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Abstract: Let Gn be a simple graph with n vertices. Gutman and Wagner founded the theory of random graphs, they introduced 

the matching energy of the graph Gn, which was defined as the sum of the absolute values of the eigenvalues of the matching 

polynomial of the graph Gn. For the Erdös-Rényi type random graph Gn,p of order n with a fixed probability p, where p is a real 

number greater than zero and less than 1, that is, the graph G on n vertices by connecting two vertices with probability p(e), and 

each edge is independent of other one. Chen, Li and Lian solved a conjecture proposed by Gutman and Wagner, that is, the 

expectation of the matching energy of Gn,p converges to a certain number associated with n and p almost surely. But they only did 

the result for random bipartite graphs. In this paper, we give some lower bounds for the matching energy of random bipartite 

graphs. And then we will use Chen et al’s method to generalize this conclusion to any random multipartite graphs. 
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1. Introduction 

Let G be a simple graph with vertex set V (G) and edge set 

E(G). And its vertex number and edge number are denoted by 

|V(G)| and |E(G)|, respectively. A matching of G is a set of 

independent edges in G, and a k-matching of G is a matching 

of G that has exactly k edges, denoted by ( , )M G k . Let m(G, 

k) be the number of k-matchings, i.e., the number of 

selections of k independent edges, or the number of 

k-element independent edge sets of a graph G. Specifically, 

m(G, 1) = m and m(G, k) = 0 for 
2

n
k > . It is both consistent 

and convenient to set ( ,0) 1m G = . The matching polynomial 

of a graph G of order n is defined as 

α(G) = α(G, λ) = 
2

0

( 1) ( , )
k n k

k

m G k λ −

≥

−∑ .      (1) 

The matching polynomial has many important implications 

in statistical physics and chemistry; see [6, 9, 14]. Many 

results on the properties of the matching roots have been 

obtained; see [4, 10-13]. 

On the other hand, the matching energy of a graph G was 

introduced by Gutman and Wagner [5], which is defined as 

the sum of the absolute values of the roots of the matching 

polynomial of G (see Eq. (3)). Moreover, Gutman and 

Wagner found that the matching energy is a quantity of 

relevance with chemical applications [5] and they arrived at 

the relation 

TRE(G) = E(G)- ME(G) 

where TRE(G) is the topological resonance energy of the 

graph G, and E(G) is the energy of the graph G, i.e., the sum 

of the absolute values of the roots of the matching 

polynomial of G. For more information about the 

applications of matching energy, we refer to [6, 9]. For 

terminology and notation not given here, we refer to [1]. 

Defifinition 1 [5]. Let G be a simple graph, and let 

1 2, , , nµ µ µ⋯  be the zeros of its matching polynomial. Then 

the matching energy of G is defifined as 

ME(G) =
1

| |

n

i

i

µ
=
∑ .             (2) 
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Theorem 2 [5]. Let G be a simple graph. The matching 

energy of G can be expressed as the following formula 

ME(G) = 
2

2
00

2 1
ln ( , ) k

k

m G k x dx
xπ

∞

≥

 
 
  
∑∫ .      (3) 

Then Eq. (3) could be considered as the definition of 

matching energy and Eq. (2) would become a theorem. 

Defifinition 3 [6, 7]. Let G′ and G′′ be two graphs (not 

necessarily with the same order). If m(G′, k) ≥ m(G′′, k) holds 

for all k = 1, 2, 3, · · ·, then we write G′ ≥ G′′. If, in addition, 

for at least one value of k, m(G′, k) > m(G′′, k), then we write 

G′ > G′′. If both G′ ≥ G′′ and G′′ ≥ G′ hold, then we say that 

G′ and G′′ are matching-equivalent, and write G′ ~ G′′. If 

neither G′ ≥ G′′ or G′′ ≥ G′ hold, then we say that G′ and G′′ 

are matching-incomparable. 

Bearing in mind that Eq. (2) holds, we have 

Lemma 4 [8]. If G′ and G′′ are two graphs, then 

G′ ≥ G ′′ ⇒ ME(G′) ≥ ME(G ′′), 

and 

G′> G ′′ ⇒ ME(G′) > ME(G ′′). 

Next the basic properties of the matching energy and the 

graphs with extremal matching energy will be introduced. 

Theorem 3 [8]. If the graph G is a forest, then its matching 

energy coincides with its energy. 

Theorem 4 [8]. Let G be a graph and e is one of its edges. 

Let G-e be the subgraph obtained by deleting from G the 

edge e, but keeping all the vertices of G. Then 

( ) ( ).ME G e ME G− <  

Theorem 5 [8]. Among all graphs on n vertices, the empty 

graph without edges and the complete graph nK  have, 

respectively, minimum and maximum matching energy. 

By theorem 4, the connected graph with minimal ME must 

be a tree. By theorem 3, trees have equal E- and ME-values. 

The fact that, among n-vertex trees, the star has minimal 

energy was established long time ago [6]. Therefore, we have 

Theorem 6 [8]. The connected graph on n vertices having 

minimum matching energy is the star nS . 

The matching energy of the empty graph is clearly 0, and 

the matching energy of the star, which equals its ordinary 

energy, is ( ) 2 ( 1).nME S n= −  There does not seem to be a 

similarly simple expression for the maximum matching 

energy ( )nME K , but the following could be proven: 

Theorem 7 [5]. The matching energy of the complete 

graph 

nK  is asymptotically equal to 
3

2
8

.
3

n
π

. More precisely, 

3

2
8

( ) ( ).
3

nME K n O n
π

= +  

Theorem 8 [5]. Let ,n pG  be a random graph of order n 

with fixed probability (0,1).p ∈  Then 

3

2
,( ) ( ln )n p

p
ME G n O n n

π
≥ + , 

holds asymptotically almost surely. 

Theorem 9 [8]. Let ' ''G G∪  be the graph consisting of 

disconnected components 'G  and ''G . Then 

' '' ' ''( ) ( ) ( ).ME G G ME G ME G∪ = +  

Proposition 1. [8]. Let 'F  and ''F  be two forests. Then 

' '' ' ''( ) ( )F F E F E F≥ ⇒ ≥ , 

and 

' '' ' ''( ) ( ).F F E F E F> ⇒ >  

We can directly extend Proposition 1 into: 

Theorem 10 [8]. If 'G  and ''G  be two forests. Then 

' '' ' ''( ) ( )G G ME G ME G≥ ⇒ ≥ , 

and 

' '' ' ''( ) ( ).G G ME G ME G> ⇒ >  

Theorem 11 [5]. The bipartite graph on n vertices having 

maximum matching energy is ,
2 2

.
n n

K
   
   
   

 

In the 1980s the present author established a number of 

relations of the type G H>  [15-19]. 

Lemma 5 (Sliding). Let G be a connected graph with at 

least two vertices, and let u be one of its vertices. Denote by 

P(n,k,G,u) the graph obtained by identifying u with the 

vertex kv  of a simple path 1 2, ,..., .nv v v  Write 

{ }4 , 1,2,3,4 ,n p i i= + ∈  and ( 1) / 2 .l i= −    Then the 

inequalities 

( ( , 2, , ) ( ( , 4, , ))

( ( , 2 2 , , )) ( ( , 2 1, , ))

ME P n G u ME p n G u

ME p n p l G u ME P n p G u

< < <
+ < +

⋯

 

( ( ,3, , )) ( ( ,1, , ))ME P n G u ME P n G u< < <⋯  

hold. 

Lemma 6 (Ironing). Suppose that G is a connected graph 

and T is an induced subgraph of G such that T is a tree and T 

is connected to the rest of G only by a cut vertex v. If T is 

replaced by a star of the same order, centered at v, then the 

matching energy decreases (unless T is already such a star). If 

T is replaced by a path, with one end at v, then the matching 

energy increases (unless T is already such a path). 

Based on Lemmas 5 and 6, it was possible to characterize 

unicyclic, bicyclic, and tricyclic connected graphs with 
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smallest and greatest matching energy. The consideration of 

trees will be skipped since, by theorem 3 it reduces to the 

well known case of extremal energy. 

Denote by nU  the set of all connected unicyclic graphs 

on n vertices. Let nC  be the n-vertex cycle, and let nS +  be 

the graph obtained by adding a new edge to the star nS . of 

course, , .n n nC S U+ ∈  

Theorem 12 [5]. If { }\ , ,n n nG U S C+∈  then 

( ) ( ) ( ).n nME S ME G ME C+ < <  

Denote by nB  the set of all connected bicyclic graphs on n 

vertices. Let *
nS  be the graph obtained by adding two new 

edges to the same (pendent) vertex of the star nS . 

Theorem 13 [5, 16]. If { }*\ ,n n nG B S B∈ , then for 9n ≠ , 

*( ) ( ) ( ).n nME S ME G ME B< <  

If 9n =  and { }* ' ''
9 9 9 9\ , ,G B S B B∈ , then 

* ' ''
9 9 9( ) ( ) ( ) ( ).ME S ME G ME B ME B< < =  

Denote by nTC  the set of all connected tricyclic graphs 

on n vertices. Let nS•  be the graph obtained by adding three 

new edges to the same (pendent) vertex of the star nS . 

Theorem 14 [17]. If { }\ ,n n nG TC S TC•∈ , then for 9n ≠ , 

( ) ( ) ( ).n nME S ME G ME TC• < <  

If 9n =  and { }' ''
9 9 9 9\ , ,G TC S TC TC•∈ , then 

' ''
9 9 9( ) ( ) ( ) ( ).ME S ME G ME TC ME TC• < < =  

In 1950s, Erd oɺɺ s-R e′ nyi [3] founded the theory of random 

graphs. The Erd oɺɺ s-R e′ nyi random graph model ( )nG p

consists of all graphs on n vertices in which the edges are 

chosen independently with probability p, where p is a 

constant with 0 < p < 1. 

Denote by
1; , , knK β β⋯  the complete k-partite graph on n 

vertices with vertex set V, whose parts are 1 2, , , kV V V⋯  (2 ≤ 

k = k(n) ≤ n) satisfying | | ( ), 1,2, , .i i iV n n n i kβ β= = = ⋯  

The random k-partite graph model
1; , , ( )

knG pβ β⋯  consists of 

all random k-partite graphs in which the edges are chosen 

independently with probability p from the set of edges of 

1; , , knK β β⋯ . Note that 
1

1

k

i

i

β
=

=∑  and 0iβ ≥ for 

1,2, ,i k= ⋯ . Denote by 
1 2, ; , , ,( ) ( )

kn k n ij n nA A G xβ β β ×= =
⋯  

the adjacency matrix of the random k-partite graph 

1 1; , , ; , , ( )
k kn nG G pβ β β β∈

⋯ ⋯ , where ijx  is a random indicator 

variable for i jv v  being an edge with probability p, for 

li V∈ and \ lj V V∈ , i j≠ , 1 l k≤ ≤ . Then ,n kA  satisfies 

the following properties: 

(i) 
,

ijx s , 1 ≤ i < j ≤ n, are independent random variables 

with ij jix x= ; 

(ii) Pr( 1) 1 Pr( 0)ij ijx x p= = − = = , if li V∈  and 

\ lj V V∈ , while Pr( 0) 1ijx = = = 1 if li V∈  and lj V∈ , 1 ≤ 

l ≤ k. 

Note that when k = n,
1; , , ( )

kn nG G pβ β =
⋯ , that is, the 

random multipartite graph model can be viewed as a 

generalization to the Erd oɺɺ s-R e′ nyi model. 

Chen, Li and Lian in [2] solved a conjecture proposed by 

Gutman and Wagner, which is now a result stated as follows. 

Theorem 15 [2]. For (0,1)p ∈ , the matching energy

,( )n pME G of the random graph ,n pG enjoys asymptotically 

almost surely the following equation: 

3 1

2 2
,

8
( ) ( (1))

3
n pME G n p o

π
= + .          (4) 

In this paper, we give some lower bounds for the matching 

energy of random bipartite graphs. And then we will use 

Chen et al’s method to generalize this conclusion to any 

random multipartite graphs, and obtain some lower bounds 

for the matching energy of random multipartite graphs. 

2. The Matching Energy of Random 

Bipartite Graphs 

In this section, we will give a lower bound for the 

matching energy of random bipartite graphs. 

Theorem 16. Let 1G  and 2G  be two graphs with the 

same number of vertices (see Figure 1), and let 1G  be 

connected and bipartite with 1( )V G A B= ∪  and 2G be 

disconnected with two connected components 1
2G and 2

2G , i.e., 

1 2
2 2 2G G G= ∪ . Let 1

2| | | ( ) |A V G=  and 2
2| | | ( ) |B V G= . If G is 

a graph such that 1 2( ) ( ) ( )V G V G V G= = and 

1 2( ) ( ) ( )E G E G E G= ∪ , then 1 2( ) ( )ME G ME G G≤ ∪ . 

Proof. For any nonnegative integer k, we claim that 

1 2( , ) ( , )m G k m G G k≤ ∪ . 

We distinguish the following cases. 

Case 1. All the k independent edges in M(G, k) appear in

1G , that is, 1( , ) ( , )M G k M G k= . 

Case 2. All the k independent edges in M(G, k) appear in 

2G , that is, 2( , ) ( , )M G k M G k= . 

Case 3. Some of the k independent edges in M(G, k) 

appear in 1G , and the others appear in 2G . 
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In other words, any set of k-matchings of G is also a one of 

1 2G G∪ . Thus, we have 1 2( , ) ( , )m G k m G G k≤ ∪ . From 

Lemma 4, it follows that 1 2( ) ( )ME G ME G G≤ ∪ .  

Theorem 17. Let 
1 2 1 2; , ; , ( )n nG G pβ β β β∈  be a random 

bipartite graph. Then 

1 2

3 1 3 3

2 2 2 2
1 2 ; ,

8
( (1))(1 ) ( )
3

nn p o ME G β ββ β
π

+ − − ≤ .    (5) 

Proof. Note that 1 2n n nβ β= + . Let ( )n nG G P∈  be a 

random graph, and set 
1 2; ,n nG Gβ β ⊆ , that is, 

1; , 2nG β β  is a 

spanning bipartite subgraph of nG . Then by Theorem 16, 

nG , 
1; , 2nG β β  and 

1 2n nG Gβ β∪  can be seen as 1,G G

and 2G , respectively. Thus, we have 

1 2 1 2; ,( ) ( )n n n nME G ME G G Gβ β β β≤ ∪ ∪ , 

1 2 1 2; ,( ) ( ) ( )n n nME G ME G ME Gβ β β β= + + . 

From above, we can get 

1 2 1 2; ,( ) ( ) ( ) ( )n n n nME G ME G ME G ME Gβ β β β− − ≤ . 

 

Figure 1. The separation on random bipartite graph. 

 

Figure 2. The separation on random multipartite graph. 

From Theorem 15, it follows that 

1 2

3 33 1

2 22 2
; ,1 2

8
( (1))(1 ) ( ).
3

nn p o ME G β ββ β
π

+ − − ≤   

3. The Matching Energy of Random 

Multipartite Graphs 

Next, we will give a lower bound for the matching energy 

of random multipartite graphs. 

Theorem 18. Let 1G  and 2G  be two graphs with the 

same number of vertices (see Figure 2), and let 1G be 

connected and k-partite with 
1 2

1 1 1 1( ) ( ) ( ) ( )kV G V G V G V G= ∪ ∪ ∪⋯  and 2G be 

disconnected with k connected components 1 2
2 2 2, , , kG G G⋯ , 

i.e., 1 2
2 2 2 2

kG G G G= ∪ ∪ ∪⋯ . Let 1 2| ( ) | | ( ) |i iV G V G= , i = 

1, · · · k. If G is a graph such that 1 2( ) ( ) ( )V G V G V G= =
and 1 2( ) ( ) ( )E G E G E G= ∪ , then 1 2( ) ( ).ME G ME G G≤ ∪  

Proof. Similar to the proof of Theorem 16, for any 

non-negative integer k, we claim that 

1 2( , ) ( , )m G k m G G k≤ ∪ . We also need to consider the 

following cases. 

Case 1. All the k independent edges in M(G, k) appear in

1G , that is, 1( , ) ( , )M G k M G k= . 

Case 2. All the k independent edges in M(G, k) appear in

2G , that is, 2( , ) ( , )M G k M G k= . 

Case 3. Some of the k independent edges in M(G, k) 

appear in 1G , and the others appear in 2G . 

Then we can see that a set of k-matchings of G is also a 

one of 1 2G G∪ . Thus, we have 1 2( , ) ( , )m G k m G G k≤ ∪ . 

From Lemma 4, it follows that 1 2( ) ( ).ME G ME G G≤ ∪   

Theorem 19. Let 
1 2 1 2; , , , ; , , , ( )

k kn nG G Pβ β β β β β∈
⋯ ⋯  be a 

random multipartite graph. Then 

1 2

3 3 33 1

2 2 22 2
; , , ,1 2

8
( (1))(1 ) ( ).
3 knkn p o ME G β β ββ β β
π

+ − − − − ≤
⋯

⋯ (6) 

Proof. It is easy to see that 1 2 kn n n nβ β β= + + +⋯ . Let 

( )n nG G p∈  be a random graph, and set 
1 2; , , , kn nG Gβ β β ⊆

⋯ , 

that is, 
1 2; , , , knG β β β⋯ is a spanning k-bipartite subgraph of 

nG . Then by Theorem 18, nG , 
1 2; , , , knG β β β⋯ and 

1 2 kn n nG G Gβ β β∪ ∪ ∪⋯ can be seen as G , 1G  and 2G , 

respectively. Thus, we have 

1 2 1 2; , , ,( ) ( )
k kn n n n nME G ME G G G Gβ β β β β β≤ ∪ ∪ ∪ ∪

⋯
⋯ , 

1 2 1 2; , , ,( ) ( ) ( ) ( )
k kn n n nME G ME G ME G ME Gβ β β β β β= + + + +

⋯
⋯ . 

From above, we can get 

1 2

1 2; , , ,

( ) ( ) ( ) ( )

( )

k

k

n n n n

n

ME G ME G ME G ME G

ME G

β β β

β β β

− − − −

≤
⋯

⋯

. 

From Theorem 15, it follows that 

1 2

3 3 33 1

2 2 22 2
1 2

; , , ,

8
( (1))(1 )
3

( )
k

k

n

n p o

ME G β β β

β β β
π

+ − − − −

≤
⋯

⋯

. 
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4. Conclusion 

From the above discussion, we obtain the lower bounds for 

the matching energy of random bipartite graphs, that is, if 

1 2 1 2; , ; , ( )n nG G pβ β β β∈  be a random bipartite graph, then we 

have  

1 2

3 1 3 3

2 2 2 2
1 2 ; ,

8
( (1))(1 ) ( )
3

nn p o ME G β ββ β
π

+ − − ≤ . 

We use the same method to generalize the conclusion to 

the random multipartite graphs, and we give the lower 

bounds for the matching energy of the random multipartite 

graphs, which is for any random multipartite graph 

1 2 1 2; , , , ; , , , ( )
k kn nG G Pβ β β β β β∈

⋯ ⋯ . Then we obtain 

1 2

3 3 33 1

2 2 22 2
; , , ,1 2

8
( (1))(1 ) ( ).
3 knkn p o ME G β β ββ β β
π

+ − − − − ≤
⋯

⋯  
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