

American Journal of Information Science and Technology
2018; 2(2): 50-56

http://www.sciencepublishinggroup.com/j/ajist

doi: 10.11648/j.ajist.20180202.14

Transitions in System Analysis and Design Methodology

Nwakanma Ifeanyi Cosmas, Adu Folashade Christiana, Okafor Obinna Jeremiah,

Akuta Cletus Ikechukwu

Information Management Technology, Federal University of Technology, Owerri, Imo State, Nigeria

Email address:

To cite this article:
Nwakanma Ifeanyi Cosmas, Adu Folashade Christiana, Okafor Obinna Jeremiah, Akuta Cletus Ikechukwu. Transitions in System Analysis

and Design Methodology. American Journal of Information Science and Technology. Vol. 2, No. 2, 2018, pp. 50-56.

doi: 10.11648/j.ajist.20180202.14

Received: April 6, 2018; Accepted: May 10, 2018; Published: July 4, 2018

Abstract: Systems Analysis and Design is an exciting endeavour as well as an active field in which analysts continually

learn new techniques and approaches to develop systems more effectively and efficiently. Any organization that wants to have

a long-lasting impact on its target market, must be ready to invest its resources in planning and research, to ascertain whether a

new project is viable, partially viable or impracticable. This will either show the survival tendencies of the organization as it

relates to the project or its weaknesses in handling the project. Every system development inadvertently follows four phases,

which are: planning, analysis, design, and implementation. All complex systems can be decomposed into a nested hierarchy of

subsystems because the different facets of every individual organization are either a system, part of a system or a subsystem.

For an embodiment of various singular interconnected parts to be considered a system, it must have followed through with a

methodology or an approach. This paper utilizes expository methodology and drives towards giving a concise overview of the

various approaches to be adopted while developing a system. It begs to give more insight to the current methodologies in

systems development, the emerging approaches and the pros and cons. The authors investigate from inception to the current

methodologies, knowing full well that many occurrences in life happens in correspondence to dispensations, times and

seasons; just like winter and summer, the authors understudy the various dispensations to pin the prevalent methodologies in

certain time spaces, the advances or improvement as well as the advantages and disadvantages they have over others as time

progresses. In the process, old systems methodologies are improved to serve a larger target and the amount of work needed per

time reduces as new system methodology are developed over time.

Keywords: System Analysis, Design, Methodology, Complex System

1. Introduction

A system is composed of interrelated subsystems, each of

the latter being, in turn, hierarchic in structure until we reach

some lowest level of elementary subsystem [13]. “Every

system development inadvertently follows four phases,

which are: planning, analysis, design, and implementation”

[1]. “Systems development life cycle (SDLC) can be the

oldest formalized methodology framework for building

information systems” [12]. “All complex systems can be

decomposed into a nested hierarchy of subsystems” [16].

Critically however, not all these subsystems are of equal

importance (i.e., centrality). Some subsystems are “core” to

system performance, whereas others are only “peripheral”

[14]. System development follows a process line. System

development process is the process of dividing system

development work into distinct phases to improve design,

product management, and project management.

2. Phases of Sdlc

We have different phases in system development life cycle;

and they include the planning; analysis; design and

implementation.

2.1. Planning

The planning phase is the fundamental process of

understanding why an information system should be built and

51 Nwakanma Ifeanyi Cosmas et al.: Transitions in System Analysis and Design Methodology

determining how the project team will go about building it. It

has the project initiation sub phase, and here the system’s

business value to the organization is identified: Questions

like:

How will it lower costs or increase revenues?

2.2. Analysis

The analysis stage is very critical. The analysis phase

answers the questions:

1. who will use the system?

2. what the system will do?

3. where and when it will be used?

During this phase, the project team investigates any

current system (s), identifies opportunities for improvement,

and develops a concept for the new system. In this phase an

analysis strategy is developed to guide the project team’s

efforts. Such a strategy usually includes an analysis of the

current system (called the as-is system) and its problems and

then ways to design a new system (called the to-be system).

After developing the analysis strategy, requirements

gathering kicks off (e.g., through interviews or

questionnaires).

2.3. Design

The design phase decides how the system will operate, in

terms of the hardware, software, and network infrastructure;

the user interface, forms, and reports; and the specific

programs, databases, and files that will be needed. Although

most of the strategic decisions about the system were made in

the development of the system concept during the analysis

phase, the steps in the design phase determine exactly how

the system will operate.

2.4. Implementation

The final phase in the SDLC is the implementation phase,

during which the system is built (or purchased, in the case of

a packaged software design). This is the phase that usually

gets the most attention, because for most systems it is the

longest and most expensive single part of the development

process.

2.5. Systems Development Methodologies

A methodology is a formalized approach to implementing

the SDLC (i.e., it is a list of steps and deliverables) [1]. There

are several system development methodologies, and each one

is unique, based on the order and focus it places on each

SDLC phase. Some methodologies are formal standards used

by government agencies, whereas others have been

developed by consulting firms to sell to clients. Many

organizations have internal methodologies that have been

honed over the years, and they explain exactly how each

phase of the SDLC is to be performed in that company.

Historically, system development approaches have been

progressing and continually new methodologies emerge

yearly following a sequence is years.

Figure 1. Dispensation of system development approaches.

2.5.1. SDM

Structured programming since 1969 as the name suggests

deals with system structure. To fully appreciate it, however,

one must understand the full extent of the problem addressed

by structured programming.

Structured programming is a method of writing a computer

program that uses

(1) top-down analysis for problem solving,

(2) modularization for program structure and

organization, and

(3) structured code for the individual modules.

Top-down analysis: A program is written to tell a

computer what to do. This "job" is more formally called the

problem. However, before you can tell the computer what to

do, you must "solve" the problem yourself. In other words,

you must state every step necessary to accomplish the job.

This activity on your part is called problem solving or

problem analysis.

Top-down analysis is a method of problem solving. It tells

you how to start and guides you through the entire process.

The essential idea is to subdivide a large problem into several

smaller tasks or parts. Top-down analysis, therefore,

simplifies or reduces the complexity of the process of

problem solving.

 American Journal of Information Science and Technology 2018; 2(2): 50-56 52

Modular programming: Programs generally require many

instructions for the computer. Modular programming is a

method of organizing these instructions. Large programs are

broken down into separate, smaller sections called modules,

subroutines, or subprograms. Each module has a specific job

to do and is relatively easy to write.

Structured coding: If programs are broken down into

modules, into what are modules subdivided? Obviously, each

consists of a set of instructions to the computer. But are these

instructions organized in any special way? That is, are they

grouped and executed in any clearly definable patterns? In

structured programming they arc. They are organized within

various control structures. A control structure represents a

unique pattern.

2.5.2. SDM2

This is a beta version of SDM also called Cap Gemini

SDM, originally from PANDATA, the first English

translation was published in 1974 [20]. SDM stands for

System Development Methodology. The method is a

waterfall model divided in seven phases that have a clear

start and end. Each phase delivers (sub) products, called

milestones. It was used extensively in the Netherlands for

ICT projects in the 1980s and 1990s. PANDATA was

purchased by the Capgemini group in the 1980s, and the last

version of SDM to be published in English was SDM2 (6th

edition) in 1991 by CAP GEMINI PUBLISHING BV. The

method was regularly taught and distributed among

Capgemini consultants and customers, until the waterfall

method slowly went out of fashion in the wake of more

iterative extreme programming methods such as Rapid

application development, Rational Unified Process (RUP)

and Agile software development.

2.5.3. SSADM

Structured systems analysis and design method from 1980

onwards is a well-defined approach. It’s not new. The term

structured is borrowed from Structured Programming

(Randall, 1981). The word structured generally imposes a

structure or a disciplined approach on the design of the

system. SSADM is in fact a modified form of SDLC. Hence,

we can also call SSADM as SDLC using structured

techniques.

It consists of:

1. System Survey

2. Structured Analysis

3. Structured Design

4. Hardware Study

5. Implementation and

6. Maintenance

2.5.4. OOP

Object-oriented programming/Methodology (OOP)

developed in the early 1960s and became a dominant

programming approach during the mid-1990s as an approach

to of Building Systems takes the objects as the basis. For this,

first the system to be developed is observed and analysed and

the requirements are defined as in any other method of

system development. Once this is done, the objects in the

required system are identified. For example, in case of a

Banking System, a customer is an object, a chequebook is an

object, and even an account is an object [9]. The basic steps

of system designing using Object Oriented Methodology can

be listed as:

1. System Analysis

2. System Design

3. Object Design

4. Implementation

2.5.5. RAD

Rapid application development (RAD), has been on since

1991. The work of Boehm and Gilb paved the way for the

formulation of the methodology called Rapid Iterative

Production Prototyping (RIPP) at DuPont in the mid-to-late

1980s. James Martin then extended the work done at DuPont

and elsewhere into a larger, more formalized process, which

has become known as Rapid Application Development

(RAD). RAD compresses the step-by-step development of

conventional methods into an iterative process. The RAD

approach thus includes developing and refining the data

models, process models, and prototype in parallel using an

iterative process.

The challenges facing software development organizations

can be summarized as more, better, and faster. The RAD

development path attacks these challenges head-on by

providing a means for developing systems faster, while

reducing cost and increasing quality. Fundamentals of the

RAD methodology thus include:

1. Combining the best available techniques and

specifying the sequence of tasks that will make those

techniques most effective

2. using evolutionary prototypes that are eventually

transformed into the final product.

3. Using workshops, instead of interviews, to gather

requirements and review design.

4. Selecting a set of CASE tools to support modelling,

prototyping, and code re-usability, as well as

automating many of the combinations of techniques.

5. Implementing time boxed development that allows

development teams to quickly build the core of the

system and implement refinements in subsequent

releases

6. Providing guidelines for success and describing

pitfalls to avoid [5].

2.5.6. DSDM

Dynamic systems development method (DSDM), since

1994, the DSDM Project Framework embraces the project

delivery values and fully aligns with the product

development philosophy inherent in Scrum. The DSDM

Philosophy is that any project must be aligned to clearly

defined strategic goals and focus upon early delivery of real

benefits to the business. This is best achieved when all

stakeholders understand the business objectives, are

empowered to an appropriate level, and collaborate to deliver

the right solution. This solution will be delivered in the

53 Nwakanma Ifeanyi Cosmas et al.: Transitions in System Analysis and Design Methodology

agreed timescale, according to the priorities driven by the

business. As the project progresses, the stakeholders must

accept that change is inevitable as the understanding of the

solution deepens.

The eight DSDM principles underpin the Project

Framework and support the Philosophy. They bring the

Values to life by guiding the attitude that must be taken and

the mind-set that must be adopted to deliver consistently

whilst still remaining flexible. Compromising any principle

undermines the basic philosophy and introduces risk to the

successful outcome of the project. The eight Principles are:

1. Focus on the business need

2. Deliver on time

3. Collaborate

4. Never compromise quality

5. Build incrementally from firm foundations

6. Develop iteratively

7. Communicate continuously and clearly

2.5.7. Scrum

Since 1995 is the most widely practiced Agile process, has

been successfully used in software development for the last

20 years. While Scrum has been mostly practiced in a

commercial software environment, the methodology has been

successfully applied to education, manufacturing and an

array of other industries.

Scrum uses the Divide and Conquer rule. Scrum divides

complex work into simple pieces, large organizations into

small teams and far-reaching projects into a series of short

time horizons called sprints.

When complex work is divided into simple pieces it is

easier to map out what needs to be done. With a clear

roadmap the team can start working immediately, know what

items need to be worked on together and understand when

the job has been completed.

Scrum begins with the product vision. The product owner

translates the vision into the product backlog. Once the

product backlog has been established, the team can start

sprinting. To start a sprint, the team must first conduct sprint

planning. Sprint planning should be limited to no more than

two hours for every week of sprint. The idea behind sprint

planning is to have one comprehensive meeting that maps out

what needs to be done by the end of the Sprint. An item in

the backlog is ready if it is independent, actionable, has been

assigned a point value and has a clear definition of the

criteria that means it is done. This in turn is referred to as the

definition of done which ensures everyone knows exactly

what is expected of an item when it is delivered. The team

creates a sprint goal once the sprint backlog has been created.

This goal should articulate the high-level purpose of the

items in the sprint backlog. In simpler terms, the goal

provides context for why the team is working on the selected

backlog items. A goal may be as simple as reaching a certain

level of functionality. “By the end of this sprint the team will

demonstrate how the program can save e-mail addresses

automatically.” After sprint planning the team gets to work

and meets every day for the daily scrum. During the daily

scrum, each team member answers three questions:

1. What did I do yesterday that help the Team meet the

Sprint Goal?

2. What will I do today to help the Team meet the Sprint

Goal?

3. Do I see any impediment that prevents me, or the Team

from meeting the Sprint Goal?

The daily scrum is not a status report. If an impediment is

surfaced during the daily scrum that is too big to resolve

during the meeting, the team should coordinate outside of the

meeting to address it. The Scrum Master is the team member

responsible for removing impediments. In addition to the

daily scrum, the team should spend 5-10% of its time looking

ahead and refining the items at the top of the product

backlog. This is called backlog refinement. It is not an

official Scrum ceremony, but it is a best practice. During

refinement, just as in sprint planning, the team focuses on the

top of the product backlog to make sure those items are ready

to be brought into the next sprint. At the end of each sprint,

the team invites the stakeholders and customers to a

demonstration of what it has completed. This ceremony,

called sprint review, is designed to elicit actionable feedback

from the stakeholders and customers, which the team can

then incorporate into the product backlog. The demonstration

produces a conversation between the team and the

stakeholders about how to make the product better. The

product owner incorporates the lessons learned during the

conversation into the product backlog. This completes one of

what is hopefully many inspect and adapt cycles. After sprint

review, the team gathers for the final ceremony of the sprint,

sprint retrospective. The retrospective is the team’s

opportunity to inspect and adapt its processes. A common

way to structure a sprint retrospective is to have each team

member answer the following questions:

1. What went well?

2. What could have been better?

3. What things can we try to improve in the coming

sprint?

The discussion about what could have been better often

leads to an analysis of what the underlying cause might be. A

consensus about what improvement to make in the next

sprint usually starts to emerge. This single process change is

added to the next sprint’s backlog and given a definition of

done.

2.5.8. RUP

Rational Unified Process, maintained by IBM since 1998.

The Rational Unified Process is a software engineering

process. It provides a disciplined approach to assigning tasks

and responsibilities within a development organization. Its

goal is to ensure the production of high-quality software that

meets the needs of its end users within a predictable schedule

and budget. There are three central elements that define RUP:

1. An underlying set of principles for successful software

development. These principles are the foundation on

which the RUP has been developed.

2. A framework of reusable method content and process

 American Journal of Information Science and Technology 2018; 2(2): 50-56 54

building blocks. A family of method plug-ins defines a

method framework from which you create your own

method configurations and tailored processes.

3. The underlying method and process definition language.

A unified method architecture meta-model that provides

a language for describing method content and

processes.

The Rational Unified Process captures many of the best

practices in modern software development in a form that is

suitable for a wide range of projects and organizations. Along

with many others, it covers major practices:

1. Develop software iteratively.

2. Manage requirements.

3. Use component-based architectures.

4. Visually model software.

5. Continuously verify software quality.

6. Control changes to software.

2.6. Extreme Programming

Since 1999 is a lightweight, efficient, low-risk, flexible,

predictable, scientific, and fun way to develop a software.

eXtreme Programming (XP) was conceived and developed to

address the specific needs of software development by small

teams in the face of vague and changing requirements.

Extreme Programming is one of the Agile software

development methodologies. It provides values and

principles to guide the team behaviour. The team is expected

to self-organize. Extreme Programming provides specific

core practices where

1. Each practice is simple and self-complete.

2. Combination of practices produces more complex and

emergent behaviour.

A key assumption of Extreme Programming is that the cost

of changing a program can be held mostly constant over

time. This can be achieved with

1. Emphasis on continuous feedback from the customer

2. Short iterations

3. Design and redesign

4. Coding and testing frequently

5. Eliminating defects early, thus reducing costs

6. Keeping the customer involved throughout the

development

7. Delivering working product to the customer

Extreme Programming involves

1. Writing unit tests before programming and keeping all

of the tests running at all times. The unit tests are

automated and eliminates defects early, thus reducing

the costs.

2. Starting with a simple design just enough to code the

features at hand and redesigning when required.

3. Programming in pairs (called pair programming), with

two programmers at one screen, taking turns to use the

keyboard. While one of them is at the keyboard, the

other constantly reviews and provides inputs.

4. Integrating and testing the whole system several times

a day.

5. Putting a minimal working system into the production

quickly and upgrading it whenever required.

6. Keeping the customer involved all the time and

obtaining constant feedback. Iterating facilitates the

accommodating changes as the software evolves with

the changing requirements.

i. AUP: Agile Unified Process is maintained since 2005

by Scott Ambler. “The agile unified process is a hybrid

modelling approach created by Scott Ambler when he

combined the Rational Unified Process (RUP) to agile

methods (AM)” [6]. Scott Ambler works for the IBM

Methods group as the practice leader for agile

development (IBM, n.d.). By combining RUP to AM,

Ambler created a solid process framework that can be

applied to all sorts of software projects, large or small.

Agile methods provided values, principles, and practices

to AUP. The agile manifesto shows what these values and

principles are. The manifesto describes four value

statements for agile development. These values include

individuals and their actions, delivering working software,

customer collaboration, and responding to change

(Sutherland & et al., 2001). The principles described in

the manifesto include satisfying the customer through

early and continuous software deliverables, welcoming

change, developers and business collaborating throughout

the project, building projects through motivated

individuals, using the most effective means of conveying

information like face to face.

When Ambler created the AUP, he centred the design

around the following principles:

1. Most people won't read detailed documentation.

However, they will need guidance and training now

and then.

2. The project should be described simply in a few pages.

3. The AUP conforms to the values and principles

described by the Agile Alliance.

4. The project must focus on delivering essential value

rather than unnecessary features.

5. Developers must be free to use tools best suited to the

task at hand, rather than to comply with an edict.

6. AUP is easily tailored via common HTML editing

tools. Source: (Ambler, 2005).

ii. DAD: Disciplined agile delivery Supersedes AUP.

Many organizations start their agile journey by

adopting Scrum. However, Scrum is only part of what

is required to deliver sophisticated solutions to your

stakeholders. Invariably teams need to look to other

methods to fill in the process gaps that Scrum

purposely ignores. When looking at other methods

there is considerable overlap and conflicting

terminology that can be confusing to practitioners as

well as outside stakeholders. To address these

challenges, the Disciplined Agile Delivery (DAD)

process decision framework provides a more cohesive

approach to agile solution delivery. To be more exact,

here is a definition “The Disciplined Agile Delivery

(DAD) decision process framework is a people-first,

learning-oriented hybrid agile approach to IT solution

55 Nwakanma Ifeanyi Cosmas et al.: Transitions in System Analysis and Design Methodology

delivery. It has a risk-value delivery lifecycle, is goal-

driven, is enterprise aware, and is scalable.” [3]

DAD is a hybrid approach which extends Scrum with

proven strategies from Agile Modelling (AM), Extreme

Programming (XP), Unified Process (UP), Kanban, Lean

Software Development, Outside in Development (OID) and

several other methods. Although DAD was originally

developed by IBM, it is a non-proprietary, freely available

framework that does not require IBM tooling in any way.

DAD extends the construction-focused lifecycle of Scrum to

address the full, end-to-end delivery lifecycle from project

initiation all the way to delivering the solution to its end

users. It also supports lean and continuous delivery versions

of the lifecycle unlike other agile methods, DAD doesn’t

prescribe a single lifecycle because it recognizes that one

strategy does not fit all.

iii. SAFe®: The Scaled Agile Framework is a freely

revealed knowledge base of proven, integrated patterns

for enterprise-scale Lean-Agile development. It is

scalable and modular, allowing each organization to

apply it in a way that provides better business

outcomes and happier, more engaged employees [7].

SAFe synchronizes alignment, collaboration, and

delivery for large numbers of Agile teams. It supports

both software and systems development, from the

modest scale of well under 100 practitioners to the

largest software solutions and complex cyber-physical

systems, systems that require thousands of people to

create and maintain. SAFe was developed in the field,

based on helping customers solve their most

challenging scaling problems. It leverages three

primary bodies of knowledge: Agile development,

Lean product development, and systems thinking.

SAFe can be configured with the three or four

organizational levels described below:

1. Team level – SAFe is based fundamentally on Agile

teams. Each team is responsible for defining, building,

and testing stories (small pieces of new functionality)

from their backlog. Teams deliver value in a series of

fixed-length iterations (also called sprints). Teams use

a common iteration cadence to synchronize work with

other teams; this allows the entire system to iterate

simultaneously. Teams employ Scrum (primarily) or

Kanban methods. Each of these methods is augmented

by built-in quality practices. Many software quality

practices are derived from eXtreme Programming,

while hardware and system quality practices are

derived from contemporary Lean product

development practices.

2. Program level – SAFe teams are organized into a

virtual program structure called the “Agile Release

Train” (ART). Each ART is a long-lived, self-

organizing team of Agile teams (typically 5 to 12),

along with other stakeholders, that plan, commit,

execute, inspect, and adapt together. ARTs are

organized around the enterprise’s significant value

streams. They align teams to a common mission,

provide architectural and user experience guidance,

facilitate flow, and provide continuous objective

evidence of progress.

3. Value Stream level – The optional Value Stream level

supports the development of large and complex

solutions. These solutions require multiple,

synchronized ARTs, as well as stronger focus on

solution intent and solution context. Suppliers and

additional stakeholders contribute to this level as well.

Pre-and Post-Program Increment (PI) planning inform

the ARTs (and vice versa) of the Value Stream

mission and objectives.

4. Portfolio level – The Portfolio level organizes and

funds a set of value streams. The value streams realize

a set of solutions, which help the enterprise achieve its

strategic mission, as defined in part, by a set of

strategic themes. The Portfolio level provides solution

development funding via Lean-Agile budgeting, any

necessary governance, and coordination of larger

development initiatives that affect multiple value

streams.

5. Foundation layer – The Foundation layer holds

various additional elements that support development.

Elements of the Foundation layer include: Lean-Agile

Leaders, Communities of Practice, Core Values, Lean-

Agile Mindset, and Principles.

iv. LeSS: Large-Scale Scrum provides two different large-

scale Scrum frameworks. Most of the scaling elements

of LeSS are focused on directing the attention of all the

teams onto the whole product instead of “my part.”

Global and “end-to-end” focus are perhaps the

dominant problems to solve in scaling. The two

frameworks which are basically single-team Scrum

scaled up are:

1. LeSS: Up to eight teams (of eight people each).

2. LeSS Huge: Up to a few thousand people on one

product.

3. Conclusion

From the various dispensations highlighted above, the

improvement in system development has been explosive.

The trends observed in software engineering include

finding and eliminating defects earlier in the development

life cycle to cut costs and increase speed and efficiency.

Elaborate, analyse, and verify the models before

development. Coding, which is the heart of development

is not given enough emphasis because without a

methodology, then there won’t be needing to codify.

Testing is the gateway to check for defects before delivery.

Limiting resources (mainly team) to accommodate budget.

The emerging Methodologies depicts dynamism in how

SDLC can be done better and faster. There is also

tendency that many improvements will happen soon,

because problems never finish, so also solutions.

 American Journal of Information Science and Technology 2018; 2(2): 50-56 56

References

[1] A. Dennis, B. Haley and R. Roth, Systems Analysis and
Design, 5th ed. 2015.

[2] A. Scott, The agile unified process (AUP), 2005. [Online].
Available:
http://www.ambysoft.com/unifiedprocess/agileUP.html.
[Accessed: Nov 24, 2017].

[3] A. Scott, Going Beyond Scrum Disciplined Agile Delivery,
2013. [Online]. Available:
https://disciplinedagileconsortium.org/Resources/Documents/
BeyondScrum.pdf. [Accessed: Jan 2, 2018].

[4] B. Bruegge, Methodologies: Extreme Programming and
Scrum "Introduction into Software Engineering" 2006.
[Online]. Available:
https://www1.in.tum.de/lehrstuhl_1/files/teaching/ss07/SE/SE
2007_Lecture23.pdf. [Accessed: Dec 18, 2017].

[5] CASE Maker Inc. What is Rapid Application Development,
1997. [Online]. Available:
http://www.iro.umontreal.ca/~dift6803/Transparents/Chapitre1
/Documents/rad_wp.pdf. [Accessed: Dec 18, 2017].

[6] C. Ioannis, P. Stravos and P. Eleni, Using the agile unified
process in banking, Apr, 2010. [Online]. Available:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=52
32801. [Accessed: Dec 18, 2017].

[7] D. Leffingwell, Overview of the scaled Agile Framework for
Lean software and Systems Engineering, 2016. [Online].
Available: https://www.iconagility.com/docs/SAFe-Fact-
Sheet.pdf. [Accessed: Feb 3, 2018].

[8] E. Geoffrey, Global Business Information Technology, 2004.

[9] Freetutes. Object Oriented Methodology, 2017. [Online].
Available: http://www.freetutes.com/systemanalysis/sa2-
object-oriented-methodology.html. [Accessed: Feb 5, 2018].

[10] IBM Software Group Rational Unified Process: A Best
Practices Approach, 2012. [Online]. Available:
http://www.eecg.toronto.edu/~jacobsen/courses/ece1770/slide
s/rup.pdf. [Accessed: Feb 4, 2018].

[11] LeSS Company B. V. LeSS Framework, 2016. [Online].
Available: https://less.works/less/framework/index.html.
[Accessed: Nov 24, 2017].

[12] M. Elliott and W. Scacchi, “Free software development:
cooperation and conflict in a virtual organizational culture”, in
Koch, S. (Ed.), Free/Open Source Software Development,
Idea Group Publishing, Hershey, PA, pp. 152-72, 2004.

[13] M. James Grier, Living systems: basic concepts. Behavioural
Science 10, 1965.

[14] M. L. Tushman and L. Rosenkopf, "Organizational
Determinants of Technological Change: Toward a Sociology
of Technological Evolution," Research in Organizational
Behaviour, Vol 14: pp. 311-347, 1992.

[15] S. James, Analysis and Design of Information Systems. New
York: McGraw-Hill, 1989.

[16] S. Herbert, “The Architecture of Complexity,” Proceedings of
the American Philosophical Society 106: pp. 467-482,
reprinted in idem. (1981) The Sciences of the Artificial, 2nd
ed. MIT Press, Cambridge, MA, pp. 193-229, 1962.

[17] ScrumInc The Basics of Scrum An introduction to the
framework, 2014. [Online]. Available:
https://34slpa7u66f159hfp1fhl9aur1-wpengine.netdna-
ssl.com/wp-content/uploads/2014/06/The-Basics-of-
Scrum.pdf. [Accessed: Nov 24, 2017].

[18] S. Jeff, Manifesto for agile software development, Feb. 2,
2001. [Online]. Available: http://agilemanifesto.org/.
[Accessed: Dec 12, 2017].

[19] W. Jensen, Structured Programming, 1981. [Online].
Available:
https://pdfs.semanticscholar.org/3a86/903b274c6b24217885b
638a74521032a708e.pdf. [Accessed: Dec 27, 2017].

[20] Wiki books Introduction to Software
Engineering/Process/Methodology, 2018. [Online]. Available:
https://en.wikibooks.org/wiki/Introduction_to_Software_Engi
neering/Process/Methodology. [Accessed: Feb 19, 2018].

