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Abstract: The structure of the algebraic system which results from the use of Haar wavelet when solving Poisson’s equation is 

studied. Haar wavelet technique is used to solve Poisson’s equation on a unit square domain. The form of collocation points are 

used at the mid points of the subintervals i.e at the odd multiple of the sub interval length labeling. It is proved that the coefficient 

matrix has symmetric block structure. Comparison with the tridagonal block structure obtained by the finite difference with the 

natural ordering is introduced. The numerical results have illustrated the superiority of the use of Haar wavelet technique. The 

matrices obtained can be used for any equations containing the Laplace operator. 
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1. Introduction 

Poisson’s equation appears in many applications in physical 

and engineering problems. Numerical treatment of Poisson’s 

equation by finite difference or finite element method 

produces structured linear systems. Recently wavelet 

techniques are used in solving differential equations.  

There are different types of wavelet. In literature Haar 

wavelet is the first ideas related to the concepts of wavelet. 

Haar wavelet was suggested by the mathematician Alfrd Haar 

in 1909. However, the concept of the wavelet did not exist at 

that time. In 1981, the concept was reintroduced by the 

geophysicist Jean Morlet. Afterward, Morlet and the physicist 

Alex Grossman invented the term wavelet in 1984. 

Fortunately, the mathematician Yves Meyer constructed the 

second orthogonal wavelet called Meyer wavelet in 1985. As 

more and more scholars joined in this field, the 1st 

international conference was held in France in 1987. In 1988, 

Stephane Mallat and Meyer proposed the concept of 

multiresolution. In the same year, Ingrid Daubechies found a 

systematical method to construct the compact support 

orthogonal wavelet. In 1989, Mallat proposed the fast wavelet 

transform. With the appearance of this fast algorithm, the 

wavelet transform had numerous applications in the signal 

processing. 

Later many functions are considered in building different 

wavelets but still Haar wavelet is the principal known wavelet. 

The Haar wavelet is likewise the least complex conceivable 

wavelet. Wavelets have picked up a respectable status because 

of their applications in different disciplines. Effective use of 

wavelets, have appeared in numerous examples to overcome 

many difficulty. Prominent effects of their studies are in the 

fields of signal and image processing, numerical analysis, 

differential and integral equations, tomography, and so on, [1]. 

In 1910, Haar showed that certain square wave functions 

could be translated and scaled to create a basis set that span the 

space L
2
. Years later, it was seen that the system of Haar is a 

particular wavelet system.  

In comparison with other techniques, which use the same 

structure of building bases functions and introduce the 

solution as a linear combination of those bases [2], the Haar 

wavelet is simple, can implement standard algorithms with 

high accuracy for a small number of grid points. The 

simplicity in building the wavelet bases from any function 

which use only two operations translation and dilation [3], this 

can be easily seen in Haar wavelet. The simple form of the 

mother function in Haar wavelet as we see below makes the 

processes of dialation and translation an easy work and the 

introduced wavelet family is orthogonal not only linearly 

independent. Although, the wavelet function appeared in 1910, 

their use in the solution of differential equations does not 
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appear until recently [4, 5, 6], last twenty years.  

2. Haar Functions 

The orthogonal set of Haar functions is defined as shown in 

Figures 1. a -1. h. That is a family of square waves with 

magnitude of ±1 in some intervals and zeros elsewhere. Just 

these zeros make the Haar transform faster than other square 

functions such as Walsh’s, [7]. The first curve of Figure 1. a is ����� � 1 on the whole interval, 0 	 � 	 1. This is called 

the scaling function. The second curve �
���  is the 

fundamental square wave, or the mother wavelet which also 

spans the whole interval (0, 1). All the other subsequent curves 

are generated from �
��� with two operations: dilation and 

translation. �����  is obtained from �
���  with dilation, 

which means that �
���  is compressed from the whole 

interval (0, 1) to the half interval (0, 1/2) to generate �����. ����� is the same as ����� but shifted (translated) to the right 

by 1/2. In general, �
��� � �
�2�� � ��                (1)  � � 2� � �, � � 0, 0 	 � � �              (2) 

The Haar wavelets are orthogonal in the sense, 

� ������������ � 

� 2����� 
� �2��   � ! � 2� � �0  " !  

Therefore, they form a set of basis functions. And 

accordingly can be used in approximation of functions as 

follows. 

It is accepted that any square integrable function in the 

interval [0, 1], #���$ %�&0,1'  can be expanded in a Haar 

series in the form 

#��� � ( )
�
���*

+�  

Where the coefficients )
  are determined by )
 �2� , #����
�����
�  with, � � 2� � �, � � 0, 0 	 � � � 

The series expansion of y(t) contains infinite terms. If y(t) is 

piecewise constant by itself, or may be approximated as 

piecewise constant during each subinterval, then y(t) will be 

terminated at finite terms,[8] that is 

#��� � ( )
�
���  �  -./  0.���.�


+�  

Where the coefficients vector -./ and the Haar function 

vector 0.��� are defined as -�.�/ � &)�, )
, … , ).�
' 
And 0.��� � &�����, �
���, … , �.�
���'/ 

where T is denotes the transpose. 

To facilitate the comparison with the structured systems 

appears in the finite difference treatment we use eight 

collocation points at the points 
�
2 , � � 1, 3, 4 , 15 and the 

first eight Haar wavelet can be expressed as ����� � &1 1 1 1 1 1 1 1', �
��� � &1 1 1 1 � 1 � 1 � 1 �  1', ����� � &1 1 � 1 � 1 0 0 0 0',  ����� � &0 0 0 0 1 1 � 1 � 1' �6���� &1 � 1 0 0 0 0 0 0' �7���� &0 0 1 � 1 0 0 0 0' �2��� � &0 0 0 0 1 � 1 0 0'  �8��� � &0 0 0 0 0 0 1 � 1' 
Which can be written in the matrix form as 

8

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

H

 
 − − − − 
 − −
 − − =
 −
 

− 
 −
 

−  

 

 

Figure 1a. ����� � 1, 0 	 � 	 1. 

 

Figure 1b.  �
 ��� is the mother function. 
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Figure 1c.  ����� illustrates the dilation property. 

 

Figure 1d.  ����� illustrates the dilation and translation properties. 

 

Figure 1e.  �6��� illustrates contraction of the dependency domain. 

 

Figure 1f. �7���. 

 

Figure 1g. �2���. 

 

Figure 1h. �8���. 

3. Integration of Haar Wavelets 

The integrals of the first eight Haar wavelets can be 

expressed as 

� ����� � �, 0 	 � � 1,:
�  

And this gives,  

; 116 &1 3 5 7 9 11 13 15' 
At the selected collocation points, similarly one can 

calculate the other functions to obtain 

� �
��� � ? �, 0 	 � � 121 � �, 12 	 � � 1
:

�  ; 116 &1 3 5 7 7 5 3 1' 

� ����� � ? � 0 	 � � 1412 � �, 14 	 � � 12
:

�  ; 116 &1 3 3 1 0 0 0 0' 

� ����� � ?� � 12 12 	 � � 341 � �, 34 	 � � 1
:

�  ; 116 &0 0 0 0 1 3 3 1' 
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� �6��� � ? � 0 	 � � 1814 � �, 18 	 � � 14
:

�  ; 116 &1 1 0 0 0 0 0 0' 

� �7��� � ?� � 14 14 	 � � 3812 � �, 38 	 � � 12
:

�  ; 116 &0 0 1 1 0 0 0 0' 

� �2��� � ?� � 12 12 	 � � 5834 � �, 58 	 � � 34
:

�  ; 116 &0 0 0 0 1 1 0 0' 

� �8��� � ?� � 34 34 	 � � 781 � �, 78 	 � � 1
:

�  ; 116 &0 0 0 0 0 0 1 1' 

1

8

0

1 3 5 7 9 11 13 15

1 3 5 7 7 5 3 1

1 3 3 1 0 0 0 0

0 0 0 0 1 3 3 11
( )

1 1 0 0 0 0 0 016

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

H t dt

 
 
 
 
 
 =
 
 
 
 
 
  

∫
 

 

a.  B� � , ���C��C
� . 

 

b.  B
 � , �
�C��C
� . 

 

c.  B� � , ���C��C
� . 

 

d.  B� � , ���C��C
� . 

 

e.  B6 � , �6�C��C
� . 

 

f. B7 � , �7�C��C
� . 
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g. B2 � , �2�C��C
� . 

 

h. B8 � , �8�C��C
� . 

Figure 2. The graph of the first order integrations of the eight Haar wavelet. 

 

4. The Solution of Elliptic PDE Using 

Haar Wavelet Method 

Poisson’s equation has the form 

DEFDGE � DEFDHE � I�C, #�, 

0 	 C 	 1, 0 	 # 	 1,             (3) 

With boundary conditions J�C, 0� � K
�C�J�C, 1� � K��C�L  0 	 C 	 1          (4) 

J�0, #� � M
�#�J�1, #� � M��#�L  0 	 # 	 1.         (5) 

Poisson’s equation is used as a model problem in the 

numerical treatment of elliptic partial differential equations.  

According to the two-dimensional multi-resolution analysis, 

[1], any function u(x,y) which is square integrable on 

[0,1]×[0,1] can be expressed in terms of two dimensional Haar 

series as follows J�C, #� � ∑ ∑ O�,����C����#�*�+
*�+
          (6) 

This series can be taken as an approximation for the 

solution of Poisson’s equation. Moreover, the expansion of 

u(x,y) can be terminated.  J�C, #� � ∑ ∑ O�,����C����#��PE�+
�PQ�+
          (7) 

Where the wavelet coefficients O�,�  i=1,2,…,2 R
 , 

j=1,2,…,2 R�are to be determined. 

The approach of Haar wavelet depends on writing the 

dominant derivative term in the form 

JGGHH � ∑ ∑ O�,����C����#��PE�+
�PQ�+
                                    (8) 

And accordingly one can obtain  JGG�C, #� � ∑ ∑ O�,����C�ST��#� � #T��1�U � #K�VV�C� � �1 � #�K
VV�C��PE�+
�PQ�+
               (9) 

Through, integrating equation (8) two times with respect to y and using equation (4).  

Similarly,  JHH�C, #� � ∑ ∑ O�,�&T��C� � CT��1�'���#� � CM�VV�#� � �1 � C�M
VV�#��PE�+
�PQ�+
              (10) 

Is obtained by integrating equation (8) two times with respect to x and using equation (5) 

Then we Integrate equation (9) two times with respect to x and using equation (5), we obtain J�C, #� � ∑ ∑ O�,�&T��C� � CT��1�'ST��#� � #T��1�U � CM��#� � �1 � C�M
�#� � #K��C� � �1 � #�K
�C� ��PE�+
�PQ�+
 C#K��1� � C�1 � #�K
�1� � �1 � C�#K��0� � �1 � C��1 � #�K
�0�              (11) 

The wavelet collocation points are defined by 

C� � ���.7�PQ , ! � 1,2, … , 2R
                                       (12) 

#
 � 
��.7�PE , � � 1,2, … , 2R�                                      (13) 
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Substituting equations (9) and (10) in equation (3), and replacing C W# C�  and # W# #
 in the obtained equations and equation 

(11), we arrive at 

∑ ∑ O�,�  X� , �, !, �� = ∅�C� , #
��PE�+

�PQ�+
                               (14) 

Where 

X� , �, !, �� = ℎ��C��ST��#
� − #
T��1�U + &T��C�� − C�T��1�' ℎ��#
�                 (15) 

∅�C� , #
� = �#
 − 1�K
VV�C�� − #
K�VV�C�� + �C� − 1�M
VV�#
� − C�M�VV�#
� + I�C� , #
�           (16) 

J�C� , #
� = ∑ ∑ O�,�&T��C�� − C�T��1�'ST��#
� − #
T��1�U + C�M��#
� + �1 − C�� M
�#
� + #
K��C�� + �1 −�PE�+

�PQ�+
 #
�K
�C�� − C�#
K��1� − C��1 − #
�K
�1� − �1 − C��#
K��0� − �1 − C���1 − #
�K
�0�     (17) 

The coefficients ai,j, i=1,2,…,2R
, j=1,2,…,2R� are found from equation (14). Then we substitute in equation (17) to obtain 

the Haar solution at the collocation points C� , ! = 1,2, … 2R
, #
 , n = 1,2, … ,2R�. 

5. The Coefficient Matrix of the Resulting Linear System 

In this section the properties of the resulting linear system using Haar wavelet method are investigated. The coefficient matrix 

is symmetric matrix as shown in the following 

1 1 2 3

1 2 1 2

2 1 3 1

3 2 1 4

T

T T

T T T

D A A A

A D B B

A B D C

A B C D

 
 
 
 
 
 

,                                       (18) 

Where 

1

7 11 11 7

11 15 15 111

11 15 15 1164

7 11 11 7

D

− − − − 
 − − − − =
 − − − −
 − − − − 

, 2

3 3 3 3

3 3 3 31

3 3 3 364

3 3 3 3

D

− − 
 − − =
 − −
 − − 

3

0 4 3 1

4 8 3 11

3 1 0 0128

1 1 0 0

D

 
 − − − =
 −
 − 

 4

0 0 1 1

0 0 3 31

1 3 8 4128

1 3 4 0

D

− 
 − =
 − − −
 
 

 

1

5 5 5 5

9 9 9 91

9 9 9 964

5 5 5 5

A

− − 
 − − =
 − −
 − − 

, 2

7 11 3 1

15 19 3 11

15 19 3 1128

7 11 3 1

A

− 
 − =
 −
 − 

, 3

1 3 11 7

1 3 19 151

1 3 19 15128

1 3 11 7

A

− − − 
 − − − =
 − − −
 − − − 

 

1

3 7 3 1

3 7 3 11

3 7 3 1128

3 7 3 1

B

− 
 − =
 − − −
 − − − 

, 2

1 3 7 3

1 3 7 31

1 3 7 3128

1 3 7 3

B

− − − 
 − − − =
 −
 − 

 

1

1 3 4 0

1 3 8 41

0 0 3 3128

0 0 1 1

C

− − − 
 − =
 −
 − 

 

While in case of the finite difference method the resulting 

coefficient matrix is block tridiagonal matrix with the natural 

ordering is considered [9], [10]. 

6. Numerical Results and Discussion 

The Poisson Equation: 

DE[�G,H�
D GE  +  DE[�G,H�

D HE = K�C, #�, 

0 ≤ C ≤ 1, 0 ≤ # ≤ 1 and K�C, #� = 2�C� + #��  

Subject to the boundary conditions: 

\�C, 0� = \�0, #� = 0, 
\�C, 1� = C�, \�1, #� = #� 

It can be seen that the exact solution is 

\�C, #� = �C#��. 

The absolute-error is identified by 

Error = 



�.�
�E  ]∑ �\�,� − J�,���.�
�,�+
 , 
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in which \�,�  and J�,� are the exact and numerical solutions 

respectively. 

This problem is solved using Haar wavelet method. The 

results show higher accuracy compared with the finite 

difference method, [11]. The absolute error is calculated and is 

found of order O(10
-19

).  

Two 3-D mesh graphs are obtained for the Haar wavelet 

solution and the exact solution. The graphs are similar due to 

the smallness of the error. 

 
Figure 3a. 3-D meshed surface plot of Haar Wavelet solution. 

 

Figure 3b. 3-D meshed surface plot of the exact solution. 

7. Conclusion 

The coefficient matrix of the linear system, (18) has the 

symmetric block structure due to the local support of the Haar 

wavelet bases and the symmetry of the order of derivatives in 

Poisson’s equation. Comparison with the corresponding 

matrix appears in the finite difference treatment help in 

building the block structure [7]. The simplicity in the format 

of the bases has facilitated the evaluations of the integrals as 

well as calculations. Comparison, with known results have 

proved the accuracy of the Haar wavelet methods. Other 

functions can be used building bases and this will be our 

interest in a subsequent work.  
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