figure 1, modifying a product line architecture 

in both low and high funding environments leads to the 

same capability/$ because the additional money in the high 

funding situation is unnecessary to attain the maximum 

capability. 
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Figure 1. Decision Analysis Tree. 
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Figure 2. NASA Budget in 2019 Millions of Dollars. 

6. Lattice Analysis 

For the following analysis, we assume: 

i. No major technological developments that would 

require complete redesign, and; 

ii. Collaboration between space ventures largely limited to 

knowledge sharing and use of compatible hardware 

(and possibly software) interfaces. 

One of the salient uncertainties identified in earlier analysis 

was the NASA budget. Software product line architectures are 

particularly valuable when requirement changes necessitate a 

new design, but the funding is not sufficient to build a new 

system from scratch. They provide a way to economically and 

safely instantiate a new spacecraft software system. 

Figure 2 above plots the NASA budget from FY 2000 to 

2019, according to the US Office of Management and 

Budget. Although there is likely diverse opinion on the 

suitability of selecting any particular time period, the authors 

believe that the volatility in budget since the turn of the 

century will likely continue in the coming years [14]. 

We now employ a binomial lattice analysis to explore the 

budget uncertainty. Binomial lattice analysis makes three 

fundamental assumptions. First, the evolution process is the 

same over time, i.e., it is stationary. Second, each state in the 

model leads to only two other states after one time period. 

Third, each later state is a multiple of an earlier state. State S 

evolves to u×S and d×S (by convention up > down). 

A benefit of the lattice model is that it assumes path 

independence—states coincide. Paths that lead “up then down” 

arrive at the same state as paths that go “down then up.” 

�	��S� 	� 	���                                    (1) 

�	���� 	� 	���                                    (2) 

Consequently, the model states increase linearly rather 

than exponentially. For example, after 24 months there are 25 

states (parameterized by the total number of d phases), not 

~17 million that one would have from traditional decision 

tree analysis! As a recombinatorial model, the binomial 

lattice eliminates the so-called “curse of dimensionality.” 

It should be noted that the binomial model does not allow 

shifts from positive to negative values. The lowest value is 

always positive. This is realistic, and in many situations 

necessary, e.g., the NASA budget will not go negative. With 

regard to the relationship between states, the relative value 

between a lower and the next higher is constant = u/d. 

S	�	��	and	��                                      (3) 

Hence the ratio of: 

��/��	 � 	�/�                                     (4) 

In our model: 

i. S is the 2019 NASA budget. 

ii. v is estimated annual growth, expressed as a 

percentage. 

iii. σ is the standard deviation of the annual budgets, 

expressed as a percentage. 

There are two conditions that must be met: 

i. The average increase over a period is. 

ν∆T = p ln (u) + (1 – p) ln (d) 

ii. The variance of the distribution is the sum of weighted 

squares of the observations. 

σ2 ∆T = p [ln (u)] 2 + (1 – p) [ln (d)] 2 – {p [ln (u)] + (1 – p) 
[ln (d)]}2 

At this point there are 2 equations and 3 unknowns (u, d, 
p). If we set ln (u) = – ln (d) then u = 1/d. 

We then solve the previous equations and obtain: 

�	 � 	
 	��√�	�	�                                     (5) 

�	 � 	 	
 	���√�	�	�                                   (6) 

�	 � 	0.5	 � 	0.5	�ν/σ�	√	Δ	�                      (7) 

The calculated values can then be used directly in the 

model. The assumption behind these calculations is that 

actual probability distribution function (PDF) has a Gaussian 
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aspect to it. Recall that the value of an option is the increase 

in expected value due to flexibility. 

We then proceed with our lattice analysis using the 

following parameters: 

Table 1. Lattice Parameters. 

S = $21,500.00 
 

u = 1.04219265 

v = 2% 
 

d = 0.9595155 

σ = 888.53 4% p = 0.74197369 

∆t = 1 
   

Applying the probability model to the outcome model leads to 

a probability distribution on outcomes. Figure 3 shows the 

probability density function resulting from the lattice analysis. 

7. Options Valuation 

There are many ways to analyze the uncertainty associated 

with the NASA budget. Static analysis is the simplest, 

although often a questionable technique. One may wish to 

assume that because the budget goes up and down, it may be 

prudent to model it as a constant, e.g., over the next six years. 

 

Figure 3. Probability Density Function for the Binomial Lattice. 

Table 2. Constant Budget Chart. 

Year 0 1 2 3 4 5 6 

Budget (Mil $) 21,500.00 21,500.00 21,500.00 21,500.00 21,500.00 21,500.00 21,500.00 

PV (Mil $) 21,500.00 19,196.43 17,139.67 15,303.28 13,663.64 12,199.68 10,892.57 

NPV (Mil $) 109,895.26 
      

NB: Discount Rate = 12%. 

Table 3. 1% Annual Increase Budget Chart. 

Year 0 1 2 3 4 5 6 

Budget (Mil $) 21,500.00 21,715.00 21,932.15 22,151.47 22,372.99 22,596.72 22,822.68 

PV (Mil $) 21,500.00 19,388.39 17,484.18 15,766.98 14,218.44 12,821.98 11,562.68 

NPV (Mil $) 112,742.65 
      

Table 4. Binomial Lattice Chart Acknowledging Uncertainty. 

Year 0 1 2 3 4 5 6 

Budget (Mil $) 21,500.00 21,948.49 22,406.33 22,873.72 23,350.86 23,837.95 24,335.20 

PV (Mil $) 21,500.00 19,596.86 17,862.19 16,281.06 14,839.89 13,526.29 12,328.97 

NPV (Mil $) 115,935.26 
      

 
A better approach may be to assume a 1% annual increase 

because that is the average annual change from 2000 until 

2019. Due to the visual constraints of the page, we apply the 

analysis for six years in the future. The result is shown in 

Table 3. Finally, one may wish to use a binomial lattice to 

take into account the range of uncertainty; results for this 

computation are shown in Table 4. 

It is important to note the significant difference in total 

budget over the seven years. The budget recognizing 

uncertainty projects an additional $6,040,000,000 compared 

to the constant funding budget! Additionally, the budget 

assuming a 1% annual increase is $3,192,610,000 less than 

the budget recognizing uncertainty. A dynamic decision 

approach which permits the intelligent management 

opportunities provided by a real option analysis is superior 

because it better models the real world. 

The budget lattice is presented in Table 5. As the table 

indicates, the budget in year six can range from $16.7 billion to 

$27.6 billion dollars. As time goes by, the probability that a 

change will be needed increases. The following numerical 

model accounts for this reality. We model this with an 

exponential decay equation. By year seven, there is almost a 

50% chance that a change will be needed, as shown in Figure 4. 

Table 5. Outcome Lattice Chart in Millions of Dollars over Six Years. 

0 1 2 3 4 5 6 

21,500.00 22,407.14 2,3352.56 24,337.86 25,364.74 26,434.95 27,550.31 

 
20,629.58 21,500.00 22,407.14 23,352.56 24,337.86 25,364.74 

  
19,794.41 20,629.58 21,500.00 22,407.14 23,352.56 

   
18,993.04 19,794.41 20,629.58 21,500.00 

    
18,224.11 18,993.04 19,794.41 

     
17,486.32 18,224.11 

      
16,778.40 



 American Journal of Engineering and Technology Management 2019; 4(2): 47-56 54 
 

 

Figure 4. Probability of No Change Needed Graph. 

 

Figure 5. Severity of Change Graph. 

In addition, as time goes by, the necessary changes will 

become more dramatic, as indicated in Figure 5. A non-

product line architecture will need to be abandoned when the 

severity of the changes exceeds 0.5. The model assumes that 

“no change” takes a value of zero and a completely new 

system (great change) takes a value of 1.  

After six years, the mission requirements may have 

changed substantially so that after a few more years, the 

original software architecture will likely need to be 

completely abandoned.  

Utilizing a better approach, if the system designers invest 

the additional money to start with a product line architecture, 

they will have the right, but not the obligation, to change the 

functionality of the spacecraft software at comparatively low 

cost. 

Table 6 is the lattice for an estimated future budget for 

spacecraft software only. It assumes that a constant portion, 

3%, of each year’s budget is devoted to flight software. 

Table 6. Spacecraft Software Budget Lattice Chart in Millions of Dollars over Six Years. 

0 1 2 3 4 5 6 

645.00 672.21 700.58 730.14 760.94 793.05 826.51 

 
618.89 645.00 672.21 700.58 730.14 760.94 

  
593.83 618.89 645.00 672.21 700.58 

   
569.79 593.83 618.89 645.00 

    
546.72 569.79 593.83 

     
524.59 546.72 

      
503.35 
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Table 7. Moderate Software Product Line Modified Lattice Chart in Millions of Dollars over Six Years. 

0 1 2 3 4 5 6 

1161 1142.764 154.1269 109.5204 68.48481 39.65242 22.31575 

 
618.8875 141.9000 100.8321 63.05191 36.5068 20.54544 

  
130.6431 92.83312 58.05000 33.61071 18.91557 

   
85.46867 53.44489 30.94437 17.41500 

    
49.20511 28.48956 16.03347 

     
26.22948 14.76153 

      
13.59050 

 
By computing the expected value at each stage and 

summing the results, we find that without a product line, the 

seven years of flight software development will cost NASA 

$ 4,807,576,098. This model assumes that the original 

architecture cannot be changed. Every year, modules are 

replaced, with every change destabilizing the system. It is 

only a matter of time for the architecture is inadequate and all 

the modules must be discarded. 

In contrast, Table 7 above is not a “pure” lattice. The first 

node is 1.8 times greater than the original first node because 

it has been empirically observed that costs at year zero for 

such a product line approach would be that much higher. 

Similarly, the node in year one directly to its right is 1.7 

times greater than the original. By year two the option is 

exercised (the mission requirements and spacecraft hardware 

have changed before the system is completed and the 

developers get the updated requirements document – this is 

often the case). Instead of paying full cost for the 

modification, earlier code is reused, and the cost is only 22% 

of the original. The assumption is made to exercise the option 

at this time because the probability of change model predicts 

approximately a 20% chance of a serious change and the 

severity model predicts a severity of about 0.20. An informal 

decision rule states that this scenario (two 0.20s) calls for a 

software change. This change is realized by utilizing the 

opportunities provided in the product line. Continuing the 

analysis, in year three, only 15% of the predicted amount is 

necessary, and so on. Instead of constantly building and 

throwing away software modules with the strategy defined by 

the table above, with the eventuality of throwing out 

everything in year six, the product line offers equivalent 

capability for significantly less development cost. The 

“moderate product line” is employed here. 

Table 7 clearly shows that the product line requires a very 

large initial investment in the first two years (years zero and 

one). However, starting in year two, using agile methods, 

modules are able to be changed at very little cost. Even with 

major changes, the use of techniques such as PPV-aware 

design and refactoring helps keep the software artifact 

configuration clean, comprehensible, and easily modifiable, 

reducing complication and eliminating or at least deferring 

the need to fully reengineer the suite. As requirements evolve 

toward the “final” versions, the design is able to constantly 

change and “converge” on a future, optimal software 

architecture because the architecture is carefully maintained. 

The total cost of the moderate product line approach is 

$ 2,538,919,478. This is a savings of $ 2,268,656.62 

compared to the non-product line approach. (This does not 

include any savings in the spacecraft product line if agile 

techniques are introduced there and coordinated with 

software product line development.) 

8. Conclusion 

In our example, real options analysis supports the use of the 

moderate product line architecture as the optimal solution to the 

spacecraft software problem. When carefully parameterized, 

engineering management decisions between “moderate” or 

“extreme” product line approaches may be further explored. 

Options analysis provides the needed flexibility to address the 

uncertainties associated with NASA funding.  

However, there are three factors that would argue for use 

of the extreme product line architecture: 

i. High likelihood of collaboration with private, foreign, 

or international space ventures; 

ii. High likelihood of multiple and radically different 

sets of missions; or; 

iii. The possibility of major technological developments 

in physical components resulting in radically 

different interfaces to those components. 

We will explore the consequences of these, and the 

resulting tradeoffs between the moderate and the extreme 

models, in further research. The introduction of agile 

techniques in the spacecraft product line, or other 

coordinated interaction between the two development 

processes, is also a potentially significant research topic, to 

be explored in collaboration with others in the future. The 

flexible approach to design and the valuation of options is 

without a doubt a very valuable tool in assessing the 

suitability of spacecraft software designs. 
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