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Abstract: In the calculation of structures in beams with spherical plain bearings (SBSPB) static bindings, movements are 

continuous, while rotations are staple to a node where a ball. is located in Dynamics, in several calculation codes, and 

mechanical frictions are often supposed to be neglected. In this paper, we proposed a modeling of the SBSPB which takes 

into account the friction during the SBSPB vibrations and also in the calculation of the degrees of freedom at the points of 

these structures. Hence, mathematics equations were established and their resolution by the modal method was proposed. 

Static analysis of the results showed that there is continuity of translations, and discontinuity of rotations in spherical nodes. 

In two dimensional dynamic approaches, the results obtained, are represented in the form of curves and their analysis 

emphasizes the influence of links bearings and viscous frictions during the vibration of the structure. 
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1. Introduction 

The ball is a spherical piece of steel used as a link in the 

organs of machine someone wants to steer in all direction 

[1].Spherical bearings are thus used as joints in robotics. In 

civil engineering; the bearings allow relaxation and 

stabilization of movements in bridges [1]. The problem in 

the modeling of the SBSPB is the determination of the 

rotation values in nodes where they are placed. In this 

contribution we will evaluate two-dimensional static and 

dynamic different degrees of freedom in the SBSPB plan, 

taking into account the viscous friction. In this paper, the 

first part is related to modeling of bearings in the SBSPB 

and the static condensation method that allows 

determination of generalized displacement. The second part 

is devoted to the study of vibration of mechanical systems 

of beams structures in two dimensions. We booked the last 

part to the analysis and discussion of our results. 

 

2. Theoretical Considerations 

2.1. Modeling of Structures in Beams in Two Dimensions 

with Ball Links 

In beams structure, each component can be adapted to by a 

two-node linear element, as shown in the following figure [2]: 

 

Figure 1. Beam Elements at 2 knots in the plan (xoy). 
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In the plan, we can work with elements of two nodes 

( )ji,  and in each node; we consider three levels of freedom 

( )jjjiii vuvu ββ ,,,,,  where: 

u : moving along the axis (ox); 

v : moving the y-axis (oy). 

β : rotation around the z-axis (oz). 

θ : angle to determine the position of the element in the 

space. 

Each beam element is characterized by the following 

geometric constants: 

- L: length;  

- S: section; 

- E: modulus of longitudinal elasticity; 

-  IOz moment of inertia along the axis (oz). 

In the finite element method, calculation of widespread 

displacement, through the evaluation of stiffness matrices 

and the elemental strength matrices; and then, the 

Assembling of these matrices and vectors [2, 3]. In addition, 

problems in two dimensions, should take into consideration 

the spatial position of each element, therefore, must assess 

the transition matrices of the local coordinate system to the 

global coordinate system, which involves the position of 

various components in space [3]. 

2.2. Static Rotations Calculations 

To calculate the displacements and rotations, we used the 

techniques outlined in references [4-6]. The specificity of 

these methods is the calculation of the rotations at the level 

of spherical nodes. At these nodes, there are two rotations 

and we calculate them in two different ways. The 

calculation of spherical nodes was done locally by static 

condensation technique [7] which consists of disrupting the 

elemental stiffness matrix based on the position of the ball 

node. Subsequently it was with the disrupted matrix that 

Assembling of matrices was done to obtain the global 

stiffness matrix. Calculations of the built-in nodes and other 

widespread movements were done with stiffness matrices 

and global strength vectors. Through illustration, we 

considered the structure of figure 2 without linking ball and 

those of figures 3, 4, 5 and 6 with a binding node3 ball. The 

calculation of displacement and rotation at node 3 of the 

structure on figure 2 was done after assembling the 

elemental stiffness matrices without any disturbance. 

Regarding the structure on figure 3, it was modeled in the 

following three ways: by putting the ball on the element (1-

3), by putting the spin on the element (2-3), or by putting 

the ball on the element (3 - 4). According to calculations 

developed in references [5,6], global rotations of node 3 for 

figures 4, 5 and 6 are identical, if the framework is 

discredited by the same elements. 

 

Figure 2. Structure in beams without binding node3ball. 

 

Figure 3. Structure in beams with binding node 3 ball. 

 

Figure 4. Spherical element (1-3). 
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Figure 5. Ball on the element (2-3). 

 

Figure 6. Spherical element (3-4). 

For each of these models, two rotations related to node 

(3) were calculated the rotation of the ball node and the 

rotation of the built-in node [5]. 

2.3. Calculation of Dynamic Rotations 

In Dynamics, the equations of motion of beams 

structures can be expressed in the following form: 

UM ɺɺ + UC ɺ + KU = ( )tF                       (1) 

Where: 

- M is the matrix mass M; 

- C the matrix (viscous) damping;  

- K is the stiffness matrix; 

- F (t) is the external strength vector; 

- U is comprised of the set of degrees of freedom. 

This system of equation resolution technique has been 

developed in references [5, 6]. It takes into account the 

friction method. The difficulty in modifying these systems 

is the decoupling of equations. There are several techniques 

to decouple these equations. In this contribution, we used 

the modal method [3]. The particularity of the equations 

obtained in this work is the integration of the bearings in 

the structures. This is justified by the disturbance matrices 

masses and the front damping matrices well as the 

diagonalization to decouple them [8]. Then we applied the 

classic modal method to solve the final equations obtained. 

 

3. Results and Discussions 

In the simulations, a beam IPN feature iron was chosen. 

E=210000MPa, ρ =7850kg/m
3
, IOz=77.67cm

4
, S=7.57cm², 

L=10m. In addition, components were identical in all the 

structures. 

3.1. Static Resolution 

To present the effects of linkages bearings, we had 

simulations with structures as represented in figures 4, 5 

and 6. The results obtained are summarizing in table 1 for 

each structure: 

Table 1. Shift values generalized to node 3 static. 

 Fig. 2  Fig. 3  Fig. 4 Fig. 5  

3u (m)/10-3     

3v (m)/10-3 -1.039 -1.020 -1.019 -1.019 

3θ (rad)/10-3 -5.710    

3θ (rad)/10-3  -0.050 -0.0507 -0.0503 

According to data in table 1, the rotation of the rigid node 

was more important than that of the spherical nodes. On 

elements (1-3), (2-3) or the component (3-4), we virtually 

had the same values of rotations. Therefore, we deduced the 

joints soften structures. According to our modeling; the 

position of patella on an element was irrelevant on the 

behaviour of the structure. Furthermore, the rotations were 

discontinuous, though the transverse moving at nodes 

structures were continuous.  

3.2. Dynamics Resolution 

We considered once more structures in figures 2 and 3. 

The conditions of simulations are as follows: 

0u = 0v =0.5m; 0uɺ = 0vɺ =1m/s, 0θ =0.5rad; 0θɺ =0.5rad/s, 

under harmonic vibration amplitude load Po =10N and in the 

case of small oscillations with shock absorber factor 

ε =0.005. We got the curves illustrated in figures 7: 
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Figure 7. Curves of axial displacement u3a(t) and u3s(t) to node 3, free 

structure with friction. 
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Figure 8. The transverse displacement curves v3a(t) and v3s(t) to node 3, 
free structure with friction. 
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Figure 9. Curves of rotations ( )ta3θ  and ( )ts3θ  node 3, free structure 

with friction. 

For failure in service on figures 7 to 9, the amplitude of 

the degrees of freedom of structures was always higher 

when they involved spherical plain bearings. More periods 

of structures vibration with links bearings were higher than 

those without these links. In figure 10, the amplitude and 

period of the structure without binding was more important 

than the structure without links. Hence, the rupture risk in 

the structures without bonds was higher at the beginning of 

the movement. As the result, that links joined soften 

movements and posed less risk. 

 

Figure 10. Curves of transverse displacements v3a(t) and v3s(t) at node 3, 

amortized structure under harmonic loads. 

At the end, in case of vibration damped under actual 

harmonic loads (fig. 10), we observed that transverse 

displacements were first amortized in the transition zone, and 

then, sinusoidal later in the stationary area. 

4. Conclusion 

This contribution was to propose a modeling of the 

SPLR method to study their static and dynamic behaviour. 

With our model, we found that static is in good continuity 

of movement axes (Ox) and (Oy), and rotation in recessed 

nodes. On the other hand, for nodes with links bearings, we 

had the continuity of the movement axes (Ox) and (Oy), 

and the discontinuity in rotation. Moreover, dynamic 

consideration permitted to prove the bearings soften leather 

SBSPB structures and extended their breaking period. 
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