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Abstract: The aim of this study is to analyze the mixed convection under Soret effect in a liquid layer subjected to adverse 

temperature and concentration gradients and slip conditions. Theoretical linear stability analysis and numerical methods were 

performed to study the convective and absolute instabilities of the transverse rolls. It is found that, for convective instabilities, 

the problem has analytical solution and is a Galilean transformation of natural convection. The throughflow makes the rolls to 

propagate and the frequency shift is proportional to Reynolds number. For higher Rayleigh numbers, advection breaks Galilean 

invariance, and absolute instabilities settle. At the threshold of absolute instability, the presence of throughflow breaks the 

symmetry by the rotational invariance, and the system selects among an infinite number of unstable modes, the progressive 

waves, in the direction of the flow. 
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1. Introduction 

Stability of mixed convection of multicomponent fluids 

with two free boundaries is very important in numerous 

physical phenomena. It spans diverse fields such as heavy 

pollutants discharged into watercourses and generating 

exothermic reactions, storage of solar energy in salty pools, 

natural environments with stratified salinity gradient in lakes, 

and some daily world experiments such as Gulf Stream or 

Gibraltar currents or evaporation and transport in salt lakes 

See Nield and al. (2008) [1]. Indeed, the Mediterranean Sea 

evaporates and grows saltier, cold seawater coming from the 

Atlantic crosses the Strait and flows over the warmer salty 

water. Vertical temperature and concentration gradients act 

together in presence of the forced Atlantic flow sliding in 

motion with free-free conditions. At the idealized situation, 

the problem is analog to Poiseuille-Rayleigh-Bénard-Soret 

(PRBS) Ben Hadid, and Henry (2007) [2], but it is quite 

different due to the absence of hydrodynamic boundary 

layers. Despite the difficulties of realizability of laboratory 

quantitative experiments even under very artificial conditions, 

this case is theoretically interesting because it allows an 

explicit and clearly solution. 

A detailed linear stability analysis of natural convection in 

multicomponent systems is found in the book of Platten and 

Legros (1984) [3]. When the separation ratio N, 

characterizing the Soret effect, is greater than a critical value 

	�⋆, convection is stationary. However, when N is lower than 

�⋆	the system crosses a Hopf bifurcation. 

The superposition of the average flow with the vertical 

gradient of temperature changes the nature of convection 

mode. Besides convective instabilities, absolute instabilities 

can take seat. A convective instability amplifies any unstable 

disturbance, and advects it towards the downstream; 

regarding the disturbances as a noise. A convective unstable 

system behaves like a noise amplifier. On the other hand, an 

absolute unstable system answers a forcing selectively. Its 

answer is dominated by the mode of vanished speed of group; 

the other modes are swept by the flow. The dominating mode 

being selected by the dispersion relation, which is intrinsic to 

the system. An absolute unstable system behaves like an 

oscillator with its Eigen frequency. 

Müller et al. (1992) [4] were just regarded the free-free 

case as a Galilean transformation leading to a simple 

frequency shift. Ben Hamed et al. (2009) [5] showed via a 

linear stability analysis and direct numerical simulations in a 

semi-infinite cavity, that the length of establishment of 

thermal entry zone in the case of free-free boundaries varies 
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almost linearly with the Peclet number, and is significantly 

lower than the case of rigid boundaries. 

Carrière and Monkewitz (1999) [6] have studied 

convective versus absolute instabilities in PRB configuration. 

Their main result is that the mode reaching zero group 

velocity at the convective–absolute transition always 

corresponds to transverse rolls, while the system remains 

convectively unstable with respect to pure streamwise 

(longitudinal) rolls for all non-zero Reynolds numbers. We 

mention in passing that this result is similar to which 

obtained in free-free case. 

Joulin and Ouarzazi (2000) [7] studied the absolute 

instabilities in the case of mixed convection of a binary 

mixture saturating a Darcy medium. This case is very similar 

to the present problem due to the absence of the boundary 

layer. They showed that in the presence of the filtrating flow, 

the transverse rolls is the exclusively selected mode, and that 

progressive waves going back the througflow have the lowest 

absolute threshold. 

In practice, one way to ensure the slip conditions is to 

consider immiscible liquids arranged in layers, the studied 

liquid is floating on top of a somewhat denser liquid. In 

general the authors take into account surface tension, which 

does not fit to the scope of this work. Nevertheless, Campbell 

and Koster (1995) [8], studied two fluid layers, and have 

numerically shown, using a finite element method, that the 

presence of the upper layer reduces strongly the convection 

in the lower one, which limits the deformations on interface 

between the two liquids. The results of the results of 

Campbell and Koster (1995) [8] are very interesting to 

imagine a laboratory experiment with free-free conditions. 

In the present work, we make stability analysis of mixed 

convection in semi-infinite layer of a binary mixture. We 

study the convection without restriction of direction of 

propagation. The objective is to find an explicit analytical 

expression of critical Rayleigh as function of all the physical 

parameters of the fluid and the flow. It is either found, that 

due to advection, the transport mechanism cannot be 

considered as a simple frequency shift. Forced flow induces 

an area of convective instability and another area of absolute 

instability when buoyancy ratio N is lower than Nc. 

Otherwise, there is a critical Peclet, which depends on N, 

beyond which the Soret effect is suppressed. The selected 

mode is corresponding to the transverse rolls. The study of 

the spatial branches shows that progressive waves 

propagating in the direction, and against the throughflow, are 

equally probable. 

2. System and Hypothesis 

The considered geometry is a semi-infinite horizontal layer 

of thickness ��  containing a binary Boussinesq 

incompressible liquid (Fig.1) with free upper surface and 

sliding on a heavier liquid. The liquids are immiscible, and 

surfaces are undeformable. A steady adverse temperature and 

concentration gradients are maintained, and a lateral pumping 

drives the flow uniformly on the x direction. Soret effect is 

considered and the flow is assumed to be laminar. The table 1 

summarizes the main scaled variables of the system. 

 

Figure 1. The system at the basic conductive state. 

Table 1. Reference values. 

Physical entity Reference value Dimension Non dimensional value 

Density ���	 
��.����  

Distance �� 
�� ��, ����  

Velocity ���	 � ��� 
�. ���� ��, �� � ���  

Time ���	 � �� �  
�� �⋆ � !��  

Temperature "��	 � 12 �"%&' ( ")&*+� 
,� 2 � "⋆�"%&' ( ")&*+� 

Mass fraction -��	 � (./-0�1 ( -0�1"  - ( -��	-��	  
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The dimensional form of equations is written: 

233
334
333
35 1667. �67 = 0
9'�67 + ;�67. <67=�67 = −<> + >?< �67 + @A. >?�" + �-�. �67

9'" + ;�67. <67=" = < "
9'- + ;�67. <67=- = �B� �< - − < "�

	 (1) 

The problem is controlled by five parameters namely: 

Rayleigh number	ℜ = �D'EF �+�D'EF ⁄ , where �D'EF = H √�J⁄  

is the stabilization time, due to the mechanisms of evacuation 

and dissipation of energy, and the destabilization time �+�D'EF = KH L∆"�⁄  due to Archimedes’ effect. Reynolds 

number	@N = OBPQ  which relates inertial forces to viscous ones, 

Buoyancy ratio 	� = ./ × RSTSUV -0�1 − -0� which quantifies 

separation of species, Prandtl number >? = QW  and Lewis 

number 	�N = �/YZ  which are material parameters of the 

liquid. The basic conductive state obey to a linear profile of 

temperature and concentration (eq. (2)), and constant velocity 

(eq. (3)). 

"Z = -Z = 1 − �                                  (2) 

�Z = [\]⋆^_`a = [\]⋆ ×BPW = [\]⋆ ×BPQ × QW = @N × >? = >N  (3) 

3. Eigenvalue Equation of Mixed 

Convection in a Two-Component Fluid 

The solutions of the system can be decomposed into a sum 

of the pure conductive and the convective ones. These forms 

are injected in the general equations in order to have the 

perturbation equations. In the foregoing analysis, we take the 

curl of momentum equation and differentiate again with 

respect to	�, we obtains the linked Navier-Stokes, energy, and 

species equations written respectively in the small deviations �, b and c of vertical velocity, temperature and mass fraction. 

d
eef
−< �9' + >N9g� + >?<h @A>?;9g + 9i = �@A>?;9g + 9i =

−1 9' + >N9g − < 0
−1 �B� < 9' + >N9g − �B� < j

kkl
d
ef
�
b
cj
kl = −

d
ef
9g
�< � − �< ��

�9g +�9��b

�9g + �9��c j

kl                   (4) 

The left-hand side operator is linear. The right-hand side 

terms are nonlinear. The perturbation dimensionless 

boundary conditions on horizontal borders are: 

b = c = mnom�n = � = 0	                            (5) 

meaning respectively constant temperature and concentration, 

slip and non-deformability conditions. Linear analysis 

suggests that nonlinear terms are neglected, and then the 

right-hand side of system (4) is 

p = pq �rs�t�� Nu;v'wxygwxzi= + --	                (6) 

CC is the conjugate complex, �g  and �i  are the x and y 

wavenumbers, and Ω is the frequency. The variables ��, Ω� 
are complex, with the following interpretations: the real parts 

are respectively the wavenumber and the progressive wave’s 

pulsation, and the imaginary parts are the spatial and 

temporal growths. Differentiating equation (6), the system 

become: 

ℒ. p = 0	                              (7) 

ℒ =
d
eef
A − rA}>?�� −@A� 	−�@A� 

−1 −A + r} 	0
−1 	 1�N A 	− 1�N A + r}j

kkl	;	�A = −�t + � �} = �g>N + Ω� = �g + �i  

where ℒ  is the adjoint operator to the normal mode 	p . 

Finding the core of ℒ  leads to the complex dispersion 

equation	�, in which the real and the imaginary parts must 

vanish separately. 

� = A�A − r}>?����A − r}� + @A� R1 + � E��wB���uB��E�uB�� V = 0                                          (8) 

In the case of infinite Layer there is only established rolls, thus k is real. As will be shown in results and discussions } is 

also real for all positive Rayleigh and	�. In such situation the dispersion relation should be greatly simplified, and yields: 
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ℜN��� = �;�w���w��=nw����n �;E�wE�n����=;�w���w��=w��En�;������=xn � + @A = 0                                    (9) 

 ����� � }�} : Ωw��} : Ω�� � 0              (10) 

234
35 � � �NA A : �N } 	� = �N A}A + �N } 	} = �g>N + Ω

Ω� � ��;�1 : >?���
1 : ��1 : �N�� : ��N =A �N �1 : � : >?���
 

In absence of flow, a trivial solution of ����� � 0 

is	�	 = 	0. The other two solutions, corresponding to a Hopf 

bifurcation, can exist only if � � �⋆defined by 

�⋆ � ( 1 : >?�1 : �N>?���N : 1� : >? 

Stationary convection is then obtained for � � �⋆ and a 

wavenumber minimizing equation (9) gives the following 

critical Rayleigh 

@AZ �  ���h ��w���wB��	                                (11) 

While the oscillating convection is obtained for	� � �⋆, 

then, the system oscillates with the frequencies Ω�  and the 

oscillating Rayleigh is defined by: 

@A&D) �  ���h ��wB�����B�w�����B����n��wB�� �_n�_����	                   (12) 

It is clear from the equation (10) that the spatial 

dependence of the system is not sensitive to the flow. The 

system undergoes a simple shift of frequency. However, at 

Rayleigh numbers higher than the critical one, the spatio-

temporal evolution is different, and we can no longer 

consider the wave number and frequency as real. More, the 

through flow >N generates two types of instabilities, namely, 

absolute and convective instabilities. 

4. Results and Discussion 

In the case of a pure fluid	� = 0, the equation (8) will be 

greatly simplified. Its minimization gives a unique solution 

shown in figure 2. It corresponds to a steady state (ω = 0) 

which critical threshold is the natural convection regardless 

of the flow Pe. The critical Rayleigh is �0 	=  ���h  

corresponding to a wave number 	�	 =  �√ . In natural 

convection the system has not a preferred direction. Any 

linear combination of the wave vectors �g  and �i  is a 

solution of the system See Chandrasekhar [9]. 

 

Figure 2. Neutral stability in the Ra-k-ω space: case of natural convection. 
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When the through flow is applied on a binary mixture	� �0 , a local disturbance tends to be evacuated if the group 

velocity 
m�mx  is non-zero, this is called convective instabilities. 

Local growth of instability requires vanished group velocity 

i.e.: 

9}9� � 0 ⟹
234
35 9}9�g � 9}9� 9� 9�g ( >N � 09}9�i � 9}9� 9� 9�i � 0 ⟹ �2�g 9}9� ( >N � 0

2�i 9}9� � 0 ⟹  �g � 0�i � 0 

The system is then organised in transversal structures 

propagating with the pulsation	�g>N	 +	Ω�. Therefore, when 

the conduction state becomes absolutely unstable, 

progressive waves structured as transverse rolls are the only 

ones to be amplified locally. The other three-dimensional 

modes are amplified but convected downstream. 

To determine the threshold of absolute instability, the 

dispersion equation (8) is solved with the assumptions: 

�g ∈ ¢, } ∈ £  and �  variable. The absolute Rayleigh 

number is reached at the pinching of spatial branches. The 

resolution is based on a numerical method of Newton 

Raphson. Figure 3 and 4 show clearly that the pinching of 

spatial branches is simultaneous for the ω� and ωw modes. 

In the absence of flow, a region of convective instabilities 

exists anyway. 

 

Figure 3. Pinching of the spatial branches of the dispersion relation in the plane ���, �u�.	�N = 140, � � (0.0006, >? � 7, >N � 1, @AEFD ¨ 1039 �A�@A �950, �¬�	@A = 1000, �­�	@A = 1039, �®�	@A = 1060.	
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Figure 4. 3D representation of the pinching of the spatial branches of the dispersion relation in the plane ���, �u�. �N � 140, � � (0.0006, >? � 7, >N �1, @AEFD ¨ 1039. 

Figure 5 shows that for N > 0, there is a convective 

instabilities area bounded by supercritical threshold and a 

certain >N⋆  beyond which the Soret effect disappears. >N⋆ 

depends only on N. For negative separation rates, Figure 6 

shows that the area of convective instability is more 

extensive. The absolute threshold is delayed with decreasing 

separation ratio. Figure 6 shows these absolute thresholds for 

different values of	�. The two spatial branches involved in 

the pinching process for the cases �	 = 	−	0.0006, >N	 =	1, @AEFD 	= 	1039 were drawn in figure 3. 

 

Figure 5. Variation of @A with >N for positive	�, �N	 = 140. 
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Figure 6. Variation of @A with >N for negative	�, �N	 = 140. 

Solving the perturbation equations by a variational method, 

shows the physical meaning of a complex wave number �g 

accompanying the absolute instabilities, it corresponds to a 

wave amplitude varying according to the x-coordinate. For 

the case of a semi-infinite cavity, a thermal area settles at the 

entry of the canal. Figure 7 is the graphical representation of 

the eigenvector of the absolute threshold. Through this 

representation one sees the growth of the amplitude of 

perturbations (bottom) and global flow (top). The different 

simulations shows that the length of the area of establishment 

depends on the absolute threshold, and essentially on the >N 

number. 

 

Figure 7. Spatial amplitude growth and thermal inlet area; >N � 1, @AEFD � 1039, � � (0.0006. 

5. Conclusion 

In the present work, we have studied the stability of binary 

liquid layer sliding in motion between two other fluids. The 

problem is theoretically interesting because it allows an 

analytical solution. 

Generally, in the absence of throughflow the system has a 

stationary property at the threshold of convection for positive 

N and oscillatory properties for negative N. In both cases, 

none spatial direction is privileged. However; in presence of 

throughflow the system loses its stability via a frequency 

shift. For convective instabilities, the problem has analytical 

solution and is a Galilean transformation of natural 

convection. The advection due to throughflow makes the 

rolls to propagate and breaks Galilean invariance at the 

absolute instabilities threshold. Then, the symmetry by the 

rotational invariance is broken, and the system selects among 

an infinite number of unstable modes, the progressive waves, 

in the direction of the flow. The absolute Rayleigh numbers 

are given according to Pe and N numbers. 

Nomenclature �, �: Coordinate system �g , ��: Length and thickness of the layer �, �: The velocity components �g: Aspect ratio �g � ��/�� ": Temperature -: Mass fraction YZ: Mass diffusivity 
� ���� Y/: Thermodiffusion coefficient 
� ��,���� �: Gravity acceleration 
�/�²� �N: Lewis number �N � �/YZ  >?: Prandtl number >? � J/� �: Buoyancy ratio � � ./ � RSTSUV -0�1 ( -0� @A: Rayleigh number @A � °SU±/BP��QW�  @N: Reynolds number @N � OBPQ  >N: Peclet number >N � @N � >? �: X-direction wavenumber 
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./: Soret coefficient ./ = ²U²³ ℛ0: Natural convection constant 
 ���h  

Greek Symbols 

L: Volumetric expansion �: Thermal diffusivity 
� ���� J: Kinematic viscosity 
� ���� }: Adimensioned pulsation b: Temperature perturbation c: Mass fraction perturbation 
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