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Abstract: The purpose of this paper is to evaluate the effect of five different mixing rules on the calculated thermodynamic 

properties including vapor pressure, density and excess property of several binary mixtures. These properties are calculated by 

ISM (Ihm-Song-Mason) and PHS (Perturb Hard Sphere) equations of state (EOS). Also we use two interaction parameters, Kij 

to improve the results. The results indicate that mixing rules can effect on predicted thermodynamic properties. The Fit 

(MADAR-1) mixing rule gives more acceptable values. when the mixture components are similar in size, different mixing 

rules often do not change the errors in calculated properties more than 2%-1%. However, as the size similarity decreases, the 

effect of applied mixing rules becomes more important. 
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1. Introduction 

One of the most successful and widely used methods for 

relating the thermodynamic properties of the mixtures to 

those of the pure fluid is the so called-one-fluid theory. Its 

principle is to treat a mixture as a hypothetical pure substance 

whose characteristic parameters are obtained by interpolation 

between the parameters of the pure components. The 

interpolation formulas are usually referred to mixing rules [1]. 

 Cubic equation of state (CEOS) is used to calculate 

thermodynamic properties of pure fluids and mixtures. CEOS 

can describe pure components reasonably well. 

For application of Cubic equations of state (CEOS) to fluid 

mixtures, mixing rules are required to calculate the overall 

attractive energy and co-volume parameters (the ‘a’ and ‘b’ 

terms, respectively). The choice of mixing rules can have 

significant effects on the predictions from CEOS. Depending 

on whether the mixture consists of molecules of similar types 

and size, and are polar or non-polar, one mixing rules may 

give better predictions than another. [2] 

Non ideal behavior of asymmetry molecules is largely 

determined by the interactions between pairs of molecules 

which can be described by intermolecular potentials. In a 

mixture, there will also be interactions between non-identical 

molecules. The unlike interactions are accounted for using 

mixing rules. 

There are some mistakes in distinguishing between the 

terms ‘‘mixing’’ and ‘‘combining’’ rules. They are used 

interchangeably in the literature. However, Wei and Sadus [3] 

used the term ‘‘mixing rule’’ to indicate the expressions used 

to obtain parameters for the van der Waals one fluid theory, 

while the term ‘‘combining rule’’ was used for mathematical 

expressions used to obtain cross interaction values from pure 

component values. 

The distance between particles i, σii, scale the length of the 

interaction, and parameter εii, scales the well depth of the 

potential. Interaction between dissimilar particles requires the 

generation of cross term parameters for σ and ε. 

To estimate the potential between non-identical molecules, 

the Lorentz–Berthelot mixing rules are frequently used to 

mix the parameters from the systems for the two pairs of 

identical molecules. This mixing rule uses an arithmetic rule 

for the collision diameter (Lorentz rule) and a geometric 

mean for the well depth (Berthelot rule). 
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2. Theoretical 

In this work, we investigated five different mixing rules: 

Lorentz–Berthelot, Halgren HHG, Tang–Toennies, 

Waldman–Hagler, and Fit (MADAR-2). The last rule were 

developed by Al-Matar and Rockstraw [4] based on a certain 

weighting matrix approach for devising mixing rules. 

The Tang–Toennies rules belong to theoretically developed 

rules, while all other rules are empirical expressions 

developed to match experimental data with the prediction 

from the rules. 

The mathematical forms of the rules implemented in this 

research are given below. 

Lorentz–Berthelot. These rules are the most widely used. 

[5, 6] An arithmetic average is used for the collision diameter, 

while a geometric average is used for the well depth. 

δij=1/2(δii+δjj)                           (1) 

ξij=(ξii ξjj)
1/2

                            (2) 

Tang–Toennies.[7] These rules are based on some quantum 

mechanical derivation and are the most successful equation 

among the group of theoretical rules. The problem with such 

an approach is the incorporation of additional parameter 

sets (e.g. polarizability, ionization potentials, or dispersion 

force coefficients). This is contradictory to the purpose 

behind introducing mixing rules. Mixing rules are introduced 

to reduce the number of parameter sets in any force field, 

while theoretical rules introduce more parameters and some 

of them are not easily determined. 

Waldman–Hagler. This rule utilizes a sixth power mean for 

collision diameter and a simplified form of the reduced sixth 

dispersion coefficient for the well depth. [8] 

 Fit (MADAR-2). A least-squares analysis was carried out 

for both σ and ε to determine the weight factors matrix [9] 

for the fit form. The data set of Kestin and co-workers [10-11] 

was used throughout. The power was fixed to the sixth power 

for theoretical considerations; however, it can be treated as 

an adjustable parameter. 

We calculated the values of σ from the following equation 

[12]: 

σ=0.809(Vc)
1/3                                 (3) 

Where Vc is the critical volume. The values of ε were 

evaluated using the following equation 

�

�
=

��

�.�	
�
                                        (4) 

Also in recent years Delara Mohammad-Aghaie, 

investigated the Effect of Mixing Rules on Transport 

Properties of Gas Mixtures [13] and Richard Anthony 

McFarlane evaluated the new co-volume mixing rules for the 

Peng-Robinson Equation of State [14] also Yugong WU 

evaluated the mixing rules for dielectric constants of 

composite dielectrics by MC-FEM calculation on 3D cubic 

lattice [15]. 

The main aim of this work is to understand the effect of 

these five mixing rules on the accuracies of predicted 

thermodynamic properties, including density, excess molar 

volume, and vapor pressure of several binary mixtures. We 

have selected wide varieties of mixtures consisting of: noble 

gas mixture Ar + Kr, mixtures of Xenon + Ethane and 

Xenon+ Propane, refrigerant mixtures R32+R143a as 

representatives of slightly polar mixtures. Further mixtures 

THF + [BMIM][PF6], DMSO + [BMIM][PF6], 

[Emim][Triflate] + Propanol, and [Emim][Triflate]+Water. 

3. Results and Discussion 

There have not been many studies to assess the effect of 

mixing rules on the accuracies of the predicted 

thermodynamic properties in the literature, so this study can 

provide a logical framework for selecting the most suitable 

mixing rules, based on an objective criterion. In our previous 

works [16] we employed ISM EOS and Purebred-Hard-

Sphere (PHS) EOS to calculated density and vapor pressure 

and excess molar volume of several mixtures, To calculate 

mixture thermodynamic properties with ISM EOS we need to 

know binary potential parameters σ12 and ε12, in terms of σ 

and ε of pure components. Mixing (combining) rules 

determine how the cross coefficients σ12 and ε12 are 

calculated. Maitlandet al. [17] provides a good review of the 

mixing rules literature prior to 1981. In the present work 

more recent rules including those of Tang and Toennies [18], 

Halgren [7], Waldman and Hagler and also Al-Matar and 

Rockstraw [4] have been applied to check the effect of 

mixing rules on thermodynamic properties. 

The common belief is that the mixing rules do not 

appreciably affect the outcome of a calculation, so there have 

not been many studies to assess the effect of mixing rules to 

the accuracy of thermos physical properties. The present 

work indicates that the results are slightly in favor of the Fit 

(MADAR-2) mixing rule, for thermodynamic properties of 

studied mixtures. On the other hand, this assessment shows 

the superiority of the Lorentz–Berthelot mixing rule in 

calculation of thermodynamic properties when the mixture 

components differ considerably in size. 

3.1. The ISM Equation of State 

The general frame of the Ihm-Song-Mason EOS read as: 

2( ( ) ( )) ( )
1

1 0.22 ( ) 1 ( )

P B T T T

kT b T b T

α ρ α ρ
ρ λ ρ λ ρ

−= + +
+ −

        (5) 

Where P is the pressure, ρ is the molar (number) density, 

B2(T) is the second virial coefficient, α(T) is the contribution 

of repulsive branch of pair potential function in the second 

virial coefficient. This is based on the recognition that the 

structure of a liquid is determined primarily by repulsive 

forces, so that fluids of hard bodies can serve as useful 

reference states. b (T) reflects the van der Waals co volume, 

kT is the thermal energy per one molecule. λ is a free 

parameter which can be fixed with the help of volumetric 

properties of dense fluids. Any uncertainty in the parameters 
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B2, α (T), and b (T) can be compensated for by selecting a 

proper value of λ parameter. 

2( )/
2

0
( ) 2 (1 )

u r kT
AB T N e r drπ

∞ −= −∫          (6) 

Where NA is Avogadro’s number. 

If a two-parameter potential energy function u(r) can 

describe the nature of the interaction potential between 

particles of a fluid, the potential can be written in 

dimensionless form by: 

( )
u r

F
ε σ

=                                     (7) 

where ε is a characteristic energy parameter and σ is a 

characteristic size parameter, and F is a universal function of 

the reduced intermolecular separation. Upon substitution, Eq. 

(6) can be rewritten in dimensionless form: 

2

2

3 0

( ) ( / )
1 exp

2 BA

B T F r r r
d

k TN

ε σ
σ σπ σ

∞   −    = −      
      

∫  (8) 

It follows from the above equations that the second virial 

coefficients can be correlated by data reduction with energy 

and distance parameters as characteristic parameters. This 

equation also says that the reduced second virial coefficient is 

a generalized function of the reduced temperature. This 

function can be determined either by a direct correlation of 

experimental data for the second virial coefficient or by 

specification of the universal potential function u/ε and 

integration. In this work, we have taken ε as the energy 

parameters and σ as the size parameter in the potential energy 

relation. 

The mixture version of the ISM EOS is as follows 

1 ( )i j ij ij ij i j ij ij

i j i j

P
x x B F x x G

kT
ρ α ρ α

ρ
= + − +∑∑ ∑∑  (9) 

where α is a correction factor for the softness of the repulsive 

forces and G is the average pair distribution function at 

contact for additive non-spherical hard-convex bodies. The 

summations run over all the components of mixtures and 

subscripts ij refer to the i-j interactions. The parameters Fij 

and Gij are defined as: 

2/3
1/3

i j

ij
3 ij 3

(0.22 0.25)
1

1 (1 ) (1 0.22 )

k k k

k

k k k

k

x b
b b

F
b x b

ρ λ

ξ ξ ρ λ

+
 

= −  
 − − + 

∑

∑
   (10) 

2/3
1/3

i j

ij
3 ij 3

( 0.25)
1

1 (1 ) (1 )

k k k

k

k k k

k

x b
b b

G
b x b

ρ λ

ξ ξ ρ λ

+
 

= −  
 − − + 

∑

∑
     (11) 

With 

3 ( )
4

k k

k

x b T
ρξ = ∑                            (12) 

The present method for calculating the second virial 

coefficient and the other two temperature-dependent 

parameters can be extended to mixtures by using a simple 

geometric mean for the non-bonded interaction energy 

parameter, ε and a arithmetic mean for the effective hard-

sphere diameter: 

ij i j( / ) ( / ) ( / )k ε k kε ε=                    (13) 

ij i j

1
( )

2
σ σ σ= +

                         (14) 

 The excess molar volume, VE of binary mixtures was 

calculated by taking the effects of additive hard-spheres. 

And: 

General frame of the PHS EOS has the following form (16, 

17) 

2 3

3

1 ( )
,

(1 )

P a T

kT kT

η η η ρ
ρ η

+ + −= −
−                         (15) 

whereP is the pressure, ρ is the number (molar) density, kT is 

the thermal energy per molecule and η is packing fraction 

defined as: 

( )
,

4

b T ρη =                              (16) 

Eq. (15) has two parts; 1) the Carnahan–Starling 

expression [19] taken as reference hard-sphere model into 

account and 2) van derWaals (vdW) attraction term. Several 

procedures have been proposed to evaluate two temperature-

dependent parameters a (T) and b (T) appeared in Eq. (15-16) 

[20-23]. 

We have determined these parameters from the 

corresponding states correlation. The temperature-dependent 

parameters of above equation can be expressed in terms of 

the following universal functions: 

( )C a
C

2
( )

3
ra T kT F T

π
ρ

=                             (17) 

( )C a
C

2
( )

3
ra T kT F T

π
ρ

=                        (18) 

Here ρc is the critical density, and Tr is the reduced 

temperature which is scaled by the critical temperature TC. 

We have presented an empirical formula for universal 

functions, Fa(Tr) and Fb(Tr) in terms of reduced temperature, 

which can be written as: 

( ) ( ) 3/2
a 1 2 3 4( ) exp expr r rF T a a T a a T = − + − 

               (19) 

( ) ( ) 3/2
b 1 2 3 4( ) exp expr r rF T b b T b b T = − + − 

            (20) 

where; 
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a1=-0.52305, b1=2.3984 

a2=-10.964, b2=9.5380 

a3=3.9201, b3=0.24999 

a4=-9.9757, b4=-1.1922. 

The mixture version of PHS EOS has the following 

structure 

2 3

3

1
( ) ,

(1 )

m mP
x x a T
i j ijkT kT

i j

η η η ρ
ρ η

+ + −= −
−

∑∑

                  (21) 

Where xi and xj are the mole fractions of i'th and j'th 

components, respectively. η is the packing fraction of 

mixtures of hard sphere. This parameter is defined by the 

following expression 

( ) ,
4

m

i i

i

x b T
ρη = ∑                           (22) 

In the case of binary mixtures, the hard-sphere co-volumes, 

b (T)ij are additive according to the following expression 

1/3 1/3
( ) 1/ 8 [ ( ) ( ) ]ij i jb T b T b T= +                    (23) 

The attractive forces between two hard-sphere species of 

mixture including i and j components can be written as 

follows 

C
C

2
( ) ( ) ( )

3( )
ij

ij

a T k T F
a ij

π
ρ

=
                               (24) 

In this study, we have applied the following combining 

rules for TC, ρC and universalized function Fa: 

1/2
C C jCij ( )iT T T=                            (25) 

1/3 1/3 1/31
( ) [ ( ) ( ) ]

2
Cij Cii Cjjρ ρ ρ− − −= +           (26) 

1/2
(( ) [( ) ) ]a a aij ii jjF F F=                       (27) 

In this paper in order to examine the effect of different 

mixing rules on the predicted values of thermodynamic 

properties, we chose some of our previously studied of binary 

mixtures consist of: 

1) Ar–Kr as a noble gas mixture,  

2) Mixtures of Xenon+Ethene and Xenon+ Propane, 

3) Refrigerant mixtures of R32+R143a as representatives 

of slightly polar mixtures. 

4) Mixtures of THF+[BMIM][PF6], 

DMSO+[BMIM][PF6], [Emim][Triflate]+Propanol, 

[Emim][Triflate]+Water as representatives of polar 

mixtures. 

It is obvious that in order to calculate the binary potential 

parameters for each mixture, we need to know the scaling 

parameters, σ and ε for pure components. 

The main objective of this work is to assess the effect of 

these five mixing rules on the results in our previous works 

We took pure component parameters σ and ε for we 

calculated the values of σ from the following equation 

=0.809(Ϭ Vc)
1/3

                            (28) 

Where Vc is the critical volume. The values of ε were 

evaluated using 

�

�
=

��

�.�	
�
                               (29) 

3.2. Improvement of Our Results 

Also in the last section of this research we tested the effect 

of two interaction parameters, Kij in the results. Two 

interaction parameters are often needed for complex polar 

systems. We selected some mixtures of our previous works 

and repeated our calculation for density and vapor pressure 

with Kij and then compare the new results with previous 

results. The results are listed in Tables 4-8. 

In Table 1 we have shown the calculated values of 

collision diameters and well depths of pure compound via 

five different mixing rules. 

Table 1. Collision Diameters and Well Depths for the Pure Component, 

Comprising Our Studied Mixtures. 

Pure component σ/A (ε/kB)/K 

Ar 3.35 141.5 

Kr 3.59 140.2 

R32 4.02 314.878 

R143a 4.691 352.87 

Xe 3.82 142.3 

Ethane 4.371 241.9 

Propane 4.721 353.35 

[BMIM][PF6] 0.9669 926.28 

[Emim][Triflate] 0.92634 808.33 

Table 2 contain the AAD of densities for some mixtures 

such as (He+Xe- R32+R143a- THF+[BMIM][PF6]-

DMSO+[BMIM][PF6]-[Emim][Triflate]+Propanol-

[Emim][Triflate]+Water) by using different mixing rules. IN 

this grope we have Noble gases and refrigerant and ionic 

liquids Mixtures of ionic liquid are with polar solutions. We 

compere different mixing rules and observed the Fit 

(MADAR) give better results. 

Table 2. The AAD of densities for some mixtures by using different mixing rules. 

Mixtures Lorentz-Berthelot Halgren HHG Tang-Toennies Waldman-Hagler Fit (MADAR) 

He+Xe 0.5 0.499 0.502 0.497 0.462 

R32+R143a 0.2 0.201 0.199 0.189 0.162 

THF+[BMIM][PF6] 1.05 1.01 1.002 0.995 0.862 

DMSO+[BMIM][PF6] 0.46 0.482 0.452 0.449 0.365 

[Emim][Triflate]+Propanol 0.25 0.251 0.243 0.241 0.226 

[Emim][Triflate]+Water 0.46 0.451 0.442 0.421 0.385 
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Table 3 show the AAD of excess molar volume for the mixtures in this case also Fit (MADAR) give more acceptable results. 

And Table 4 indicated the AAD of vapor pressure for some above mixtures and the same results repeat. 

Table 3. The AAD of excess molar volume for some mixtures by using different mixing rules. 

Mixtures Lorentz-Berthelot Halgren HHG Tang-Toennie Waldman-Hagler Fit (MADAR) 

Xenon+Ethene 0.2 0.203 0.197 0.192 0.175 

THF+[BMIM][PF6] 0.62 0.612 0.602 0.589 0.51 

DMSO+[BMIM][PF6] 0.98 0.971 0.953 0.942 0.751 

[Emim][Triflate]+Propanol 0.95 0.936 0.925 0.903 0.824 

[Emim][Triflate]+Water 1.16 1.012 0.992 0.956 0.865 

 

A close look at the results reveals that all mixing rules give 

almost the same AAD, when the two mixture components are 

similar in size. 

In continues we used two interaction parameters, Kij and 

observed that the results became better and AAD decreased. 

In this part we use 40 different mixtures and compere our 

results with previous works and we became confident that if 

we use Kij the accuracy of our results is more than before. 

The results are listed in Tables 4-8. 

Table 4. The AAD of vapor pressure for some mixtures by using different mixing rules. 

Mixtures Lorentz-Berthelot Halgren HHG Tang-Toennie Waldman-Hagler Fit (MADAR) 

Xenon+Ethene ±2  2.021 1.985 1.9231 1.658 

Xenon+Propan ±2.1  2.004 1.9923 1.9865 1.895 

 

Table 5. AAD of the calculated densities Ρ (kg/m3) of several mixtures of ILs 

using two interaction parameter. 

Mixtures AAD (ρ) Kij AAD (new) 

[EMIM][Etso4]+aceton 0.37 −0.095 0.33 

[EMIM][Etso4]+acetonitrile 0.39 -0.078 0.34 

[EMIM][Etso4]+dihydromethne 0.27 -0.069 0.21 

[EMIM][Etso4]+ethenol 0.24 -0.046 0.19 

[EMIM][Etso4]+methanol 0.28 -0.065 0.21 

[EMIM][Etso4]+propylen carbonate 0.15 -0.236 0.11 

[EMIM][Etso4]+water 0.27 -0.362 0.22 

Ethanol (1) + [Omim][BF4] (2) 0.3 0.0047 0.24 

[C4MIM][BF4]+Water 0.32 -0.403 0.29 

[C4MIM][BF4]+ethanol 0.27 -0.043 0.22 

[C4MIM][C(CN)3]+Water 0.48 −0.466 0.39 

[C4MIM][C(CN)2]+Water 0.2 −0.441 0.18 

[C2MIM][Triflate]+methnol 0.19 −0.079 0.15 

[C2MIM][Triflate]]+ethanol 0.21 0 0 

[C2MIM][Triflate]]+ethanol 0.61 −0.366 0.54 

[C2MIM][Triflate]+1-Propanol 0.42 0.0279 0.36 

[C4MIM][PF6]+[C4MIM][BF4] 0.33 0.345 0.27 

[C4MIM][BF4]+[C4MIM][MeSO4] 
 

0.412 
 

Table 6. Calculated densities of several mixtures of alkanes using two 

interaction parameter. 

Mixtures ρ (kg/m3) ρ (new) Kij 

Toluene+Pentan 0.6598 0.6143 0.1236 

Toluene+Hexane 0.7445 0.7231 0.1298 

Toluene+Heptan 0.7504 0.7136 0.2103 

Toluene+Octane 0.7687 0.7214 0.2563 

Toluene+Nonane 0.7112 0.6932 0.3695 

Toluene+Decane 0.7464 0.7325 0.3789 

Table 7. Calculated densities of several mixtures of nobel gases and 

refrigerants using two interaction parameter. 

Mixtures ρ (kg/m3) ρ (new) Kij 

propan-C32 0.62 0.60 0.32 

He+Xe -1.19 -1.02 0.14 

R32+R143a -1.87 -1.23 0.37 

R134a+R290 -1.17 -1.01 0.41 

R32+R125 -1.70 -1.33 0.23 

Table 8. Calculated densities and vapor pressure of several mixtures of 

Nobel gases with alkanes, and ILs with alcohols. Using two interaction 

parameter. 

Mixtures P/Mpa P/Mpa (new) Kij 

CO2+R134 0.87 0.83 0.324 

Xe+Ethane 0.65 0.62 0.124 

Xe+Propane -1.38 -1.06 0.134 

Mixtures density with kij Kij 

benzene +[EMIM]+ [(CF3SO2)2N]- 0.95 0.91 0.0241 

Cyclohexane+ [EMIM]+ 

[(CF3SO2)2N]- 
0.74 0.72 0.0348 

C6H6+C12H30 0.91 0.80 0.0233 

CH3OH+[BMIM][Ntf2] -1.54 -1.21 -0.006 

C2H5OH+[BMIM][Ntf2] -1.43 -1.11 -0.123 

C3H7OH+[BMIM][Ntf2] -1.54 -1.13 -0.265 

C6H6+[BMIM][Ntf2] -1.62 -1.33 0.003 

4. Conclusion 

This study shows that all the mixing rules are acceptable 

and the mixture properties are affected slightly using 

different mixing rules, especially when the mixture 

components do not differ much in size. However, the results 

showed that Fit (MADAR-2) mixing rule give better results. 

When the mixture components have considerable difference 

in their collision diameter and well depth values, the 

Lorentz–Berthelot mixing rule performs better than other 

rules. Other rules do not show an obvious trend so that it is 

not possible to classify them. Also observed using two 

interaction parameters, Kij improve the results and the AAD 

decreased. 

 

References 

[1] U. Deiters, Fluid Phase Equlibria, 33, 267, 1987. 

[2] J. Serb. Chem. Soc. 66 (4), 2001, 213–236. 



6 Fatemeh Fadaei Nobandegani and Abouzar Roeintan:  Evaluating the Effect of Different Mixing Rules on  

Thermodynamic Properties in Different Mixtures 

[3] Y. S. Wei, R. J. Sadus, AIChE J. 46, 169, 2000. 

[4] A. K. Al-Matar, D. A. Rockstraw, J. Comput. Chem. 25, 660, 
2004. 

[5] M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids, 
2nd ed., Oxford University Press, New York, 1989. 

[6] W. F. Van Gunsteren, P. K. Weiner, A. J. Wilkinson, Kluwer 
Academic Publishers, Dordrecht, 1997. 

[7] T. A. Halgren, J. Am. Chem. Soc. 114, 7827, 1992. 

[8] K. T. Tang, J. P. Toennies, Z. Phys. D: At., Mol. Clusters 1, 91, 
1986. 

[9] A. K. Al-Matar, Ph. D. Thesis, New Mexico State University, 
Las Cruces, New Mexico, 2002. 

[10] J. Bzowski, J. Kestin, E. A. Mason, F. J. Uribe, J. Phys. Chem. 
Ref. Data 19, 1179, 1990. 

[11] J. Kestin, K. Knierim, E. A. Mason, B. Najafi, S. T. Ro, W. A. 
Wakeham, J. Phys. Chem. Ref. Data, 13, 229, 1984. 

[12] T. H. Chung, M. Ajlan, L. L. Lee, K. E. Starling, Ind. Eng. 
Chem. Res. 1988, 27, 671. 

[13] D. Mohammad-Aghaie, M. M. Papari, J. Moghadasi, and B. 
Haghighi, Bull. Chem. Soc. Jpn. 2008, 81,. 10, 1219. 

[14] Richard Anthony McFarlane, University of Alberta, Fall 2007. 

[15] WU. Yugong, Z. XuanheE, F. Zhigang, Journal of 
Electroceramics, 2003, 11, 227–239. 

[16] M. M. Papari, S. M. Hosseini, F. Fadaei-Nobandegani, and J. 
Moghadasi, Korean J. Chem. Eng, 2012.  

[17] G. C. Maitland, M. Rigby, E. G. Smith, W. A. Wakeham, 
Intermolecular Forces: Their Origin and Determination, 
Clarendon Press, Oxford, U.K., 1981. 

[18] K. T. Tang, J. P. Toennies, J. Phys. Chem. B, 102, 7470, 1998. 

[19] S. M. Hosseini, Ionics 16, 571–575, 2010. 

[20] Y. Song, E. A. Mason, J. Chem. Phys. 91, 7840–7853, 1989. 

[21] Y. Song, E. A. Mason, Fluid Phase Equilib. 75 (1992) 105–
115. 

[22] G. Ihm, Y. Song, E. A. Mason, J. Chem. Phys. 94, 3839–3848, 
1991. 

[23] L. Maftoon-Azad, H. Eslami, A. Boushehri, Fluid Phase 
Equilib. 263, 1-5, 2008. 

 


