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Abstract: Since its introduction, the Broyden method has been used as the foundation to develop several other Broyden-like 

methods (or hybrid Broyden methods) which in many cases have turned out to be improved forms of the original method. The 

modified classical Broyden methods developed by many authors to solve system of nonlinear equations have been effective in 

overcoming the deficiency of the classical Newton Raphson method, however there are new trends of methods proposed by 

authors, which have proven to be more efficient than some already existing ones. This work introduces two Broyden-like 

method developed from a weighted combination of quadrature rules, namely the Trapizoidal, Simpson 3/8 and Simpson 1/3 

quadrature rules. Hence the new Broyden-like methods named by the authors as TS-3/8 and TS – 1/3 methods have been 

developed from these rules. After subjecting the proposed methods together with some other existing Broyden-like methods to 

solve four bench-mark problems, the results of numerical test confirm that the TS-3/8 method is promising (in terms of speed 

and in most cases accuracy) when compared with other proposed Broyden-like methods. Results gathered after the comparison 

of TS – 3/8 with the other methods revealed that TS – 3/8 method performed better than all the methods in terms of speed and 

the number of iterations needed to reach a solution. On the other hand, TS – 1/3 method yielded results for all the benchmark 

problems but with a relatively higher number of iterations compared with the other methods selected for comparison. 

Keywords: Broyden Method, Newton-Raphson Method, Quadrature Rules, Trapizoidal-Simpson- 3/8 Rule,  

Nonlinear Systems, Convergence, Numerical Examples, Trapizoidal-Simpson- 1/3 Rule 

 

1. Introduction 

Extracting roots or finding solutions to equations is an 

important quest in mathematical computations. The roots of 

equations provide answers to many practical problems. 

Finding the most efficient numerical method for the purpose 

is very critical since accuracy of the result for most practical 

problems is so essential [3]. A problem becomes even more 

demanding if it requires solving systems of nonlinear 

equations after modelling. 

Solving systems of nonlinear equations is one of the most 

important problems in numerical computations, especially for 

a diverse range of engineering applications, including 

applications in many scientific fields [13]. Several real – life 

problems can be reduced to solving systems of nonlinear 

equations, which is one of the most basic problems in 

mathematics [1]. Great efforts have been made by a lot of 

people and many constructive theories and algorithms are 

proposed to solve systems of nonlinear equations [12]. 

However there still exist some setbacks in solving such 

systems. For most traditional numerical methods such as 

Newton’s method, the convergence and performance 

characteristics can be highly sensitive to the initial guess of 

the solution. However, it is very difficult to select a 

reasonable initial guess of a solution for most system of 

nonlinear equations [10]. The algorithm may fail or the 

results may be improper if the initial guess of the solution is 

unreasonable. Many different combinations of the traditional 

numerical methods and intelligent algorithms are applied to 

solve systems of nonlinear equations [14, 15], which can 

overcome the problem of selecting a reasonable initial guess 

of the solution. But the algorithms are too complicated or 

expensive to calculate with when there are a number of 

nonlinear equations to solve simultaneously. 
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Among the classes of numerical methods for solving system 

of nonlinear equations, the Newton–Raphson scheme remains 

popular. However, the Newton–Raphson method is confronted 

with some drawbacks, a major one of which is the need to 

compute the inverse Jacobian matrix iteration by iteration. This 

makes it inefficient for large sized problems especially [20], 

which serves as the motivation for the current work. 

The Broyden method, which is a quasi-Newton method, 

has seen significant modifications and improvements and 

these have motivated other researchers to develop new 

methods capable of solving efficiently nonlinear systems of 

equations [1]. Many authors continue to present different 

techniques which are Newton-like schemes [23, 22, 8, 6, 7], 

Mixed Free Secant methods, or Quadrature formulas. A 

leading trend of new methods developed for the computation 

of solutions of systems of nonlinear equations for the past 

few years has been to formulate using the quadrature rules. 

Some references in relation to developed methods using 

quadrature rules include [16-20] 

Newton Cotes quadrature rules are a group of formulas for 

numerical integration based on evaluating the integrand at 

equally spaced points. Named after Isaac Newton and Roger 

Cotes [7], they fit data to local order k polynomial 

approximants. The Newton–Cotes quadrature formulas 

approximate the integral of a function � ��������  by 

evaluating the function at k nodes ��	, ��, … , �
�  and 

weighting those nodes with n weights �	, ��, … , �
 . The 

most common of Newton-Cotes quadrature formulas are the 

Mid-point, Trapezoidal and Simpson’s rules. The general 

form of the Newton–Cotes formula is; 

� �������� = ∑ �������
��	                      (1) 

The Newton’s method can be derived from the Taylor’s 

series expansion of a function (of a single variable) ���� 

about the point �	: 

���� = ���	� + �� − �	�����	� + 	�! �� − �	�������	� + ⋯ (2) 

where �, and its first and second derivatives �� ��� ��� are 

evaluated at �	. In the case of a multiple variable function �: �
 → �
, (2) can be shown [18], to equivalently give: 

���� = ����� + � �������  !                        (3) 

The matrix of partial derivatives ����� appearing in (3) is the 

Jacobian J, where � �������  !  is multiple integrals as in (4): 

� �������  ! = � � ⋯ � ��
 !,
� !,�	 !,	 ��	, ��, … , �
���
��
"	 … ��	 (4) 

The alternative approach is to treat the multiple integral as a 

nested sequence of one–dimensional integrals, and to use one-

dimensional quadrature rule with respect to each argument in 

turn [9]. Hence we can approximate � �������  !  with the 

weighted combination of quadrature formulas. The authors [6-

8, 18-20, 23] and the references therein have proposed various 

methods for approximating the indefinite integral in equation 

(4) using Newton Cotes formulae of order zero to one. This 

study approximates the integral in Equation (4) by using the 

weighted combination of the Trapezoidal, Simpson - 3/8 and 

Simpson – 1/3 quadrature rules. 

In this study the following objectives are achieved: (i) 

Broyden–like methods is developed using combined weights 

of the Trapezoidal, Simpson 3/8 and Simpson 1/3 quadrature 

rules; (ii) The new methods are analyzed by comparing the 

number of iterations and the CPU time with the existing 

Broyden–like methods using selected systems of nonlinear 

equations as test problems. In the rest of the paper, section 

2.0 describes the general formula of Simpson 3/8 quadrature 

rule while section 3.0 gives details on how the Trapezoidal-

Simpson 3/8 method was derived and the numerical schemes 

of the Trapezoidal – Simpson 1/3 method, with numerical 

tests and results well illustrated in section 4.0 and section 5.0 

gives a summary conclusion on findings from the research. 

2. The General Formula of Simpson 3/8 

Quadrature Rule 

Most (if not all) of the developed formulas for integration 

are based on a simple concept of approximating a given 

function f (x) by a simpler function (usually a polynomial 

function) fi (x), where i represents the order of the polynomial 

function. Simpsons 1/3 rule for integration was derived by 

approximating the integrand f (x) with a 2
nd

 order (quadratic) 

polynomial function f2(x) [2], given by: 

f2 (x)=a₀+ a₁x + a₂x
2
                            (5) 

In a similar way, Simpson 3/8 rule for integration can be 

derived by approximating the given function f (x) with the 3
rd

 

order (cubic) polynomial f3(x) given as 

f3(x)=a0 + a1x + a2 x
2
 + a3x

3
=&1, �, ��, �() *�+�	���(

,     (6) 

The unknown coefficients a0, a1, a2, and a3 in (6) can be 

obtained by substituting four known coordinate data points 

{x0, f (x0)}, {x1, f (x1)},{x2, f (x2)} and {x3, f (x3)} into it as 

follows: 

f (�+)=�+ + �	�+ + ���+� + �(�+( 

f (�	)=�+ + �	�	 + ���	� + �(�	( 

f (��)=�+ + �	�� + ����� + �(��(                 (7) 

f (�	)=�+ + �	�( + ���(� + �(�(( 

The expression (7) can be put in matrix notation as: 

-..
./1 �+ �+� �+(1 �	 �	� �	(1 �� ��� ��(1 �( �(� ��(011

12 *�+�	���(
, = -..

/ � ��+�� ��+	�� ����� ��(� 011
2
                      (8) 

Expression (8) can symbolically be represented as 
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 &3)4×4 �4×	 = �4×	                            (9) 

Therefore: 

�4 	 = *�	���(�4
, = &3)"	�                   (10) 

Substituting (10) into (6), we obtain (11): �(��� = &1, �, ��, �()[A]
−1

 �           (11) 

Furthermore �+ = � 

�	 = � + ℎ = � + 7 − �3 = 2� + 73  

�� = � + 2ℎ = � + 27 − 2�3 = � + 273  

�( = � + 3ℎ = � + 37 − 3�3 = 7 

Substituting the form of �(��� into I=� �������� , we have 

: ≈ � �(������� = �7 − �� <=� >�?(=� @�?(=� A�?=� B�CD   (12) 

Since ℎ = �"�(  ⟹ 7 − � = 3ℎ and Equation (12) becomes 

I ≈ 
(FD  ×  <���+� + 3���	� + 3����� + ���(�C    (13) 

Substituting ℎ = �"�(  into Equation (13) and rewriting the 

whole equation in terms of � ��� 7, the general formula for 

Simpson’s 3/8 quadrature rule is given by (14) 

� ������ ≈ G�"�D H G���� + 3� G��?�( H + 3� G�?��( H + ��7�H��   (14) 

3. Derivation of Trapezoidal–Simpson 3/8 

Method (TS -3/8) 

A Taylor’s series expansion of a function (of a single 

variable) ���� about a point � given by 

���� = ���	� + �� − �	�����	� + 	�! �� − �	�������	� + ⋯ (15) 

where � and its first and second derivatives, �� ��� ���  are 

calculated at �	, can be used to derive the Newton’s method. 

For multiple vector variable function � , an analogous 

expression for it [18], as in (4) is 

���� = ����� + � �������  !                  (16) 

where ���� = ��	���, �����, … , �
�����  and � = ��	, ��, … , �
�. We assume that �∗ is a simple root of the 

nonlinear equation ���� = 0, an � is sufficiently differentiable. 

We assume further that �: L ⊂ �
 → �
  is a smooth mapping 

and has continuous second order partial derivatives on a convex 

open set L ⊂ �
 and has a locally unique root � in L. Taking 

into consideration the two quadrature rules that is: 

Trapezoidal quadrature rule 

� ���� ≈ G�"�� H N���� + ��7�O��          (17) 

Simpson 3 8⁄  quadrature rule 

� ���� ≈ G�"�D H R���� + 3� G��?�( H + 3� G�?��( H + ��7�S��  (18) 

Approximating the integral in (4) by the average of the 

Trapezoidal and the Simpson 3/8 quadrature rules yields: 

� �������  ! =  " !4 &������ + �����) + G " !	T H U������ + 3�� G� !? ( H + 3�� G !?� ( H + ����� V          (19) 

Substituting (19) into (4), we have 

���� = ����� +  " !4 &������ + �����) + G " !	T H U������ + 3�� G� !? ( H + 3�� G !?� ( H + ����� V        (20) 

Since ���� = 0, we get 

0 = ����� +  " !4 &������ + �����) + G " !	T H U������ + 3�� G� !? ( H + 3�� G !?� ( H + ����� V          (21) 

Multiplying through (21) by 
	T " !, we get 

0 = 	T " ! ����� + 4&������ + �����) + U������ + 3�� G� !? ( H + 3�� G !?� ( H + ����� V              (22) 

Expanding (22) gives 

0 = 	T " ! ����� + 4������ + 4����� + ������ + 3�� G� !? ( H + 3�� G !?� ( H + �����                (23) 

0 = 	T " ! ����� + 5������ + 3�� G� !? ( H + 3�� G !?� ( H                                                 (24) 

⟹ "	T " ! ����� = 5������ + 3�� G� !? ( H + 3�� G !?� ( H + 5�����                                                        (25) 
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⟹ � − �� = "	TY� !�ZY[� !�?(Y[GA\!]\B H?(Y[G\!]A\B H?ZY[� �                                                                (26) 

⟹ � = �� − 	TY� !�ZY[� !�?(Y[GA\!]\B H?(Y[G\!]A\B H?ZY[� �                                                                   (27) 

� = �� − 16 U5������ + 3�� G� !? ( H + 3�� G !?� ( H + 5�����V"	 �����                                  (28) 

Setting � = ��?	 and �� = ��  in (28), we have 

��?	 = �� − 16 U5������ + 3�� G� !? !]@( H + 3�� G !?� !]@( H + 5�����?	�V"	 �����                     (29) 

Setting �� G� !? !]@( H ≈ �� G !?� !]@( H ≈ �� G !? !]@� H, equation (29) becomes 

��?	 = �� − 16 U5������ + 3�� G !? !]@� H + 3�� G !? !]@� H + 5�����?	�V"	 �����                               (30) 

��?	 = �� − 16 U5������ + 6�� G !? !]@� H + 5�����?	�V"	 ����� (31) 

In (31) we have an implicit equation because of the 

presence of ��?	  on both sides of it. To avoid its implicit 

nature we use the �_ + 1�`F  iteration of the Broyden’s 

method on the right hand side of (31). Thus we have: 

 ��?	 = �� − 16&5������ + 6���a�� + 5���b��)"	����� (32) 

with b� = �� − cd"	����� and a� =  !?e!�  

Now replacing  ������ , ���b��  and ���a��  by c���� , c�b�� and c�a�� respectively and using the same procedure 

as prescribed in [5, 4, 9], we get ��?	 = �� − 16&5c���� + 6c�a�� + 5c�b��)"	�����   (33) 

Let c� = 5c���� + 6c�a�� + 5c�b�� ⟹ ��?	 = �� − 16cd"	�����              (34) 

Hence we have the following method using initial matrix c+ = : and an initial guess �+ . For a given �+  using initial 

matrix c+ = : , an approximated solution for ��?	  can be 

computed by the iterative schemes as in [18]; b� = �� − cd"	�����                      (35) ��?	 = �� − 16&5c���� + 6c�a�� + 5c�b��)"	����� (36) 

where: a� =  !?e!� , _ = 0, 1, … 

In a similar way as in the above derivations, a weighted 

combination of the Trapezoidal – Simpson – 1/3 quadrature 

rules the the numerical scheme as follows; ��?	 = �� − 12&5c���� + 8c�a�� + 5c�b��)"	����� (37) 

Algorithm for the TS – 3/8: 

1. Given initial guess �+, let _ = 0 and c+ = : 

2. Compute �����, f� ����� ≤ 10"	�  is satisfied stop, 

Else go to step 3 

3. Compute (b��, from (35) 

4. Compute c�b��, using 

c�b�� = c���� + �h� − c����i��i�ji�ji�  

where h� = ��b�� − ����� and i� = b� − �� 

5. Compute c�a�� using 

c�a�� = c���� + �n� − c����7��7�j7�j7�  

where 

a� = �� + b�2 , n� = ��a�� − �����, ��� 7� = a� − �� 

6. Compute ��?	 from (36) 

7. Set _ = _ + 1 and go to step 2, and let c�?	 = c� +�o!"p� !�q!�q!rq!rq!  

where h� = ����?	� − ����� and i� = ��?	 − �� 

Convergence of the TS–3/8 Method 

The properties of the local convergence for the proposed 

method are presented here with the following standard 

assumptions on the nonlinear function �: 

1. � is differentiable in an open convex set L ∈ �
 . 
2. There exist �∗ ∈ L ⊂ �
 such that ���∗� =0 and ���∗� is continuous for every � ∈ L. 
3. ����� is Lipschitz continuous of order 1 so that there 

exists a positive constant y such that z���� − ��h�z ≤ yz� − hz ∀ �, h ∈ �
 

Definition 1.0 (q–super-linear convergence) [11] 

Let ��  and �∗ ∈ �
. Then �� → �∗ is q – superlinear if 

lim�→� z��?	 − �∗zz�� − �∗z = 0 

Lemma 1.1 [21] 

Let �: �
 → �
  be continuous and differentiable on an 
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open convex set L ⊂ �
 , � ∈ L.  If �����  is Lipzschitz 

continuous with Lipscgitz constant y , then for any �, � ∈L z���� − ���� − ������� − ��z ≤ yb��<z� − �z, z� −�zC. Moreover, if ����� is invertible, then there exists � and � > 0  such that 
	� z� − �z ≤ z���� − ����z ≤ �z� − �z 

for all �, � ∈ L for which yb��<z� − �z, z� − �zC ≤ �. 

Lemma 1.2 [21] 

Let �� ∈ �
 , _ ≥ 0.  If ��  converges q–super-linearly to �∗ ∈ �
, then 

 lim�→� z��?	 − �∗zz�� − �∗z = 0 

Here, we present the main result which is a modified result 

in [16] to prove that the local order of convergence analysis 

is super-linear. 

Theorem 1.0 

Let �: �
 → �
 satisfy the hypothesis of Lemma 1.1 on the 

set D. Let c�  be a sequence of non-singular matrices in the 

linear space ���
� of real matrices of order n. Suppose for some �+  the sequence ��  generated by (24) remains in D and lim�→� �� = �∗  for each �� ≠ �∗ . Then the sequence <��C 

converges q–super-linearly to �∗ and ���∗� = 0 if and only if 

 lim�→� � @@�p!Y[� ∗�q!�zq!z = 0                       (38) 

Where i� = ��?	 − ��  and c� = 5c���� + 3c�a�� +5c�b��. 

Proof 

Given that (38) holds; it implies that (35) becomes 

0 = 		T c�i� + �����                                                                                (39) 

0 = 		T c�i� + ����� − ����∗�i� + ����∗�i�                                                                (40) 

0 = 		T c�i� − ����∗�i� + ����� + ����∗�i�                                                                (41) 

−����?	� + ����?	� = R 		T c� − ����∗�S i� + ����� + ����∗�i�                                                (42) 

−����?	� = R 		T c� − ����∗�S i� + �−����?	� + ����� + ����∗�i�                                     (43) 

Taking norm of both sides, we have: 

z−����?	�z = �R 		T c� − ����∗�S i� + �−����?	� + ����� + ����∗�i��                                        (44) 

Using vector norm properties, it implies that; 

z−����?	�z ≤ �R 		T c� − ����∗�S i�� + z�−����?	� + ����� + ����∗�i�z                                   (45) 

Dividing through by zi�z, we have; 

z"Y� !]@�zzq!z ≤ �R @@�p!"Y[� ∗�Sq!�zq!z + ��"Y� !]@�?Y� !�?Y[� ∗�q!�zq!z                                                     (46) 

Using Lemma 1.1 

z−����?	�z ≤ �R @@�p!"Y[� ∗�Sq!�zq!z + yb��<z��?	 − �∗z, z�� − �∗zC                                            (47) 

Since ��?	 → �∗ ∀ _, then from (21), we have 

lim�→� zY� !]@�zzq!z ≤ �R @@�p!"Y[� ∗�Sq!�zq!z + yb��<z��?	 − �∗z, z�� − �∗zC                                                (48) 

���∗� = �� lim�→� ��� = lim�→� ����� = 0 

But ����∗) is non-singular, thus by Lemma 1.1 ∃ � > 0, _+ ≥ 0 such that we have; 

z����?	�z = z����?	� − ���∗�z ≥ 	� z��?	 − �∗z                                                            (49) 

For all _ ≥ _+, we have 
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0 = lim�→� z����?	�zzi�z  

≥ lim�→� 1� z��?	 − �∗zzi�z  

≥ lim�→� 1� z��?	 − �∗zz��?	 − �∗z + z��?	 − �∗z 

= lim�→� @�`!	?`!                                                                                  (50) 

where 

�� = z��?	 − �∗zz�� − �∗z  

It implies that lim�→� �� = 0 

Therefore �� converges q–super-linearly to �∗. Conversely, supposed that �� converges q–super-linearly to �∗ and ���∗� =0. Then by Lemma 1.1, there exist a � > 0 such that we have z����?	�z ≤ �z��?	 − �∗z                                                                          (51) 

Then 

0 = lim�→� z !]@" ∗zz !" ∗z   

≥ lim�→� 	� zY� !]@�zz !" ∗z                                                                                (52) 

= lim�→� zY� !]@�z�zq!z zq!zz !" ∗z                                                                          (53) 

Using Lemma 1.2, we have 

 lim�→� zY� !]@�zzq!z = 0                                                                                (54) 

It implies that 

�R @@�p!"Y[� ∗�Sq!�zq!z ≤ lim�→� zY� !]@�zzq!z + lim�→� ��"Y� !]@�?Y� !�?Y[� ∗�q!�zq!z ≤ 0 + yb��<z��?	 − �∗z, z�� − �∗zC  (55) 

Since �� converges to �∗, then lim�→�z�� − �∗z 

Which proves that 

lim�→�  �R @@�p!"Y[� ∗�Sq!�zq!z = 0  

4. Numerical Tests 

In order to evaluate the performance of the new method (i.e. 

the Trapezoidal Simpson-3/8, denoted as TS-3/8), it was tested, 

together with three other well-known methods (i.e. Classical 

Broyden Method (CB), Trapezoidal–Simpson Method (TS), and 

Trapezoidal Simpson Midpoint Method (TSM), on four 

benchmark problems [18], using a set of seven dimensions 

ranging from 5 to 1065 variables. The results were then 

compared on the bases of two main characteristic features 

namely, the number of iterations (NI) to convergence and the 

Central Processing Unit (CPU) time in seconds. The 

computation was done in MATLAB 2020R with a double 

precision arithmetic on a computer with specification as follows; 

processor: AMD EI-2100APU with Radeon ™ Graphics 

1.00GHz, Installed memory (RAM): 4.00GB and the system 

type is 64 – bit Operating System, x 64 – based processor. The 

programme was designed to terminate whenever the number of 

iterations reached 500 and when ��  satisfied �z��z ≤ 10"	�; 

any failure of a method to satisfy these convergence criteria is 

denoted by a dash (i.e. ‘-’) as in Table 1. 

The problems are: 

Problem One ����� = ����?	 − 1, �
��� = �
�	 − 1, f = 1,2, … , � −
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1 ��� �+ = �0.8, 0.8, … , 0.8�j 

Problem Two ����� = ����?	 − 1, �
��� = �
�	 − 1, f = 1,2, … , � −1 ��� �+ = �0.5, 0.5, … , 0.5�j 

Problem Three ����� = ��� − cos��	 − 1� , f = 1,2, … , � ��� �+= �0.5, 0.5, … , 0.5�j 

Problem Four  ����� = exp���� − 1� − cos�1 − ���� , f = 1,2, … , � ��� �+= �0.5, 0.5, … , 0.5�j 

5. Results and Discussion 

Methods developed in this research (Trapezoidal – 

Simpson 3/8 and Trapezoidal – Simpson – 1/3 methods) were 

compared with existing methods (Trapezoidal – Simpson and 

Trapezoidal – Simpson – Midpoint methods). The first and 

second results in Table 1, corresponds to the existing 

methods Trapezoidal – Simpson – Midpoint (TSM) and 

Trapezoidal – Simpson (TS) methods respectively, whilst the 

third and fourth methods are the results of the developed new 

methods namely the Trapezoidal – Simpson 1/3 (TS – 1/3) 

and Trapezoidal – Simpson 3/8 (TS – 3/8) methods. 

Table 1. Numerical Results of all Four Methods. 

Problem n 

1 2 3 4 

TSM TS TS – 1/3 TS -3/8 

NI CPU NI CPU NI CPU NI CPU 

1 

5 9 0.266 4 0.198 23 0.217 4 0.186 

35 35 0.190 4 0.178 23 0.206 4 0.201 

65 53 0.226 4 0.188 23 0.322 4 0.188 

165 123 0.415 4 0.202 23 0.337 4 0.209 

365 218 1.191 4 0.241 23 0.361 4 0.213 

665 477 7.353 4 1.255 23 0.711 4 0.314 

1065 769 31.838 4 0.399 23 0.218 4 0.398 

2 

5 11 1.057 4 0.185 24 0.208 4 0.220 

35 36 0.204 4 0.189 24 0.226 4 0.210 

65 60 0.221 4 0.192 24 0.204 4 0.187 

165 146 0.409 4 0.197 24 0.253 4 0.239 

365 301 2.025 4 0.221 24 0.330 4 0.244 

665 498 6.125 4 0.286 24 0.911 4 0.278 

1065 804 22.414 4 0.451 24 1.564 4 0.859 

3 

5 9 0.246 4 0.224 25 0.223 7 0.206 

35 9 0.218 7 0.183 24 0.213 7 0.208 

65 9 0.210 7 0.197 24 0.238 7 0.202 

165 9 0.239 7 0.236 24 0.253 7 0.220 

365 9 0.236 7 0.260 24 0.359 7 0.280 

665 9 0.327 7 0.289 24 0.780 7 1.238 

1065 9 0.607 7 0.418 24 1.036 7 0.659 

4 

5 4 0.271 4 0.259 24 1.283 4 0.202 

35 - - 4 2.522 24 0.233 4 2.635 

65 - - 4 8.343 24 0.220 4 8.343 

165 - - 4 47.078 24 0.273 4 51.077 

365 - - 4 232.026 24 0.485 4 227.191 

665 - - 4 773.373 24 0.576 4 759.877 

1065 - - 4 1926.21 24 1.094 4 1979.338 

 
Table 1 presents the results for solving the four benchmark 

problems with each of the four methods. The results indicate 

clearly that the proposed methods did not fail to meet the 

convergence criteria specified for all the selected benchmark 

problems. An observation from the table revealed that TSM 

method was unable to obtain solutions for problem four with � values equal to 35, 65, 165, 365 665 and 1065, in addition, 

it recorded the highest number of iterations for most of the 

problems solved. TS and TS – 3/8 methods recorded the 

lowest number of iterations for all four benchmark problems 

with each one of them recording the same number of 

iterations for each problem. Another important observation 

made from the data above shows clearly that the new 

developed TS – 3/8 method required lesser CPU time to 

execute all four problems under consideration with � values 

equal to 5, 35, 65, 165, 365 and 665 however in most cases 

for � equal to 1065, TS method recorded a lesser CPU time 

compared to TS – 3/8 method. Lastly, The TS – 1/3 method 

also proposed in this research recorded a relatively high CPU 

time for all the problems compared with TS and TS – 3/8 

methods. 

6. Conclusions 

This paper has proposed and developed two new Broyden 

– like methods for solving system of nonlinear equations. 
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The methods namely TS - 3/8 and TS – 1/3 methods, 

preserved the local order convergence of the classical 

Broyden method with TS – 3/8 method performing extremely 

well in terms of a lesser number of iterations and CPU time 

required for all computations when compared with other 

existing methods. In addition, the TS – 3/8 method well just 

as the already existing TS method in terms of the number of 

iterations for each of the benchmark problems, however, It 

did better than the TS – method in terms of the CPU time 

required for values of � equal to 5, 35, 65, 165, 365 and 665 

whilst for values of � equal to 1065, TS method had a lesser 

CPU time. This can be concluded that though the TS – 3/8 

method will yield a lesser CPU time for smaller values of �, 

TS method may perform equally well or better for some 

higher values of � , hence from the date gathered in this 

research the TS – 3/8 method out performs the TS method 

and the other three methods for all benchmark problems for 

smaller values of �. 

Results gathered from this research using the newly 

developed TS-3/8 method, suggests that weighted 

combination of quadrature rules such as Simpson 1/3 and 3/8 

against known ones like Midpoint, Simpson and Trapezoidal 

rules might equally yield much more better iterative schemes 

capable of solving system of nonlinear equations. 
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