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Abstract: In this paper, we apply a combined form of the Elzaki transform method with the Adomian decomposition method 

to obtain the solution of Newell-Whitehead Segel equation. This method is called the Elzaki Adomian decomposition method 

(EADM). The method can be applied to linear and nonlinear problems. The result reveals that the proposed method is very 

efficient, simple and can be applied to linear and nonlinear problems. 
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1. Introduction 

The nonlinear equations play an important role in 

modeling various phenomena arising in applied science. 

Several systems are modeled by partial differential equations 

and most of them are nonlinear. Solving nonlinear system is 

an important task in mathematical analysis and applications 

[1-3]. One of the most important of amplitude equations is 

the Newell-Whitehead-Segel equation (NWS) [4-6] which 

describes the appearance of the stripe pattern in two 

dimensional systems. Moreover, this equation was applied to 

a number of problem in a variety systems, e.g., Rayleigh-

Benard convection, Faraday instability, nonlinear optics, 

chemical reactions and biological systems. In recent years, 

Different methods are utilized to solve NWS equation. P. 

Pue-on [7] applied Laplace Adomian Decomposition Method 

for Solving Newell-Whitehead-Segel Equation. Malomed in 

[8] proposed dispersive NWS equation for the description of 

traveling waves patterns in binary fluids. Nourazar et al.[9] 

used homotopy perturbation method (HPM) and Aasaraai 

[10] used differential transformed method (DTM) to solve 

these equations. Ezzati and Shakibi [11] applied ADM and 

multiquadric quasi-interpolation methods for same purpose. 

Macas- Daz and Ruiz-Ramrez proposed non-standard 

symmetry-preserving method to compute bounded solutions 

of NWS equation in [12]. Recently, Tarig M. Elzaki and 

Sailh M. Elzaki in [13-19], showed Elzaki transform, was 

applied to partial differential equations, ordinary differential 

equations, system of ordinary and partial differential 

equations and integral equations. Elzaki transform is a 

powerful tool for solving some differential equations which 

cannot solve by Sumudu transform. In this paper a reliable 

Elzaki Adomian decomposition method is applied for solving 

Newell-Whitehead-Segel equation. The method can be 

employed to linear and nonlinear problems, and The major 

advantage of this method is its capability of combining the 

two powerful method to obtain exact solution for nonlinear 

equation. Moreover, some examples are illustrative for 

demonstrating the advantage of the method. 

2. Elzaki Adomian Decomposition 

Method 

Let us consider the initial value problem in Newell-

Whitehead-Segel equation in the form 

����, �� = 	�

��, �� + ����, �� − �����, ��        (1) 

���, 0� = ����                                (2) 

where �  and �  are real numbers and �  and �  are positive 

integers. 

By applying the Elzaki transform on both sides of the 

equation (1) and using the linearity of the Elzaki transform 

gives: 

������, ��� = 	���

� + ������, ��� − ������     (3) 
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Using the differential property of Elzaki transform Eq. (3) 

can be written as: 

�
� �����, ��� − �	���, 0� = 	���

� + ������, ��� − ������  (4) 

Using initial condition (2), Eq. (4) can be written as: 

�����, ��� = ����
�
���� + ��

���� ���

� −  �
���� �����        (5) 

The Elzaki Adomian decomposition method represents 

solution as an infinite series of components given below 

���, �� = ∑ �"��, ��#"$%                             (6) 

and the nonlinear term &��� = ��, � > 1 can be presented 

by an infinite series 

&��� = ∑ )"#"$%                                  (7) 

where the components )"  are Adomain polynomials [5] of �%, ��,… , �" which can be calculated by formula 

)" = �
"! , -.-/. &�∑ 01�1#% �2/$%                     (8) 

Specific algorithms were seen in [7, 11] to formulate 

Adomian polynomials [20-21]. The following algorithm: 

)" = &��%� 
)� = ��&3��%� 

)4 = �4&3��%� + 12��4&33��%� 
)6 = �6&3��%� + ���4&33��%� + 13��6&333��%� 

)8 = �8&3��%� + 9���6 + �
4�44:&33��%� + �

4 ��4�4&333��%� +�
48��8&�1����%�                                       (9) 

….. 

can be used to construct Adomian polynomial. By 

substituting (6) and (7) into (5), one get 

��∑ �"��, ��#"$% � = ����
�
���� + ��

�������∑ �"��, ��#"$% �

� − �
���� ��∑ )"#"$% �                                       (10) 

Operating with the Elzaki inverse on both sides of 

equation (10) gives: 

∑ �"��, ��#"$% =
��� ,����
����� 2 + ��� ; ��

���� ���∑ �"��, ��#"$% �

� −
 �

���� ��∑ )"#"$% �<                                (11) 

By comparing the both sides of the Eq. (11), we have the 

recursive relation is given by 

�% = ��� ,��	��
����� 2 = =������                    (12) 

�">� = ��� ; ��
�������"��, ��

� −  �

���� ��)"�< ? ≥ 0  (13) 

3. Application 

In this section, some initial value problems are presented 

to show the advantages of the proposed method which can be 

applied to linear and nonlinear problem. 

Example 3.1. 

Consider linear Newell-Whitehead-Segel equation 

�� = �

 − 3�                         (14) 

subject to initial condition 

���, 0� = =4
                         (15) 

By taking the Elzaki transform on both sides of (14), then using 

the differentiation property of Elzaki transform one obtains 

A�B�
,���
� − �	���, 0� = ���

� − 3	�����, ���      (16) 

Using initial condition (15), Eq. (16) can be written as: 

�����, ��� = ��C�D
�>6� + �

�>6� ���

�                    (17) 

The inverse Elzaki transform implies that: 

���, �� = ��� E �4=4
1 + 3�F + ��� E �1 + 3� ���

�F 
���, �� = =4
=�6� + ��� ; �

�>6����

�<                    (18) 

The Elzaki Adomian decomposition defines the solution 

u(x, t) by the series 

���, �� = ∑ �"#"$%                             (19) 

So, the term �

 can be defined by an infinite series 

�

��, �� = ∑ ��"�

#"$%                       (20) 

Substituting (19) and (20) into both sides of Eq.(18) gives 

∑ �"#"$% = =4
=�6� + ��� ; �
�>6��G∑ ��"�#% 

H<    (21) 

Thus, the recursive relation is defined by 

�% = =4
=�6�                               (22) 

�">� = ��� ; �
�>6��G∑ ��"�#% 

H< ? ≥ 0            (23) 

The other components of the solution can easily calculated 

by using the above recursive relation 

�� = ��� ; �
�>6�����%�

�< = 4=4
��� , �J

��>6���2 =4�=4
=�6�, 
�4 = ��� ; �

�>6�������

�< = 16=4
��� , �L
��>6��J2 =8�4=4
=�6�, 
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�6 = ��� ; �
�>6�����4�

�< = 64=4
��� , �N

��>6��L2 =64
6 �6=4
=�6�, 

And so on for other components. Using (19), the series 

solutions are therefore given by 

���, �� = =4
=�6� ;1 + 4� + 8�4 + 323 �6 +⋯<
= =4
=�6�=8� 

In series form, we can find the exact solution 

���, �� = =4
>� 
Example 3.2 

Consider nonlinear Newell-Whitehead-Segel equation 

�� = 5�

 + 2� + �4                         (24) 

subject to initial condition 

���, 0� = Q                                  (25) 

where Q is arbitrary constant. By taking the Elzaki transform 

on both sides of (25), then using the differentiation property 

of Elzaki transform one obtains 

A�B�
,���
� − �	���, 0� = 5���

� + 2�����, ��� + ���4�  (26) 

Using initial condition (25), Eq. (26) can be written as: 

�����, ��� = R��
��4� + S�

��4����

� + �
��4����4�       (27) 

The inverse Elzaki transformation is applied to Eq.(27) we 

get 

���, �� = ��� E Q�41 − 2�F + ��� T 5�1 − 2� ���

�U
+ ��� E �1 − 2� ���4�F 

���, �� = Q=4� + ��� ; S�
��4����

�< + ��� ; �

��4����4�< (28) 

As before we defines the solution ���, �� by the series 

���, �� = ∑ �"#"$%                               (29) 

and �

 can be defined by an infinite series 

�

��, �� = ∑ ��"�

#"$%                           (30) 

The nonlinear term &��� = �4 is decomposed in term of 

Adomian polynomials 

�4 = ∑ )"#"$%                                 (31) 

Substituting (29), (30) and (31) into both sides of Eq.(28) 

gives 

∑ �"#"$% = Q=4� + ��� ; S�
��4���∑ ��"�

#"$% �< +

��� ; �
��4���∑ )"#"$% �< (32) 

Thus, the recursive relation is defined by 

�% = Q=4�                                   (33) 

�">� = ��� ; S�
��4�����"�

�< + ��� ; �

��4���)"�<   (34) 

The other components of the solution can easily calculated 

by using the above recursive relation 

�� = ��� ; S�
��4�����%�

�< + ��� ; �

��4���)%�< =
Q4��� , �J

���4�����8��2 = R�
4 =4��=4� − 1�, 

�4 = ��� T 5�1 − 2� ������

�U + ��� E �1 − 2� ��)��F
= Q6��� E �4�1 − 2���1 − 6��
− �4�1 − 2���1 − 4��F 
= Q64 =4��=4� − 1�4 

�6 = ��� T 5�1 − 2� ����4�

�U + ��� E �1 − 2� ��)4�F 
= Q6��� , ��

���4�����V�� − ��
���4�����W�� − ��

���4�����8��2 =RL
V =4��=4� − 1�6                                       (35) 

And so on for other components. Using (29), the series 

solutions are therefore given by 

���, �� = =4� EQ + Q42 �=4� − 1� + Q64 �=4� − 1�4
+ Q88 �=4� − 1�6 +⋯F 

In series form, we can find the exact solutions 

���, �� = =4� E X
��YZ[�\]^_�

F = 4X`�\
4>X���`�\�             (36) 

4. Conclusion 

In this work, Elzaki Adomian decomposition method is a 

powerful device to solve many functional equations. Here we 

have successfully used the method for solving Newell-

Whitehead-Segel equation. The result reveals that the 

proposed method is very efficient, simple and can be applied 

to linear and nonlinear problems. 
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