

American Journal of Engineering and Technology Management
2019; 4(2): 47-56
http://www.sciencepublishinggroup.com/j/ajetm
doi: 10.11648/j.ajetm.20190402.12
ISSN: 2575-1948 (Print); ISSN: 2575-1441 (Online)

A Real Options Analysis of Spacecraft Software Product
Line Architectures

Joseph R. Laracy
1, 2, *

, Thomas Marlowe
1

1Department of Mathematics and Computer Science, Seton Hall University, South Orange, USA
2Department of Systematic Theology, Seton Hall University, South Orange, USA

Email address:

*Corresponding author

To cite this article:
Joseph R. Laracy, Thomas Marlowe. A Real Options Analysis of Spacecraft Software Product Line Architectures. American Journal of

Engineering and Technology Management. Vol. 4, No. 2, 2019, pp. 47-56. doi: 10.11648/j.ajetm.20190402.12

Received: April 25, 2019; Accepted: May 29, 2019; Published: June 12, 2019

Abstract: Software and systems engineering for aerospace platforms presents many unique challenges. The decision if, and

how, to employ software product line architectures is one recurring question. Real options analysis—applying option valuation

techniques to budgeting decisions—can be a powerful tool for engineering managers, project leaders, and mission directors. In

this paper, we demonstrate a real options valuation approach to explore this question.

Keywords: Real Options, Software Product Lines, Software Architecture, Space Systems

1. Introduction

On March 26, 2019 NASA Administrator Jim Bridenstine

and Vice President Mike Pence came together for the fifth

meeting of the National Space Council. The Vice President

presented the Administration’s vision for space exploration

and spoke to NASA’s progress on key elements to

accomplish the President’s Space Policy Directives.

Commenting on the meeting, Administrator Bridenstine

stated,

Among the many topics discussed during our meeting at

the U.S. Space and Rocket Center in Huntsville, Alabama,

was to accelerate our return to the Moon:

i. NASA is charged to get American astronauts to the

Moon in the next five years.

ii. We are tasked with landing on the Moon’s South

Pole by 2024.

iii. Stay on schedule for flying Exploration Mission-1

with Orion on the Space Launch System (SLS) rocket

next year, and for sending the first crewed mission to

the lunar vicinity by 2022.

iv. NASA will continue to ‘use all means necessary’ to

ensure mission success in moving us forward to the

Moon [1].

NASA leadership, as well as most managers and

engineers involved in the aerospace industry, are well

aware that one of the major challenges for creating safety-

and mission-critical space systems is the development of

spacecraft software. Despite the high quality of design in

the areas of electrical, mechanical, and materials

engineering, a failure of control software can lead to a

quick and expensive mission failure [2]. Software bugs can

manifest in many ways, and trace back to different

underlying hazards. However, it is very common for

software safety hazards to arise from software process

errors. There may be errors in specification, translation to

design, coding, inadequate verification and validation.

Additionally, problems may arise related to maintenance

and modification, often a result of the accumulation of

technical debt—the failure to restore code and artifact

quality, consistency, and global structure after local, often

rushed or kludgy, fixes to and extensions of the system [3].

The necessity of employing up-to-date, reliable software

engineering methods is most evident.

In general, American spacecraft have utilized custom

software developed “from scratch.” Early attempts to

employ a product line approach were generally not

ultimately pursued. A product line in this case is a

 American Journal of Engineering and Technology Management 2019; 4(2): 47-56 48

fundamental architectural design that may be instantiated in

a variety of different applications to suit mission needs. Of

course, a software product line also implies a spacecraft

product line because software is primarily a control

mechanism. This approach further entails mutually aware

evolution of the two product lines. Not only must the

software change as the spacecraft design changes, but

changes in the design (and construction) of the spacecraft

need to take account of both the hardware (e.g., sensor-

computing-actuator, I/O, storage, and communication) used

by the software and the control logic and other functionality

of the software application.

2. Software Product Lines

The Carnegie Mellon Software Engineering Institute (SEI)

defines a software product line as “a set of software-intensive

systems that share a common, managed set of features

satisfying the specific needs of a particular market segment

or mission and that are developed from a common set of core

assets in a prescribed way.” [4] SEI suggests that some of the

benefits of product line architectures include improved

productivity, increased quality, decreased cost, decreased

labor needs, and decreased time to market. Software product

lines may be distinguished from other efforts at software

reuse in that the reuse is predictive rather than opportunistic.

Instead of simply stockpiling generic software components in

a database in the hope for future reuse, product lines indicate

creation of software components only when reuse is planned

in one or more products in a well-specified product line [5].

Moreover, the software design, validation and verification

(including testing), and refactoring are focused on “points of

protected variation,” characterized by one or more of the

following: high likelihood of non-trivial change, high

criticality, high risk (likelihood or consequences) of failure,

possibly varying interaction with external systems, or

product-line-specific problems such as tight timing

constraints [6, 7]. Given the inherent risks of patching flight

software bugs in deployed space systems, the highest

standards of software and system quality assurance

engineering is necessary.

Significant advances in software engineering have taken

place over the last twenty years. A noteworthy example is the

research by Kathryn Anne Weiss. While a member of MIT’s

Complex Systems Research Laboratory, Weiss developed a

novel approach to spacecraft software engineering. Her

approach focuses on incorporating a product line approach to

software development as well as a software architecture-

centric design process to support that approach. Weiss

created a systems engineering-based development, evaluation,

and selection process for the construction of the software

product line architecture: Multi-Attribute Software

Architecture Trade Analysis (MASATA). MASATA helps to

ensure that engineers achieve their desired quality attributes,

e.g., “analyzability with respect to safety, ease of verification

and validation, sustainability, affordability, buildability,

ability to meet real-time requirements and constraints, and

‘monitor’-ability.” [8]

It is important to point out three contrasts in software vs

hardware development:

i. Software requirements can be refined during

design and even later, although there are

challenges with some extra-functional

requirements including security, temporal

constraints, and reliability. In fact, this is a major

characteristic of agile software development. On

the other hand, changes in the design of spacecraft,

or of a plant to manufacture spacecraft, are both

expensive and time-consuming, and later changes

may be impossible or prohibitive in terms of

resources.

ii. Software replication is almost free, and after a change,

all instances of a software product can be updated

even on-site with minimal difficulty other than

coordinating with ongoing processing or differing

external interfaces.

iii. The validation and verification of a software artifact,

although necessarily ongoing, can occur on a single

copy, after which all that needs to be checked for

another instance is the fidelity of the copy, the

correctness and integrity of its external connections,

and the security of its environment.

3. Options

In light of the opportunities offered by MASATA and

other software product line engineering developments, in this

research we explicate an approach to apply real options

analysis and compare product line architectures to the more

common non-product line development projects. Flexibility

can have great value. However, even if a product line

architecture is well instantiated for a particular spacecraft and

mission, it still may not be preferable to custom software for

every spacecraft, or a hybrid in which some components are

replaced or extended by specialized custom components,

such as additional mission-appropriate sensors. In some

scenarios, real options analysis has the potential to identify a

winner, or similarly disqualify a loser.

In the field of finance, an option is right, but not an

obligation, to take an action now, or for a period into the

future, for a predetermined price (strike price, K = exercise

price). A premium must be paid to acquire the option.

Options provide a formal way to define flexibility and yield

asymmetric returns, e.g., all gain, no pain. They can also be

nested or simultaneous. Option value asymptotically

approaches immediate payoff for increasing stock price, S.

Option value also increases with volatility as well as

increasing time to expiration. There are both call and put

options. A call is right to take advantage of an opportunity,

i.e., buy an asset for a set price. The payoff is Max [0, S*–K],

and so increases with asset price increases. Conversely, a put

is a right to limit losses in a bad situation, i.e., sell an asset

for a set price. The payoff is Max [0, K–S*], so it increases

with asset price decreases [9].

49 Joseph R. Laracy and Thomas Marlowe: A Real Options Analysis of Spacecraft Software Product Line Architectures

Engineering projects often contain option-like flexibilities,

involving “rights, not obligations” and providing asymmetric

returns, i.e., they are exercised only if advantageous. Hence,

we say that these flexibilities are “real” options. Traditional

net present value (NPV) analysis has ignored these options

because it assumes decisions are not possible or are pre-

determined, and also disregards the effect of intelligent

management. Real options analysis includes valuation of

flexibility by applying some form of options analysis that

systematically increases value of projects, especially for

engineering projects with great uncertainties, e.g., research

and development projects, employing new technologies, etc.

Richard de Neufville of MIT has done substantial work

developing this field [10].

4. Salient Uncertainties

Now that spacecraft software product lines can be well

executed, should they be done for a particular project or

program? If so, to what degree should they be used?

Exclusively? Perhaps real options can provide some answers.

To begin, we identify some salient uncertainties:

4.1. NASA Funding

Federal spending on non-military space operations is a

huge uncertainty. The budget history (and therefore mission)

of NASA has varied tremendously since its inception. The

implications of funding are tremendous. Funding dictates

both mission goals and implementation. Both very low and

very high funding might even lead policy makers not to

pursue software product lines.

4.2. Impact of Advances in Computer and Aerospace

Engineering That Will Affect Spacecraft System

Capabilities

The effect of technological advances could range from

insignificant to non-trivial. Specifically, if software

engineering techniques and computational power do not

increase significantly, pursuing a product line architecture to

be used for the next thirty years might be a good idea.

However, if technology makes large strides, the effect of

committing to a product line could constrain future designs.

“Moore’s Law” data, data on the utilization of increased

computational power, the pace of software engineering

advances, and the pace of aerospace design advances can

clarify this uncertainty.

As another consideration, the possible long-term future

development of reliable and economically feasible quantum

computing would most likely suggest complete re-

examination and possibly re-engineering of the entire product

line. However, the uncertainties in the effect and the

timeframe are large enough that we have not included this

possibility in our current analysis.

Complementarily, there have recently been investigations

of the applicability of suitably modified and adapted agile

techniques in hardware manufacture, in domains including

automotive component and aeronautical product design and

manufacture [11, 12]. Process developments that promote

efficient and effective design, modification, and evolution of

aerospace hardware will make development of spacecraft

product lines more attractive, especially if these changes also

improve, simplify, or facilitate testing of those products.

Likewise, further improvements in software processes,

especially for control and real-time systems, will tend to

advantage such coordinated product lines.

4.3. Involvement of Private Industry and Foreign

Competitors in Space Activities

For economic or national security reasons, the presence of

private industry, e.g., SpaceX and Blue Origin, or foreign

governments, e.g., China and Russia, in space can radically

affect US space policy and therefore systems. NASA’s

mission will certainly change as other players continue to

enter the scene. For example, NASA’s historic role of

launching satellites might be largely outsourced to private

industry. However, NASA might also need to develop a new

capability to develop a Moon base before the Chinese arrive

there and set up their own. These considerations depend on

the material, intellectual, and economic requirements to

achieve particular space operations. Conversely, the United

States may at some point decide to participate in one or more

new international ventures, adding interoperability and

interface constraints as well as new missions and objectives

for both spacecraft and software.

5. Decision Analysis

In this paper, we analyze three different system designs.

One is a traditional, inflexible architecture and the other two

incorporate various levels of flexibility by using a product

line approach. Software product lines provide great

opportunity for reuse because they exploit the presence of

shared requirements, architectural design, components,

modeling and analysis, testing, and process. The principal

activity associated with creating a product line architecture is

to identify variation points and develop a design that supports

them. Identifying variation points is a non-trivial process

because the software architects must decide both what

features of the architecture will be common to all instances of

the product family as well as how much detail should be

provided given the inherent tradeoff of rapid instantiation and

deployment versus high customizability.

Traditional Software Architecture—This design is the

historic approach used by NASA to develop spacecraft

software. Great effort goes into making the software safe and

reliable, but little to no effort goes into creating a design that

could be partially reused in the future for a different mission.

With the traditional approach, consideration of a new mission

includes a full analysis for its software suite, and committing

to each new mission may require near total redesign and

fresh implementation of the suite. Thus its long-term cost is

affected by the diversity of missions under consideration and

the number of mission types that reach planning stage or

 American Journal of Engineering and Technology Management 2019; 4(2): 47-56 50

implementation.

Moderate Product Line Architecture—This design will be

the first flexible approach. It is a compromise between

flexibility and rigidity. For the purpose of this research, we

define the following generic modules:

a) Data manager.

b) Task manager.

c) Telemetry manager.

d) Command manager.

e) Memory manager.

f) File System.

g) Instrument manager.

h) Attitude determination and control (ADCS).

i) Propulsion.

j) System manager.

Extreme Product Line Architecture—This design is the

most flexible, but directly supports the least functionality.

More work must be done to instantiate it into an executable

architecture, but it makes very few assumptions that would

provide problems in even radically different future missions.

Here we provide the following generic modules:

a) Task manager.

b) Telemetry manager.

c) ADCS.

Part of the intent is to support plug-and-play modules,

either in a software and physical component repository, or

provided through other sources, particularly for sensors and

actuators for exploration of planets and minor bodies or their

neighborhoods. It is thus also more compatible with

international efforts, or collaborations between NASA and

foreign or private space ventures, with the need for different

software interfaces for new sorts of new instruments, or for

radically different implementations of physical components

incompatible with the former interfaces.

In the coming decades, it is less likely (in the absence of

major developments such as general-purpose quantum

computing) that there will be opportunities for substantial

change in the area of task scheduling, telemetry, and attitude

determination and control. Scheduling algorithms and

operating system design are relatively mature disciplines

within software engineering and are not hindrances on

current missions; changes may affect design or

implementation of those components, but most likely not

functionality. The telemetry system in use now will hopefully

still exist in thirty years because of the infrastructure that has

been deployed on the Earth and in the satellite network. It

does not provide excellent bandwidth, but it is usually

sufficient. The mathematics currently employed for

computing attitude determination and control responses is

also mature and will likely be instantiated in a similar way in

the coming decades.

Below is a decision analysis tree. It looks at two periods

of uncertain funding for the three architectural approaches

utilizing subjective probabilities. Like all decision trees, it

enjoys the benefit of specificity—each possible scenario is

represented by a clear fork and node so that all possible

solutions clearly in a single view. A decision tree, as

illustrated here, can help decision makers understand better

the role of probability in their project as well as the nature

of the interaction of chance events and management

decisions. On the other hand, the decision tree analysis here

suffers from the common draw backs of decision trees such

as instability—sensitivity to parameters, complexity—large

trees are unwieldy and time-consuming to construct and

analyze, and the reality of sometimes displaying too much

information. Also, given the lack of data from which to

compute “objective probabilities,” decision trees are most

often dependent on “subjective probabilities,” i.e., expert

judgment. These probabilities are usually based on the

experts’ domain knowledge and industry experience [13].

The tree below is primarily developed to show the benefit

of the options analysis to follow. The authors’ intent here is

ultimately to show the utility of real options analysis to the

overall engineering management problem and so one should

not read too much into the particular subjective

probabilities.

Outcomes in Figure 1 are in units of capability per

dollar of investment. After carefully analyzing the tree, it

is clear that the traditional design approach should be

avoided. It is also clear that one should generally avoid

scrapping the architecture and starting fresh because if

subsequent funding is low, disaster will ensue. The

moderate product line and extreme product line approach

are very comparable with the current values in the tree. A

small change in values would likely tip the optimal

solution in one direction. Right now, the absolute highest

expected value is found in the extreme product line.

However, further analysis (expanding the tree or using

other intellectual tools) is needed to better differentiate the

two product line approaches. It seems that an optimal

strategy includes pursuing a product line and making

changes to it in the future, rather than abandoning it.

One missing and possibly unknowable set of parameters is

the likelihood of collaboration, the extent of sharing of

knowledge and of components, and the possible

opportunity/risk tradeoffs entailed. However, the first two of

these parameters largely derive from policy decisions, and

can be incorporated if desired; the third is likely to become

clearer in the near future. In general, the higher these

parameters, the clearer are the benefits of the extreme

approach.

Note: In Figure 1, modifying a product line architecture

in both low and high funding environments leads to the

same capability/$ because the additional money in the high

funding situation is unnecessary to attain the maximum

capability.

51 Joseph R. Laracy and Thomas Marlowe: A Real Options Analysis of Spacecraft Software Product Line Architectures

Figure 1. Decision Analysis Tree.

 American Journal of Engineering and Technology Management 2019; 4(2): 47-56 52

Figure 2. NASA Budget in 2019 Millions of Dollars.

6. Lattice Analysis

For the following analysis, we assume:

i. No major technological developments that would

require complete redesign, and;

ii. Collaboration between space ventures largely limited to

knowledge sharing and use of compatible hardware

(and possibly software) interfaces.

One of the salient uncertainties identified in earlier analysis

was the NASA budget. Software product line architectures are

particularly valuable when requirement changes necessitate a

new design, but the funding is not sufficient to build a new

system from scratch. They provide a way to economically and

safely instantiate a new spacecraft software system.

Figure 2 above plots the NASA budget from FY 2000 to

2019, according to the US Office of Management and

Budget. Although there is likely diverse opinion on the

suitability of selecting any particular time period, the authors

believe that the volatility in budget since the turn of the

century will likely continue in the coming years [14].

We now employ a binomial lattice analysis to explore the

budget uncertainty. Binomial lattice analysis makes three

fundamental assumptions. First, the evolution process is the

same over time, i.e., it is stationary. Second, each state in the

model leads to only two other states after one time period.

Third, each later state is a multiple of an earlier state. State S

evolves to u×S and d×S (by convention up > down).

A benefit of the lattice model is that it assumes path

independence—states coincide. Paths that lead “up then down”

arrive at the same state as paths that go “down then up.”

�	��S� 	� 	��� (1)

�	���� 	� 	��� (2)

Consequently, the model states increase linearly rather

than exponentially. For example, after 24 months there are 25

states (parameterized by the total number of d phases), not

~17 million that one would have from traditional decision

tree analysis! As a recombinatorial model, the binomial

lattice eliminates the so-called “curse of dimensionality.”

It should be noted that the binomial model does not allow

shifts from positive to negative values. The lowest value is

always positive. This is realistic, and in many situations

necessary, e.g., the NASA budget will not go negative. With

regard to the relationship between states, the relative value

between a lower and the next higher is constant = u/d.

S	�	��	and	�� (3)

Hence the ratio of:

��/��	 � 	�/� (4)

In our model:

i. S is the 2019 NASA budget.

ii. v is estimated annual growth, expressed as a

percentage.

iii. σ is the standard deviation of the annual budgets,

expressed as a percentage.

There are two conditions that must be met:

i. The average increase over a period is.

ν∆T = p ln (u) + (1 – p) ln (d)

ii. The variance of the distribution is the sum of weighted

squares of the observations.

σ2 ∆T = p [ln (u)] 2 + (1 – p) [ln (d)] 2 – {p [ln (u)] + (1 – p)
[ln (d)]}2

At this point there are 2 equations and 3 unknowns (u, d,
p). If we set ln (u) = – ln (d) then u = 1/d.

We then solve the previous equations and obtain:

�	 � 	
 	��√�	�	� (5)

�	 � 	 	
 	���√�	�	� (6)

�	 � 	0.5	 � 	0.5	�ν/σ�	√	Δ	� (7)

The calculated values can then be used directly in the

model. The assumption behind these calculations is that

actual probability distribution function (PDF) has a Gaussian

53 Joseph R. Laracy and Thomas Marlowe: A Real Options Analysis of Spacecraft Software Product Line Architectures

aspect to it. Recall that the value of an option is the increase

in expected value due to flexibility.

We then proceed with our lattice analysis using the

following parameters:

Table 1. Lattice Parameters.

S = $21,500.00

u = 1.04219265

v = 2%

d = 0.9595155

σ = 888.53 4% p = 0.74197369

∆t = 1

Applying the probability model to the outcome model leads to

a probability distribution on outcomes. Figure 3 shows the

probability density function resulting from the lattice analysis.

7. Options Valuation

There are many ways to analyze the uncertainty associated

with the NASA budget. Static analysis is the simplest,

although often a questionable technique. One may wish to

assume that because the budget goes up and down, it may be

prudent to model it as a constant, e.g., over the next six years.

Figure 3. Probability Density Function for the Binomial Lattice.

Table 2. Constant Budget Chart.

Year 0 1 2 3 4 5 6

Budget (Mil $) 21,500.00 21,500.00 21,500.00 21,500.00 21,500.00 21,500.00 21,500.00

PV (Mil $) 21,500.00 19,196.43 17,139.67 15,303.28 13,663.64 12,199.68 10,892.57

NPV (Mil $) 109,895.26

NB: Discount Rate = 12%.

Table 3. 1% Annual Increase Budget Chart.

Year 0 1 2 3 4 5 6

Budget (Mil $) 21,500.00 21,715.00 21,932.15 22,151.47 22,372.99 22,596.72 22,822.68

PV (Mil $) 21,500.00 19,388.39 17,484.18 15,766.98 14,218.44 12,821.98 11,562.68

NPV (Mil $) 112,742.65

Table 4. Binomial Lattice Chart Acknowledging Uncertainty.

Year 0 1 2 3 4 5 6

Budget (Mil $) 21,500.00 21,948.49 22,406.33 22,873.72 23,350.86 23,837.95 24,335.20

PV (Mil $) 21,500.00 19,596.86 17,862.19 16,281.06 14,839.89 13,526.29 12,328.97

NPV (Mil $) 115,935.26

A better approach may be to assume a 1% annual increase

because that is the average annual change from 2000 until

2019. Due to the visual constraints of the page, we apply the

analysis for six years in the future. The result is shown in

Table 3. Finally, one may wish to use a binomial lattice to

take into account the range of uncertainty; results for this

computation are shown in Table 4.

It is important to note the significant difference in total

budget over the seven years. The budget recognizing

uncertainty projects an additional $6,040,000,000 compared

to the constant funding budget! Additionally, the budget

assuming a 1% annual increase is $3,192,610,000 less than

the budget recognizing uncertainty. A dynamic decision

approach which permits the intelligent management

opportunities provided by a real option analysis is superior

because it better models the real world.

The budget lattice is presented in Table 5. As the table

indicates, the budget in year six can range from $16.7 billion to

$27.6 billion dollars. As time goes by, the probability that a

change will be needed increases. The following numerical

model accounts for this reality. We model this with an

exponential decay equation. By year seven, there is almost a

50% chance that a change will be needed, as shown in Figure 4.

Table 5. Outcome Lattice Chart in Millions of Dollars over Six Years.

0 1 2 3 4 5 6

21,500.00 22,407.14 2,3352.56 24,337.86 25,364.74 26,434.95 27,550.31

20,629.58 21,500.00 22,407.14 23,352.56 24,337.86 25,364.74

19,794.41 20,629.58 21,500.00 22,407.14 23,352.56

18,993.04 19,794.41 20,629.58 21,500.00

18,224.11 18,993.04 19,794.41

17,486.32 18,224.11

16,778.40

 American Journal of Engineering and Technology Management 2019; 4(2): 47-56 54

Figure 4. Probability of No Change Needed Graph.

Figure 5. Severity of Change Graph.

In addition, as time goes by, the necessary changes will

become more dramatic, as indicated in Figure 5. A non-

product line architecture will need to be abandoned when the

severity of the changes exceeds 0.5. The model assumes that

“no change” takes a value of zero and a completely new

system (great change) takes a value of 1.

After six years, the mission requirements may have

changed substantially so that after a few more years, the

original software architecture will likely need to be

completely abandoned.

Utilizing a better approach, if the system designers invest

the additional money to start with a product line architecture,

they will have the right, but not the obligation, to change the

functionality of the spacecraft software at comparatively low

cost.

Table 6 is the lattice for an estimated future budget for

spacecraft software only. It assumes that a constant portion,

3%, of each year’s budget is devoted to flight software.

Table 6. Spacecraft Software Budget Lattice Chart in Millions of Dollars over Six Years.

0 1 2 3 4 5 6

645.00 672.21 700.58 730.14 760.94 793.05 826.51

618.89 645.00 672.21 700.58 730.14 760.94

593.83 618.89 645.00 672.21 700.58

569.79 593.83 618.89 645.00

546.72 569.79 593.83

524.59 546.72

503.35

55 Joseph R. Laracy and Thomas Marlowe: A Real Options Analysis of Spacecraft Software Product Line Architectures

Table 7. Moderate Software Product Line Modified Lattice Chart in Millions of Dollars over Six Years.

0 1 2 3 4 5 6

1161 1142.764 154.1269 109.5204 68.48481 39.65242 22.31575

618.8875 141.9000 100.8321 63.05191 36.5068 20.54544

130.6431 92.83312 58.05000 33.61071 18.91557

85.46867 53.44489 30.94437 17.41500

49.20511 28.48956 16.03347

26.22948 14.76153

13.59050

By computing the expected value at each stage and

summing the results, we find that without a product line, the

seven years of flight software development will cost NASA

$ 4,807,576,098. This model assumes that the original

architecture cannot be changed. Every year, modules are

replaced, with every change destabilizing the system. It is

only a matter of time for the architecture is inadequate and all

the modules must be discarded.

In contrast, Table 7 above is not a “pure” lattice. The first

node is 1.8 times greater than the original first node because

it has been empirically observed that costs at year zero for

such a product line approach would be that much higher.

Similarly, the node in year one directly to its right is 1.7

times greater than the original. By year two the option is

exercised (the mission requirements and spacecraft hardware

have changed before the system is completed and the

developers get the updated requirements document – this is

often the case). Instead of paying full cost for the

modification, earlier code is reused, and the cost is only 22%

of the original. The assumption is made to exercise the option

at this time because the probability of change model predicts

approximately a 20% chance of a serious change and the

severity model predicts a severity of about 0.20. An informal

decision rule states that this scenario (two 0.20s) calls for a

software change. This change is realized by utilizing the

opportunities provided in the product line. Continuing the

analysis, in year three, only 15% of the predicted amount is

necessary, and so on. Instead of constantly building and

throwing away software modules with the strategy defined by

the table above, with the eventuality of throwing out

everything in year six, the product line offers equivalent

capability for significantly less development cost. The

“moderate product line” is employed here.

Table 7 clearly shows that the product line requires a very

large initial investment in the first two years (years zero and

one). However, starting in year two, using agile methods,

modules are able to be changed at very little cost. Even with

major changes, the use of techniques such as PPV-aware

design and refactoring helps keep the software artifact

configuration clean, comprehensible, and easily modifiable,

reducing complication and eliminating or at least deferring

the need to fully reengineer the suite. As requirements evolve

toward the “final” versions, the design is able to constantly

change and “converge” on a future, optimal software

architecture because the architecture is carefully maintained.

The total cost of the moderate product line approach is

$ 2,538,919,478. This is a savings of $ 2,268,656.62

compared to the non-product line approach. (This does not

include any savings in the spacecraft product line if agile

techniques are introduced there and coordinated with

software product line development.)

8. Conclusion

In our example, real options analysis supports the use of the

moderate product line architecture as the optimal solution to the

spacecraft software problem. When carefully parameterized,

engineering management decisions between “moderate” or

“extreme” product line approaches may be further explored.

Options analysis provides the needed flexibility to address the

uncertainties associated with NASA funding.

However, there are three factors that would argue for use

of the extreme product line architecture:

i. High likelihood of collaboration with private, foreign,

or international space ventures;

ii. High likelihood of multiple and radically different

sets of missions; or;

iii. The possibility of major technological developments

in physical components resulting in radically

different interfaces to those components.

We will explore the consequences of these, and the

resulting tradeoffs between the moderate and the extreme

models, in further research. The introduction of agile

techniques in the spacecraft product line, or other

coordinated interaction between the two development

processes, is also a potentially significant research topic, to

be explored in collaboration with others in the future. The

flexible approach to design and the valuation of options is

without a doubt a very valuable tool in assessing the

suitability of spacecraft software designs.

References

[1] Jim Bridenstine, “NASA Administrator Statement on Return
to Moon in Next Five Years,” Text, NASA, last modified
March 26, 2019, accessed March 27, 2019,
http://www.nasa.gov/press-release/nasa-administrator-
statement-on-return-to-moon-in-next-five-years.

[2] For example, see JPL Special Review Board, Report on the
Loss of the Mars Polar Lander and Deep Space 2 Missions,
March 22, 2000, accessed March 25, 2019,
https://spaceflight.nasa.gov/spacenews/releases/2000/mpl/mpl
_report_1.pdf.

[3] Israel Gat and Christof Ebert, “Technical Debt as a
Meaningful Metaphor for Code Quality,” IEEE Software 29,
no. 6 (November 2012): 18–21.

 American Journal of Engineering and Technology Management 2019; 4(2): 47-56 56

[4] “Software Product Lines Collection,” Carnegie Mellon
Software Engineering Institute, accessed March 25, 2019,
https://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=513819.

[5] Charles W. Krueger, “Introduction to the Emerging Practice of
Software Product Line Development,” Methods and Tools,
last modified Fall 2006, accessed March 25, 2019,
http://www.methodsandtools.com/archive/archive.php?id=45.

[6] Martin Fowler, with Kurt Beck, Refactoring: Improving the
Design of Existing Code, 2nd edition, Addison Wesley
Signature Series (Boston, MA: Addison Wesley, 2019).

[7] Craig Larman, Applying UML and Patterns: Introduction to
Object-Oriented Analysis & Design & Iterative Development,
3rd edition (Upper Saddle River, NJ: Prentice Hall, 2005).

[8] Kathryn Anne Weiss, “Incorporating Modern Development
and Evaluation Techniques into the Creation of Large-Scale,
Spacecraft Control Software” (PhD, Massachusetts Institute of
Technology, 2006), 3, accessed March 25, 2019,
http://dspace.mit.edu/handle/1721.1/35591.

[9] For more information, see Stephen Figlewski, William Silber,
and Marti Subrahmanyam, Financial Options: From Theory to
Practice (New York: McGraw-Hill, 1992).

[10] See Richard de Neufville, “Real Options: Dealing with

Uncertainty in Systems Planning and Design,” Integrated
Assessment 4, no. 1 (2003): 26–34; Richard de Neufville and
Stefan Scholtes, Flexibility in Engineering Design,
Engineering Systems (Cambridge, MA: The MIT Press,
2011).

[11] David Socha, Tyler C. Folsom, and Joe Justice, “Applying
Agile Software Principles and Practices for Fast Automotive
Development,” Proceedings of the FISITA 2012 World
Automotive Congress, Lecture Notes in Electrical
Engineering, vol. 196 (Berlin: Spring): 1033–1045.

[12] Jörgen Furuhjelm, Johan Segertoft, Joe Justice, and J. J.
Sutherland, “Owning the Sky with Agile: Building a Jet
Fighter Faster, Cheaper, Better with Scrum,” Global Scrum
Gathering, San Diego, CA 2017.

[13] For more information on decision trees, see Donald Dibra,
Project Valuation and Decision Making under Risk and
Uncertainty Applying Decision Tree Analysis and Monte
Carlo Simulation (Norderstedt, Germany: Books on Demand,
2015).

[14] For context, the costs of the Apollo spacecraft and Saturn
rockets came to about $107.43 billion in 2019 dollars. See
John Noble Wilford, We Reach the Moon: The New York
Times Story of Man’s Greatest Adventure (New York: Bantam
Books, 1969): 67.

