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Abstract: This paper presents a numerical study on three-dimensional transient natural convection from an inclined 

isothermal square plate. The finite difference approach is used to solve the governing equations, in which buoyancy is modeled 

via the Boussinesq approximation. The complete Navier-Stokes equations are transformed and expressed in term of vorticity 

and vector potential. The transformed equations are solved using alternating direction implicit (ADI) method for parabolic 

portion of the problem and successive over relaxation (SOR) for the elliptic portion. Solutions for laminar case are obtained up 

to Grashof number of 5x10
4
 as well as the inclination angles were varied from 0

o
 to 180

o
 with 30

o
 intervals, and the Prandtl 

number of 0.7 is considered. The results are shown in terms of isothermal plots, and the local and average Nusselt numbers are 

also presented. The simulation results show that the main process of heat transfer is conduction for Grashof number less than 

10
3
 and convection for Grashof number larger than 10

3
. It is also found that, the values of Nusselt number show fairly large 

dependence on inclination angle and there is a significant difference in heat transfer rates between the upward and downward 

orientation. The average Nusselt number increases to 20% at the vertical position compared to horizontal position then 

decreases with increasing inclination of plate at downward orientation. Based on the results obtained, correlations have been 

proposed to evaluate the Nusselt numbers of both upward and downward orientation. Validations of the present results are 

made through comparison with available numerical and experimental data, and a good agreement was obtained. 
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1. Introduction

Recently, the clarification of flow and heat transfer 

mechanisms of natural convection in square plates-which is 

often observed in many science and engineering applications 

such as in printed circuit board (PCB), solar cell, and thin film 

manufacturing chamber - is very important for both industrial 

applications and academic research [1]. 

 The majority of the studies available in the literature on 

natural convection heat transfer from horizontal rectangular 

plates facing upwards have been carried out experimentally, 

by using air or water as working fluid [2-10]. Al-Arabi and 

El-Riedy [2] obtained local and average heat transfer data for 

horizontal plates of different shapes on the basis of the amount 

of steam condensate collected from compartments underneath 

the plates. Goldstein and Lau [3] performed mass transfer 

experiments with square naphthalene plates in air. Further 

heat transfer results for rectangular surfaces were then found 

by Lewandowski and Kubski [4]. Kitamura and Kimura [5] 

conducted an experimental study of natural convection in 

water from slender rectangular plates heated with uniform 

heat flux and equipped with fences at both longer sides to 

inhibit side flows, thus obtaining a two-dimensional flow field 

over the plates. Fluid flows and heated surface temperatures 

were visualized by dye tracers and liquid-crystal thermometry, 

respectively. The results showed that, four distinct flow 

regions appeared, consisting of a two-dimensional laminar 

boundary layer region near the leading edges, a transitional 

region characterized by a three-dimensional flow separation 

and by the attachment of ambient fluid onto the heated surface 

downstream of the flow separation, a fully turbulent region, 

and a collision region near the plate centerline. Lewandowski 
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et al. [6] performed heat transfer measurements and visualized 

the convective flow structures in water above rectangular 

plates by injecting a dark-blue dye tracer through small holes 

distributed along the perimeter of each plate. In the same year, 

Pretot et al. [7] performed experiments using a rectangular 

plate heated with uniform heat flux. It’s found that, starting 

from the edges of the plate, the heat transfer is characterized 

by a thermal boundary layer that breaks away from the surface 

near the center of the heated surface, giving rise to a buoyant 

thermal plume. Rafah Aziz [8] studied experimentally natural 

convection heat transfer from inclined isothermal square flat 

surface. Heat transfer measurements from rectangular plates 

facing upward were carried out in air by Martorell et al. [9], 

and in water by Kozanoglu and Lopez [10]. 

Several theoretical studies have been carried out to evaluate 

natural convection heat transfer from isothermal plates. The 

first numerical solutions of the full Navier-Stokes, continuity 

and energy transfer equations for natural convection from 

horizontal upward-facing plates were carried out by Goldstein 

and Lau [3]. Chen et al. [11] considered the upward facing 

horizontal semi-infinite plate with uniform wall temperature 

or uniform heat flux as a special case of a larger 

boundary-layer investigation of natural convection from 

inclined plates with variable surface temperature or heat flux. 

Lewandowski [12] presented a quasi-analytical solution of a 

theoretical model, in which the boundary layers grow from 

each plate-edge up to transforming into a plume at the 

separation point. Wei et al. [13] presented a numerical 

solutions of the mass, momentum and energy governing   

equations on two-dimensional natural convection from 

isothermal plates heated at both sides. Martorell et al. [9], 

derived two and three dimensional solutions for slender plates, 

concluding that although the flow near the ends of the plate is 

typically three-dimensional, the overall flow suffers no 

dramatic change with respect to the two-dimensional structure. 

Hassan [14] carried out a numerical study on three- 

dimensional natural convection from inclined discs and rings 

at constant temperature. He also presented a numerical 

solution of natural convection from horizontal plate at 

constant wall temperature [15]. A review of the heat transfer 

data for free convection from upward facing heated 

rectangular plates is conducted by Corcione [16]. 

However, information and data for three-dimensional, 

transient natural convection from inclined square surface 

appears to be limited. The objective of this study is to develop 

a numerical simulation model to investigate the 

three-dimensional transient laminar natural convection from 

isothermal square plate subject to the influence of orientation. 

The Grashof numbers and inclination angles of the square 

plate are ranged from 10
3
 to 5x10

4
 and from 0

o
 to 180

o
, 

respectively. As far as the fluid characteristics, the Prandtl 

number of 0.7 was considered. The finite difference approach 

is used to solve the governing equations. 

 

2. Governing Equations of the Present 

Study 

The basic equations describing the flow driven by natural 

convection consist of mass conservation, momentum and 

energy. These equations are solved numerically by finite 

difference approach. The numerical simulation of the problem 

was performed using a computer program written by 

FORTRAN. The Boussinesq approximation was included in 

the buoyancy force term so that all densities are assumed to be 

constant in the body force except the one in gravity term 

which changes with temperature.  

The appropriate equations for an incompressible Newtonian 

fluid are [17]: 

0=⋅∇ V
v

                         (1) 

VPg
Dt

VD vv
v

2∇+∇−= µρρ                  (2) 

Θ∇=Θ⋅ 2
K

Dt

D
cp ρ                     (3) 

The density is given by linearized state equation as 

followed [17]: 

))(1( ∞∞ −−= TTβρρ                    (4) 

Equation (4) is used in buoyancy term of the momentum 

equation, whereas ρ=ρ∞ is used elsewhere where ρ∞ is the 

density at reference condition. Using Boussinesq 

approximation, the governing equations for constant fluid 

property can be expressed as: 

0=⋅∇ V
v

                            (5) 

VPg
Dt

VD vv
v

2)( ∇+∇−Θ−Θ−= ∞∞ µβρρ       (6) 

Θ∇=Θ⋅ ∞
2

K
Dt

D
cp ρ                     (7) 

where (p) represents the perturbation of static pressure from 

the hydrostatic value.  

3. Mathematical Model 

3.1. Problem definition 

The three-dimensional geometry being solved in this study 

is shown in Figure1. The energy from the isothermal plate 

facing upward or downward orientation is dissipated by 

convection of ambient fluid at T∞. The length of square plate is 

H and the surface is inclined with an angle of Φ with the 

horizontal axis. 
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Figure 1. Geometry of the case study 

3.2. Mathematical Model 

The continuity, momentum and energy equations for three- 

dimensional laminar flows of an incompressible Newtonian 

fluid are written. Following assumptions are made: there is no 

viscous dissipation, the gravity acts in the vertical direction, 

fluid properties are constant and fluid density variations are 

neglected except in the buoyancy term (the Boussinesq 

approximation) and radiation heat exchange is negligible. The 

governing equations are obtained as follows: 

Continuity equation  
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Energy equation 
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3.3. Nondimensionalization 

Before the discretization process, we introduce the 

following dimensionless variables: 

H

x
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In terms of these dimensionless variables, the 

non-dimensional governing equations are obtained as: 
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3.4. Vorticity Transport Equation 

The governing equations for constant–property, 

incompressible flow may be cross differentiated and 

subtracted to eliminate pressure term, this introducing the 

three components of vorticity. The flowing dimensionless 

vorticity equations are obtained as:  
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The components of dimensionless vorticity used here are 

defined as the curl of the dimensionless velocity in term of 

dimensionless coordinates  

V
vv
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To calculate the velocity from the vorticity, it is convenient 

to introduce a vector potential Ψ
v

, which may be looked upon 

as the three dimensional counterpart of two dimension stream 

function. The components of the velocity are related to the 

components of dimensionless vector potential. The 

dimensionless vector potential is defined such that its curl 

equals the dimensionless velocity vector: 
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vv
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The vector potential that satisfies the continuity equation is 

written as: 
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The vorticity is then related to the vector potential as 

follows: 
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3.5. Boundary Conditions 

The boundary conditions of the system shown in Figure1 is 

detailed as: 

Temperature 

At 0=Z    10 ≤≤ X    and   5.00 ≤≤ Y    , 1=T  

At 2=Z     10 ≤≤ X   and   5.00 ≤≤ Y   , 0=T  

At 0=X  and 1=X    20 ≤≤ Z  and 5.00 ≤≤Y , 0=T  

At 0=Y  and 5.0=Y  20 ≤≤ Z  and 10 ≤≤ X  , 0=T  

Vector potential 

At 0=Z             10 ≤≤ X       and   5.00 ≤≤ Y      

03

21 =
∂
Ψ∂

=Ψ=Ψ
Z

 

At 2=Z             10 ≤≤ X       and   5.00 ≤≤ Y      

0321 =Ψ=Ψ=Ψ  

At 0=X   and    1=X     20 ≤≤ Z  and   5.00 ≤≤ Y      

0321 =Ψ=Ψ=Ψ  

At 0=Y   and    5.0=Y    20 ≤≤ Z  and   10 ≤≤ X      
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Vorticity Vector 
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At 0=Y   and    5.0=Y    20 ≤≤ Z  and   10 ≤≤ X      

0321 =Ω=Ω=Ω  

4. Numerical Solution 

The numerical simulation of three-dimensional transient 

natural convection flow from inclined isothermal plate is done 

using (ADI) method for vorticity and temperature equations, 

and by (SOR) method for the vector potential equations.     

The energy and vorticity equations (17-20) can be written as 

follow:  
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where 
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The three equations of vector potential components 1Ψ , 2Ψ
and 3Ψ  can be solved at any time-step using a point iterative 

successive over relaxation method [18]. 
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A relaxation factor ΨW  was defined as follows, 
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Where the counter (s) refers to the number of successive 

point iterations performed at the nth time step, and 
)1(

),,(

+Ψ sn

kji  is 

the value of the component Ψ at the nth time step after (s+1) 

iterations. The value of 
)1(

),,(

+Ψ sn

kji   are resubstituted in to 

equation (35) where is then solved with equation (36) until the 

following convergence criterion is satisfied: 
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where 
3

10
−=ε ,the relaxation factor ΨW  is 1.7 for trial and 

error for the present work.  

The local Nusselt number is defined as 

0=∂
∂−=

ZZ

T
Nu                       (38) 

Equation (38) is solved using forward finite difference for 

four points as follow: 

)291811(
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Average Nusselt number is defined as 

∫∫=
A

NudA
A
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                   (40) 

This integration can be carried out using trapezoidal rule 

[18]. 

5. Result and Discussion 

In the present study, a finite difference method is applied to 

find the numerical solution of three-dimensional transient 

natural convection from isothermal square plate subject to the 

influence of orientation. 

Temperature fields, local and average Nusselt Number 

distribution over the heated surface are examined for Grashof 

numbers and inclination angles ranged from 10
3
 to 5x10

4
 and 

from 0
o
 to 180

o
, respectively. As far as the ambient fluid 

characteristics, Pr= 0.7 was considered. 

5.1. Temperature Fields 

Figures 2 and 3 show that the isothermal lines of the heated 

surface at two plans (z-x) and (z-y) at x=1.0 and Grashof 

numbers ranged from 10
4
 to 5x10

4
. The temperature fields are 

assumed to have a symmetric nature with respect to vertical 

plane. It’s clear that the temperature gradient above the heated 

surface of square plate increases rapidly in the vicinity of free 

edge. The isotherms show formation of a boundary layer heat 

transfer along the heated surface. The temperature gradients 

are concentrated just above the center of the heated surface, 

where a thermal plume is formed. 
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Figure 2. Isotherms plots of square plate at different inclination angles (Gr=104) 

 

As inclination from horizontal increases, the bouncy 

component along the surface arises and causes an increase in 

the velocity and also a plume shifted completely to the upper 

part of the plate. The density of fluid decreases in the region 

between the center and upper edge, while the velocity of the 

fluid motion continuous to increase. All that leads to 

ascending flow after the center, therefore the boundary layer 

thickness continues to increase until the upper edge. However, 

when square plate is heated at both horizontal facing upward 

and downward orientation it has been found that a plume 

rising from the heated surface and there is significant change 

on temperature field when the orientation is changed. The 

small effect of convection mode is existed at low Grashof 

number. Further increase of Grashof number, the isothermal 

lines becomes distorted, resulting in an increase in heat 

transfer rates. It’s clear from Figure3 that the effect of 

convection for Grashof number of 5x10
4
 is obvious by 

appearance of plume over the heated surface and the effect of 

inclination angle on the shape of isothermal lines over the 

plate. 
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Figure 3. Isotherms plots of square plate at different inclination angles (Gr=5x104) 

 

5.2. Local Nusselt Number 

The distribution of local Nusselt number for Grashof 

number of 10
3
 to 5x10

4
 is shown in Figure 4 at facing upward 

and downward orientation. At Gr = 10
3
, it’s found that, the 

local Nusselt number has very small values  because of small 

effect of convection mode of hear transfer exists, since low 

Grashof number the mode of heat transfer is conduction only. 

At Gr=10
4
 and Gr=5x10

4
, the increased contribution of 

convection is observed and local Nusselt number values 

increase at all. 

The higher values of local Nusselt number occur at leading 

edge of the square plate and reach to maximum value at 

vertical position. Depending on the heated surface orientation, 

the heat transfer rate of these two orientations shows a 

competitive nature. It is observed that, there is a gradual 

increase in the local values of Nusselt numbers compared to 

the horizontal position and the horizontal upward and 

downward orientations yield the lowest heat transfer 

coefficients. 
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Figure 4. Local Nusselt number in the line of symmetry (Gr=103,104,5x104) 

 

5.3. Average Nusselt Number 

Based on the results obtained, correlations have been 

proposed to evaluate the Nusselt numbers for both upward and 

downward orientation as shown in Figure (5). The form of the 

proposed correlation takes into account the variation of the 

inclination angle as shown in Figure (6). It’s found that, the 

average Nusselt number shows fairly large dependence on the 
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inclination angles of heated square plate at different values of 

Rayleigh number. It is also found that, the Nusselt number 

values show strong dependence on inclination angle of the 

square plate and it reaches to the maximum value at the 

vertical position. The average Nusselt number increases by 20% 

at the vertical position then decrease with increase of 

inclination of plate at downward orientation. 

 

 

Figure 5. Nusselt number vs. Rayleigh number correlations at different inclination angles 
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Figure 6. Nusselt number vs. Rayleigh number correlations 

5.4. Comparison with Available Previous Work 

The validation of the obtained results is made through 

comparison with available numerical and experimental data. 

Figure 7 shows a comparison between the present study with 

available previous literature [3,8] in case of horizontal 

position (Φ=0
o
) facing upward. It can be seen that, a good 

agreement is achieved between the present results and the 

available experimental results. Figure 8 shows a convergence 

between the present numerical result with literature 

experimental data [3] at horizontal position (Φ=180
o
) facing 

downward. In case of vertical position (Φ=90
o
), it’s found that 

there is excellence agreement was obtained with the available 

numerical data [14], see Figure 9. 

 

Figure 7. Comparison of average Nusselt number with available theoretical 

and experimental data (Φ=0o) 

 

Figure 8. Comparison of average Nusselt number with available theoretical 

and experimental data ((Φ=180o) 

 

Figure 9. Comparison of average Nusselt number with available theoretical 

data over vertical square plate 

6. Conclusion 

There is significant effect on temperature filed and Nusselt 

number when the orientation of the heated surface is changed. 

It’s also observed that, the Nusselt number shows a strong 

function of inclination angle. There is a difference in heat 

transfer rates between the upward and downward orientation 

where the maximum values are obtained at the vertical 

position. Finally, the relation between average Nusselt number 

and Rayleigh number are correlated and takes into account the 

inclination of the heated surface. Finally, the horizontal 

upward and downward orientations yield the lowest heat 

transfer rates. 

Nomenclature 

A Area of the heated surface (m
2
) 

g Gravitational vector (m
2
/s) 

h Heat transfer coefficient (W/m
2
.K) 

H Length of the square plate (m) 

k Thermal conductivity (W/m.K) 

T Dimensionless temperature= (Θ-Θ∞)/(Θw-Θ∞) 

U Dimensionless X-component of velocity =uH/α 
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V Dimensionless Y-component of velocity =vH/α 

W Dimensionless Z-component of velocity =wH/α 

X Dimensionless X-coordinate =x/H 

Y Dimensionless Y-coordinate =y/H 

Z Dimensionless Z-coordinate =z/H 

 

Greek Symbols 

 α Thermal diffusivity of air (m/ s
2
) 

 β Coefficient of thermal expansion (K
-1

) 

 υ Kinematics viscosity of air (m /s
2
) 

τ Dimensionless time = tα/H
2
 

Ψ
v

 Dimensionless vector potential  

Ω Dimensionless vorticity vector 

Θ Temperature (K) 

Φ Angle of inclination 

 

Subscripts 

∞ Ambient 

w Value of surface 

 Average value  

1 Vector component in X-direction 

2 Vector component in Y-direction 

3 Vector component in Z-direction 

  

Dimensionless Numbers 

Gr Grashof number= gβ(Θw-Θ∞)H
3
/υ2

 

Ra Rayleigh number=Gr.Pr= gβ(Θw-Θ∞)H
3
/υα 

Nu Local Nusselt number = hH /k 

Pr Prandtl number = υ/α 
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