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Abstract: Based on the reason that the traditional buffer operator cannot adjust the action intensity, this paper proposes a 

positive real order weakening buffer operator, which solves the disadvantage that the original operator cannot be fine-tuned, and 

is more suitable for real life systems. By defining positive real order weakening buffer operator and according to the combination 

number and the nature of gamma function, the two are connected, and the positive real order weakening buffer sequence is 

transformed by gamma function. Next a quadratic time-varying linear parameter grey discrete prediction model (QTDGM) is 

established by using the constructed positive real order weakening buffer operator. The iterative optimization method of 

simulation base value is given, and the optimization model is established and the solution algorithm is proposed. Finally, the 

steps of modeling and forecasting by using QDGM model are described. In the case of science popularization fund forecast and 

raw coal output forecast, QTDGM model shows superior prediction effect. The relative error of the model is 0.34% ~ 7% in the 

three cases, which is much lower than that of the model using integer order weakening buffer operator and also lower than that of 

the linear time-varying parameter grey discrete model. QTDGM is more suitable for complex sample systems. 

Keywords: Grey System, Fractional Order Buffer Operator, Qtdgm, Iteration and Optimization 

 

1. Introduction 

In fact, data prediction is to infer the law of development of 

things from the observed data, and then predict and estimate the 

unknown data according to the inferred law. The key is to 

effectively infer the law of development of things. Model-based 

forecasting method is to estimate the parameters of the model 

by establishing a parametric model matching the development 

of things and using the existing nonnegative observation data, 

so as to obtain the law of things' development. In order to 

improve the reliability and accuracy of prediction, the first 

condition is to select a good prediction model. Excellent 

prediction model means that the development law and matching 

between the model and things, as well as the number of model 

parameters are small. Less parameter model is conducive to 

reducing errors and improving prediction accuracy. 

From the point of view of prediction error, besides choosing 

a good prediction model, the model-based prediction method 

will also face two problems in the process of dealing with the 

actual system: Firstly, due to the limitation of actual conditions, 

the observed data cannot accurately map with the actual data, 

and there are often uncertain disturbance components, that is, 

the observed data is noisy; The law of development of things is 

not constant, it is usually a slow process, that is to say, the 

parameters of the model are time-varying. From the point of 

view of the realization of model parameter estimation, the two 

problems are contradictory: Because the parameters of the 

model are time-varying, the weight of the parameters should be 

concentrated on the observation values closest to the predicted 

data as far as possible, so that the parameters of the model can 

be matched quickly and the errors caused by the changes of the 

parameters can be reduced. On the other hand, from the point of 

view of weakening the uncertain impact disturbance, it is 

necessary to spread the weights of parameter estimation to 

different observation values as far as possible. Then the 

smoothing method is used to reduce the prediction error caused 

by disturbance components. 

With the growing demand for reliable small sample 

statistics, small sample prediction becomes a very important 
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topic. Over the years, scholars have done in-depth research on 

the prediction of small sample non-stationary time series. The 

prominent problem is that, for non-stationary time series, 

when the system is seriously affected by disturbances, the 

available data in the past cannot truly reflect the law of the 

system. Therefore, in order to reduce the disturbance bound of 

the prediction model, positive real order weakening buffer 

operator is introduced to fine-tune the original sequence to 

improve the prediction accuracy. 

As a novel prediction method, grey system [1] uses 

accumulation operator to improve the matching degree 

between data sequence and selected model [2], and uses 

buffer operator to reduce the impact of disturbance. By 

choosing a good model with few parameters, the grey system 

can effectively predict the system with few data and poor 

information. Therefore, in dealing with disturbances, the grey 

system allocates the weight of parameter estimation to the 

observed data by choosing different buffer operator, i.e. 

different weight allocation schemes. 

On the basis of document [3-5], a discrete grey model with 

quadratic time-varying parameters is established by 

introducing a weakening buffer operator of positive real order. 

Case studies show that the model has good simulation and 

prediction accuracy. By comparing the prediction results of 

positive real order and integer order operator, the model 

established by positive real order weakening buffer operator 

can reasonably distribute the weights of each nonnegative 

observation data, so it can achieve more accurate parameter 

estimation. The positive real order weakening buffer operator 

is more suitable for complex real systems.  

2. The Construction of Positive Real 

Order Weakening Buffer Operator 

The classical weakening buffer operator fully considers the 

priority of each data, while the variable weight weakening 

buffer operator only considers the priority of the latest data. 

Therefore, considering the comprehensive utilization of the 

original data information, the classical weakening buffer 

operator is a good buffer operator. It is easy to prove that the 

higher the order of the classical weakening buffer operator, the 

better the effect of new information and the better the 

prediction quality. However, the classical weakening buffer 

operator cannot achieve the fine-tuning of the buffer effect 

intensity. In this paper, the positive real order weakening 

buffer operator is introduced. 

Lemma1 X
(0)

 is the nonnegative observation data sequence. 

The matrix of the 1 order weakening buffer operator D is: 
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Where A is the matrix form of D. The matrix form of the 

two order weakening buffer operator D is: 
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Then ( )r r N +∈  order weakening buffer operator:  
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The bigger the r the weaker the effect of the buffer operator 

is, the more powerful the new information is. The following 

theorem shows that when r<0, the original formula becomes 

an reinforcement buffer operator.  

Theorem 1 When 0r < , 
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D is the reinforcement buffer operator. 

Proof when r = -1, 
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If nonnegative observation data sequence (0)X  is a 

monotonic attenuation sequence, according to
(0) (0)( ) ( ) ,T TA X X≤  A is a reversible matrix. Therefore 

1 (0) 1 (0)( ) ( ) ,T TA A X A X− −≤ and (0) 1 (0)( ) ( ) ,T TX A X−≤  i.e. 

D-1 is an reinforcement buffer operator for monotonic 

attenuation sequences. For the same reason, D-1 is an 
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reinforcement buffer operator for monotonically increasing 

sequences. 

If X(0) is the oscillation sequence, let 

(0) (0)

(0) (0)

( ) max{ ( ), 1, 2, },

( ) min{ ( ), 1, 2, }.

x l x k k n

x h x k k n

= =

= =

⋯

⋯
        (6) 

(0) (0)

(0) (0)

(0) (0)

( ) ( )

( ) ( )
,

( ) ( )

x l x l

x l x l
A

x l x l

   
   
   ≤   
   
   
   

⋯ ⋯
A is a reversible matrix.

(0) (0)

(0) (0)
1 1

(0) (0)

( ) ( )

( ) ( )
,

( ) ( )

x l x l

x l x l
A A A

x l x l

− −

   
   
   ≤   
   
   
   

⋯ ⋯
 and

(0) (0)

(0) (0)
1

(0) (0)

( ) ( )

( ) ( )
.

( ) ( )

x l x l

x l x l
A

x l x l

−

   
   
   ≤   
   
   
   

⋯ ⋯

For the same reason, 

(0) (0)

(0) (0)
1

(0) (0)

( ) ( )

( ) ( )
,

( ) ( )

x h x h

x h x h
A

x h x h

−

   
   
   ≥   
   
   
   

⋯ ⋯
 therefore 

D-1 is the enhanced buffer operator of the oscillation sequence. 

For the same reason, when r<0, 
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D is an reinforcement buffer operator.  

Inference 1 When r>0, If the non-negative matrix A 

satisfies the condition  
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is the reinforcement (weakening) buffer operator, then  
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The mathematical expressions of the positive real order 

weakening buffer operator and the positive real order 

weakening buffer sequence are as following. 
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According to the properties of the Gamma function [6]: 
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The concept of positive real order is introduced. 

Definition 3 The nonnegative observation data Sequence
(0) (0) (0) (0)
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For the positive real order weakening buffer sequence, the 

matrix formula is as follows: 
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A is the matrix 

form of the positive real order weakening buffer operator D. 

3. Quadratic Time-Varying Parameters 

Discrete Grey Model (QTDGM) 

For the actual application of the data, it is distorted by 

interference from many external shock factors. In order to 

accurately mine the law of things. In this paper, a quadratic 

time-varying parameters discrete grey model based on 

positive real order weakening buffer operator is proposed. 

Let the nonnegative observation data sequence be 
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     

= =     
     
     
          
     



=



.


 
 
 
 
 
 
  



          (23) 

QTDGM can be obtained by using the estimated parameters. Thus variables (0)
1( 1)x k d+  is predictable. 

Definition 5 The parameter estimates of QTDGM are shown in theorem2. The recursive formula of the first cumulative 

simulation value of sequence (0)x  is as follows: 

(0) 2 (0) 2
1 1 2 3 1 4 5 6

ˆ ˆ ˆ ˆ ˆ ˆˆ ( 1) ( ) ( )x k d k k x k d k kβ β β β β β+ = + + + + +                        (24) 

The simulated value of reduction is: 

(0) (1) (1) (1) (1)ˆ ˆ ˆ ˆ( 1) ( 1) ( 1) ( )x k x k x k x kα+ = + = + −                             (25) 

4. Model Properties 

Theorem 3 Let (0)x be a nonnegative observation data sequence, where (0) ( ) , 1, 2,akx k e k= = ⋯ , (0)x̂  is the predicted value of 

QTDGM. Therefore (0)ˆ ( ) , 1, 2,akx k e k n= = ⋯ . 

Proof Let 1 2 3 4 5 6, , , , , ,A B B B B B B is the intermediate parameter of QTDGM parameter estimation value. 

(0) ( ) , 1, 2,akx k e k= = ⋯ so (1) (1)( 1) ( ) , 1,2,a ax k e x k e k+ = + = ⋯ . 

According to theorem 2,  
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            (26) 

Similarly, 2 3 4 5 60, 0, 0, 0, aB B B B B e A= = = = = . 

Therefore

1 2 3 4 5 6
ˆ ˆ ˆ ˆ ˆ ˆ, 0, 0, 0, 0,

a a
e A e Aβ β β β β β= = = = = = . 

So, according to QTDGM and Definition 5, 

(1) (1) 2 ( 1)ˆ ˆ( 1) ( )a a a a k ax k e x k e e e e ++ = + = + +⋯     (27) 

(0) ( 1)ˆ ( 1) , 1, 2,k ax k e k n++ = = ⋯           (28) 

Theorem 3 shows that the QTDGM has white exponential 

coincidence, so it has better simulation and prediction effect 

for high growth sequence. 

Theorem 4 Let (0)x be a nonnegative observation data 

sequence, where (0) ( ) , 1,2,x k a kb k= + = ⋯ , (0)x̂  is the 

predicted value of QTDGM, therefore 
(0)ˆ ( ) , 1,2,x k a kb k n= + = ⋯ .  

Proof: process same as Theorem 3. 

Theorem 4 shows that the QTDGM can fully simulate 

linear sequences. 

Theorem 5 Let (0)x be a nonnegative observation data 

sequence, where (0) 2( ) , 1,2,x k a kb k c k= + + = ⋯ , (0)x̂  is the 

predicted value of QTDGM, therefore 
(0) 2ˆ ( ) , 1,2,x k a kb k c k n= + + = ⋯ .  

Proof: process same as Theorem 3. 

Theorem 5 shows that QTDGM can completely simulate 

quadratic sequence. 

Theorem 6 Let nonnegative observation data sequenceis the 

multiplicative transformation of (0)X , where

(0) (0)( ) ( ), 0.y k px k p= ≥  The estimated values of their 

respective parameters obtained from QTDGM are 

, , 1, 2, 6xi yi iβ β = ⋯ , respectively. And

, 1, 2,3 6xi yi iβ β= = ⋯ . 

Proof: According to theorem 2, it is obvious that it can be 

proved. 

Theorem 7 Let nonnegative observation data sequence is 

the multiple transformation of (0)X , where

(0) (0)( ) ( ), 0.y k px k p= ≥   

The estimated values of predicted value obtained from 

QTDGM are (0) (1) (0) (1)ˆ ˆ ˆ ˆ( ), ( ), ( ), ( )y k y k x k x k , respectively. 

And (1) (1) (0) (0)ˆ ˆ ˆ ˆ( ) ( ), ( ) ( ).y k px k y k px k= =  

Proof According to theorem 6, it is obvious that theorem 7 

can be proved. 

Theorem 6 and 7 describe the influence of multiple 

transformation on the parameters and simulation values of 

QTDGM, and prove that the model has consistency of scalable 

transformation. The multiple transformation of the original 

nonnegative observation data sequence does not affect the 

relative error of the simulation and prediction values of the 

model. In order to avoid the ill-posed problem of the model, 

when the observation value of the original sequence is large, 

the necessary processing is needed in advance [7, 8]. 
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5. Model Base Value Iterative 

Optimization 

For the sake of analysis, section 5 discusses the selection 

iteration base value of the model. The model of the least 

squares fit is assumed to pass the point (0)(1, (1))x  in the 

plane coordinate system. When the modeling data (0)X  is a 

special sequence such as exponential linearity, the hypothesis 

is valid. However, according to the principle of least squares, 

the fitting curve does not necessarily pass through point 
(0)(1, (1))x , so it is necessary to optimize the model iterative 

base value to avoid error accumulation and transmission [9, 

10]. Consider adding a base value correction term to the 

definition 4 model to obtain the modified model as shown 

below:  

(0) 2 (0) 2
1 1 2 3 1 4 5 6

(0) (0)
1

ˆ ˆ ˆ ˆ ˆ ˆˆ ( 1) ( ) ( ) , 1,2,3, 1

ˆ (1) (1)

x k d k k x k d k k k n

x d x

β β β β β β

ε

+ = + + + + + = −

= +

⋯
                    (29) 

And ˆ , 1, 2,3, 4,5, 6i iβ =  is obtained by theorem 2. By iterating, the formula is changed as following:  

(0) (0)
1

(0) 2 (0)
1 1 2 3 1 4 5 6

(0) 2 (0) 2
1 1 2 3 1 4 5 6

ˆ (1) (1)

ˆ ˆ ˆ ˆ ˆ ˆˆ (2) ( ) (1)

ˆ ˆ ˆ ˆ ˆ ˆˆ ( ) ( ( 1) ( 1) ) ( 1) ( 1) ( 1)

x d x

x d k k x d

x n d n n x n d n n

ε

β β β β β β

β β β β β β

= +

= + + + + +

= + − + − − + − + − +

⋯
              (30) 

And (0)
1

ˆ ( ) , 1,2,x k d k n= ⋯  is a polynomial about ε . In 

order to minimize the error of simulation value, an 

optimization model is established:  

2

(0) (0)
1 1

1

ˆmin ( ( ) ( ) )

n

k

Q x k d x k d

=

= −∑         (31) 

And Q Is a quadratic polynomial about ε .  
2ε  coefficients are positive real numbers, according to , ε

can be obtained. Due to 
2

2
0

d Q

dε
> , ε  is the minimum point 

of Q. 

In summary, the modeling optimization and prediction 

process of QTDGM can be divided into the following steps: 

Step1: Get the model parameter ˆ , 1, 2, ,6i iβ = ⋯  value 

according to theorem 2; 

Step2: Calculate (0)
1

ˆ ( ) , 1,2,x k d k n= ⋯  by formula (30). 

And calculate 

2

(0) (0)
1 1

1

ˆmin ( ( ) ( ) )

n

k

Q x k d x k d

=

= −∑  

containing ε by formula (30); 

Step3: Solve the formula (31) optimization problem and get 

the iterative base value correction term ε ; 

Step4: Simulate and predict according to definition 5, 

formula (29) with the modified iterative base value; 

Step5: Calculate the simulation error and test the model 

accuracy.. 

6. Case Study: Comparison of Different 

Order Prediction Results 

Example 1: Taking Beijing annual science popularization 

fundraising as an example, the influence of positive real order 

weakening buffer operator of different orders on the prediction 

results of the model is compared. The raw data is shown in 

Table 1, and the data comes from the People's Republic of 

China National Bureau of statistics.  

Table 1. Annual funding (unit: 10000RMB). 

year 2008 2009 2010 2011 2012 2013 2014 2015 

funds 134875.2 177933 204160 202819 221402 203614 217381 212622 

 

Taking 2008-2014 annual funding for science 

popularization as the original sequence, the QTDGM of 0.6, 

0.8 and 1-order classical weakening buffer operator are 

established respectively. The data of 2015 are forecasted. The 

forecasting results and errors are shown in Table 2. 

Table 2. Comparison errors. 

order 0.6 0.8 1 

predicted value 213338 214943 12701 

error 716 2321 -225323 

Relative error 0.34% 1.09% 105.97% 

Comparing with the results in Table 2, the 0.6 order 

weakening buffer operator can realize fine-tuning of the 

model, and has higher quasi-precision. It can better mine the 

development trend of the system and get better prediction 

accuracy.  

EXAMPLE 2: In order to verify the validity of the model 

proposed in this paper, the raw coal output data of China 

from October 2017 to May 2018 are used to simulate and 

predict, and the data comes from the China Statistical 

Yearbook. 
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Table 3. Raw coal production (unit: 10000 ton). 

Month 2017.10 11 12 2018.1 2  3 4 5 

Values 28354.3 29997.5 31487.2 29021.8 29329.7 29699 29801.7 28150.4 

 

The result is predicted by simulation. When the order is 0.6, 

the output forecast for May is 30167.4. The relative error is 

7.2%. When the order is 0.8, the output forecast for May is 

30137.1 The relative error is 7.0%. When the accumulator is 

used, the prediction effect is particularly poor. The prediction 

result is 1174, and the relative error is over 90%. 

Example 3: Taking the special funds for science 

popularization in Jiangsu Province as an example to compare 

the effects of positive real order weakening buffer operator 

with different orders on the prediction results. The original 

data are shown in Table 4, the statistical yearbook of China. 

Table 4. Annual average funding (unit: 10000RMB). 

year 2008 2009 2010 2011 2012 2013 2014 2015 

funds 45787 64579 72688 84824 93538 91378 103743 104307 

Taking the annual fund raising of science popularization in 

Jiangsu Province from 2008 to 2014 as the original sequence, 

the linear time-varying parameter discrete models of 0.3, 0.6 

and 0.8 order weakening buffer operator are also established. 

The data of 2015 are forecasted. The forecasting results and 

errors are shown in Table 5. 

Table 5. Comparison errors. 

order 0.3 0.6 0.8 

predicted value 98377 92231 91343 

error -5970 -12075 -12963 

Relative error 5.72 11.57% 12.48% 

Comparing with the results in Table 4, the 0.3 order 

weakening buffer operator can realize fine-tuning of the 

model, with higher quasi-precision, better development trend 

of the mining system and better prediction accuracy. 

In order to further explore the prediction accuracy of the 

model, this paper quotes the linear time-varying grey discrete 

prediction model and compares it with the model in this paper. 

The data used in case 2 shows the prediction results in Table6. 

Table 6. Forecast result. 

QTDGM TGDM 

order 0.3 0.8 1  0.3 0.8 1 

predicted value 98377 92231 91343 predicted value 54592 95200 66700 

error -5970 -12075 -12963 error -49715 -9107 -37607 

 

Under the optimum order of 0.3 and 0.8, the quadratic linear 

time-varying grey discrete forecasting model has better 

forecasting effect. In order to further evaluate the prediction 

effect, the following two prediction accuracy criteria are used 

to evaluate the results as shown in Table 7.. 

MAPE: 

1

ˆ1 ( ) ( )

( )

n

k

x k x k

n x k=

−
∑              (32) 

AME: 

1

1
ˆ( ) ( )

n

k

x k x k
n =

−∑              (33) 

Table 7. Error comparison. 

 QTDGM TDGM 

MAPE 9.91% 30.81% 

AME 10336 32142 

From the results of Table 7, it can be concluded that the 

error of the QTDGM is less than that of the TGDM. Therefore, 

according to the analysis of the above two examples, it can be 

concluded that the prediction accuracy of the QTGDM is 

higher, and the prediction effect is indeed better than that of 

the TGDM and the traditional integer-order model, which can 

get more accurate simulation and prediction results.. 

7. Conclusion 

The discrete grey model with quadratic time-varying 

parameters constructed in this paper has changed the 

problem of constant growth rate of simulation value of the 

original discrete grey model. The quadratic time term is 

introduced and the iterative optimization method of the 

model base value is given. Compared with the original 

time-varying grey discrete prediction model, more accurate 

prediction and parameter estimation are achieved.  

By useing the positive real order weakening buffer 

operator, fine tune the intensity of the accumulation to 

precision prediction. After three examples, the operator 

makes the prediction result more close to the real value. It 

can be applied to precise prediction of small samples. 
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