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Abstract: Technical information systems, from PCs to supercomputers, are characterized over time by ever-increasing 

storage capacities, while biological systems are permanently characterized by their trainable memory abilities. Although both 

systems are not comparable with each other, because they are based on different phenomena, the existing efficiency of 

biological systems offers a constant borrowing for the further development of technical systems. For this purpose, it is 

necessary to develop technical equivalence models. The following considerations aim to reproduce the factually limitless 

abilities of biological systems to store memory content as a result of the plasticity of neuronal populations. The difference 

between technical and biological systems becomes particularly clear under this aspect: while the development of technical 

systems aims to permanently increase the existing storage capacity, biological systems are based on independently separating 

relevant from irrelevant information and, moreover, permanently reorienting existing memory structures, called plasticity. 

Accordingly, the transmitter flow between the neurons constantly changes in direction and intensity. A network with a transient 

topology that is marginally able to model a memory-capable neuronal population characterized by a permanent loss of 

neuronal contact points is proposed for discussion. Such a loss permanently changes the direction and intensity of the 

transmitter flow between the neurons. Another focus of the topic is the question of how different stimuli, meaning optical, 

acoustic, tactile, etc., can become one and the same memory description of a neuron population. Here it is assumed that a pre-

processing takes place in the biological system in the form of a functional transformation, the result of which is a neutral basis 

for representing the information. Although such an assumption seems to be highly speculative, a discussion of it would 

contribute to answering the question of which physiological mechanisms have to be taken into account to explain memory 

phenomena, reproduced in a model. 

Keywords: Engrams, Memory Structure, Observation Space, Memory Stimulator, Degeneration, Fokker-Planck Equation, 

Jacobian Matrix 

 

1. Introduction 

Architectures of technical and biological systems are 

fundamentally not comparable with each other, neither in 

their structure nor in their function. Nevertheless, a technical 

borrowing from biological model systems is of interest, 

although a formal transfer of neuronal into technical 

structures has not proven to be expedient. Although the 

discovery of gestalt neurons (Hubbel and Wiesel) in the cat 

brain in the second half of the last century was important for 

the development of artificial neural networks, it soon turned 

out that in a neuron population a single neuron has no 

singular significance [1]. The assumption of a so-called 

grandmother neuron, which reacts singularly to an excitation 

in lateral independence, is irrelevant. Rather, the interest in 

brain research has developed in the direction of finding out 

which track (: engram) neuronal excitation takes in a 

population in space and time. Richard Semon (a member of 

the Leopoldina) coined the term engram as the permanent 

memory entry and thus explained the inheritance of 

properties [2]. In this context, it is of interest how engrams 

permeate each other, how they can self-organize from 

dysfunctional to functional areas of the brain (: plasticity). 

These effects inspired and still inspire the development of 

technical systems for information processing, for example 

those with associatively organized storage mechanisms. 

Equally interesting are the different signal carriers in the 

case of a technical borrowing from biological model systems. 

One and the same system not only picks up different signal 
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carriers in parallel, but also processes them together in order 

to subsequently store them in one and the same neuron 

population. This applies, for example, to the overall 

impression of space and acoustics in a concert hall and in an 

opera house. Due to the complex perception of space and 

acoustics, a memory entry is formed that differs significantly 

from the singular perception of the acoustics [3]. 

The question is: Which signal carriers represent a lasting 

complex impression in one and the same biological system? 

Brain researchers are responsible for answering such a 

question. In the following, the question of whether the 

original memory content received via a certain channel is 

subject to a functional transformation before being stored in a 

neuron population is attempted, which offers a common basis 

for all channels [4]. 

A next question is: How does the biological system 

independently organize the whereabouts or loss of recorded 

memory content. In the event that content is of negligible 

relevance, it will be deleted, formulated in the technical 

terminus, otherwise it will be preserved. To simulate this 

phenomenon, a technical arrangement is presented, 

consisting of a network with volatile topology and an 

integrated memory stimulator. Parameters are consistency 

rate λ and memory ability η. Both parameters together 

measure the memory loss along the trace of an engram, 

equated along a time axis. No matter how intense the ability 

to remember, any memory content is only temporary and is 

lost over time. 

2. Storage of Memory Contents 

A nervous system represents a higher-dimensional action 

space, consisting of a myriad of locations for accommodating 

neurons, which are linked to one another via synapses. 

Sperry, Nobel Prize winner for medicine, held the view that 

humans are born with an excess of synaptic connections, but 

over time they degrade in a problem-oriented manner in 

order to develop over time their individual, unmistakable 

nature [5]. According to this, neural connections only exist 

temporarily, which raises the following questions from a 

system-theoretical point of view: 

1) What transformation exists between the arousal 

environment and the structure of the nervous system, 

derived from this the question: 

2) Who or what determines the coupling weights of the 

synapses, closely related question: 

3) What breakdown processes take place in the nervous 

system? 

Question (1) refers to the large number of qualitative and 

quantitative stimuli on the nervous system, their filtering and 

their entry into existing memory structures. Due to the 

plasticity of the nervous system, it can be expected that the 

topology of the nervous system will adapt to this complexity. 

Although a dedicated description of this with the help of 

systems theory would be interesting, for example to be able 

to distinguish between self-perception and external 

perception, it would contradict any capacity for tolerance. 

However, such an ability should be indispensable for the 

coexistence of living systems. 

Question (2) can be answered decisively. Existence and 

perception of stimuli are two different phenomena. Sensory 

organs such as the light-sensing cells in the visual system of 

vertebrates receive an optical pattern as a conglomerate of a 

multitude of complex light stimuli and convert them in detail 

into generator potentials for further processing in the 

downstream layers. Finally, the storage of the optical pattern 

in a memory structure is not true to the texture, that means 

isomorphic, but relational. It is not the local intensity 

distribution of the pattern that is stored in a memory structure, 

but rather the relationships between the locations of the 

intensities in the pattern, referred to as coupling weights. 

These entries in the memory structure are autonomous and 

volatile in order to guarantee an orderly filing of memory 

content within the memory structure over time. 

Question (3) relates to gerontological and pathological 

changes in the nervous system. As a result, the memory 

structure increasingly loses its ability to store memory 

content, caused, for example, by plaque formation on the 

membrane of postsynaptic neurons, but also by tauopathy 

inside the neuron [6, 7, 8]. 

2.1. Interactions Between the Points in Space 

Given is a population of a large number of neurons 

coupled to each other via synapses, modeled as a traffic field 

of nodes that interact with each other via an embossed 

coupling structure. The interactions of the nodes are to be 

simulated. A marked coupling flow circulates between them, 

controlled by an associated reference field (Figure 1). 

From an abstract point of view, the traffic field exists as an 

n-dimensional accommodation R������
of m space points P 

from P � �	
, . . . , 	�
	 in an n-dimensional discrete Action 

space ����� , i.e. R������ : P → ����� , where ξ  n-dimensional 

coordinate tuple of P in ����� . 

 

Figure 1. Topology of a sandwich architecture, consisting of traffic and 

processor field. 

A marked corpuscle flow is driven across the traffic field, 

the orientation of which is determined both by the topology 

between the resources and by the reference distribution 

between them. 
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The dynamics of the traffic field is observed at discrete 

points in time τ on a discrete time scale ���  in a n-dim. 

discrete time-based observation space ����� � ����� × ���. ����� � ����
; �
�, … , ��� ; !"�
 
At the initial point in time τ0, an inhomogeneously 

distributed concentration pattern may act on all m spatial 

points P from P, referred to as the excitation pattern X =$�
, . . . , �%, … , ��&  of the traffic field. Diffusion is a 

concentration equalization through undirected random 

movements [14]. In the present case, it is a question of 

controlled referencing by a reference field. The necessary 

references A(P',P;τ) from P to P' at time τ are to be 

calculated. The time invariance A�P′, P; τ�  granted here 

guarantees the maintenance of the inner dynamics of the 

action space during the balancing process. 

The interactions manifest themselves in the permanent 

referencing of emitting through emitting nodes, as a result of 

which the status of the nodes and thus their weighting in 

relation to one another changes constantly. Under certain 

circumstances, and this is the actual goal of the procedure, 

some nodes in the traffic field lose their relevance and must 

therefore be relegated. Likewise, all incoming and outgoing 

connections are eliminated. The aim is to achieve a 

maximum number of connection extractions in this way. 

The process is modeled taking into account the time 

invariance in the n-dim. discrete action space ℤ���� , the 

simulation on the other hand in n-dim. Vector space R
n
. 

2.2. Referencing Between the Spatial Points 

Multidimensionality of a discrete space means splitting the 

space into a corresponding number of coordinate axes ξ. In ℤ���� , the function values X(ξ) in the n-tuples ξ =(ξ1, …,ξn) 

are interpolation points of a function f in a continuous vector 

space R. In fact, the metric distance is the Interpolation 

points in relation to each other for the formation of the 

discrete Fourier transform *�X�ξ�; k
as a discrete spectral 

function A(k) of X(ξ) are of no importance, as a result of 

which a 1-dim vector space R
1 

can suffice for the formation 

of * . Each n-tuple ξ =(ξ1, …,ξn) in ℤ����  is assigned an 

argument x from f(x) in R
1
. 

Suppose f(x)=f(x±nL), then 

- → .:	*���-�; /
 = 0�/� =



1 2
∑ 4�.�5.6�−89�./� 2
:;
2   

Under 9� = 1<
1 2
 , 8 = √−1 , L=2N, / = 1 −?,… ,0, … , ? − 1 

Suppose f(x)=f(-x), then 

0�/� = 1
1 2
∑ 4�.�ABC�9�./� 2
:;� − �� with �� = ��. = 0� 

and reciprocally unique 

4�.� = 4�−.� = 	 1
1 2
∑ 0�/�ABC�9�./� 2
:;� − 0�  

With 

0� = 0�/ = 0�                              (1) 

It reads (2-1) in matrix representation 
1

1 2
WE→F ∙ f =a 

and WF→E ∙ a = f 
Under f = J4�, 4
,…,4:,…,4 2
K  mit 4: = 4�.�  sowie a = JL�, L
,…,LM,…,L 2
K mit LM = 0�/� 
It is WE→F = N O:M N�…P2
;�…P2
 under  

O: = Q
12 	4üT	. = 0cos�ω�xk�	4üT	. > 0

M  

And WF→E = ‖ OM: ‖�…P2
;�…P2
 under  

OM = \ 

1 	4üT	/ = 0cos�ω�xk�	4üT	/ > 0

: . 

W is a column and row ordered coefficient matrix for 

performing the Discrete Fourier Transform. WF→E generates 

the spectra a0, …,N-1 weighted with the corresponding Fourier 

coefficients cosJω� ∙ x ∙ k�,…, 2
K the function value f(x) at 

the point x into arousal pattern. 

4�.� = 2∑ 0�/�ABC�9�./� 2
M;� − 0� with �� = ��. = 0�  (2) 

In a figurative sense, the architecture of (2-2) describes the 

interaction of the traffic and reference fields. If the elements 

of the traffic field do not exist in the original but in a 

previously determined spectral range, the sum of the 

references of all spatial points P to a spatial point P' 

represents its function value f in the original [9]. 

All references between the spatial points, accordingly all 

interactions between the neurons of a population, are 

positively signed. Accordingly, the coefficients A(k)cos(ω0 

xk) in (2-2) are to be normalized. 

Let ] = �0�/�ABC�9�./�	|	.�, /� = 	0, … , ? − 1
 
set of all Fourier coefficients, 

then 0 ≤ `M: = 1 + b�M�cde�fg:M�h�i]                (3) 

is positively signed reference from Pk to 
x
P, the space points 

from P. 

2.3. Topology Reduction 

In biology, the term "evolution" stands for the increase in 

resilient properties of a biological system or for overcoming 

inhibiting properties. At the same time, changes of state also 

take place in physical systems. Change energy is consumed 

for this. If this energy is spent inside a system and no 

external supply is supplied, it retains its assumed state. A 

capacitor, for example, is able to store energy by separating 

charges. This requires internal energy, mediated by an 

applied voltage. The capacitor has reached its capacity limit, 

its change energy is exhausted, and there is no longer any 

charge separation. Its condition is preserved [10]. 
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With regard to the energy supply and capacity limit of 

physical systems, a borrowing can be used to optimize the 

topology of neuronal memory structures. Memory structures, 

so-called engrams, are formed, they penetrate each other, 

interact with each other and thus process information. 

Frequencies of synaptic connections taken thereby reflect 

their relevance for storing memory content. 

From a physical point of view, the formation of engrams is 

an energy-consuming process, supported, among other things, 

by the consumption of glucose, the more intense the more 

frequently a synaptic connection is used. It seems plausible to 

dissolve less frequently used connections in order to gain 

energy for more frequently used ones. The reduction algorithm 

in a discrete action space �����  for modeling and simulating the 

ability to remember is based on this assumption [11]. 

If all nodes continue to exist, the topology reduction in the 

discrete action space is carried out solely by a conditional 

removal of existing arcs between them. 

First, the most weakly referenced node of all arcs is 

declared as one to be removed. 

Should the arc so removed result in either loss of mutual 

reachability between all nodes, indicated by a minimum 

matrix M, or loss of corpuscular flow balance between nodes, 

the removal is annulled. Subsequently, the second weakest 

referenced of all arcs is declared as one to be removed, and 

so on. 

The reduction ends when no more arcs can be found that 

fulfill requirement 2. 

Between the nodes of the traffic field (Figure 1), 

corpuscular flows circulate, the thicknesses of which change 

as arcs are removed, so they have to be recalculated after 

each removal. 

According to its references, each node emits and emits its 

contribution to all corpuscle flows in the traffic field, 

consuming time. The transfer times between the nodes are 

related to their references. Balance exists when the time 

consumption for corpuscle immission and emission 

correspond to each other. Each node P emits corpuscle 

streams in a distribution time and emits incoming corpuscle 

streams in a collection time in the time shadow, 

parameterized by 

1) Preparation time c for the transfer of a corpuscle massif 

along an arc, 

2) Transfer time q of a corpuscle along an arc, depending 

on 

3) Velocity v of the corpuscle transfer and actually taken 

4) Path length s of a corpuscle. 

The demand for balance in relation to the transfer time 

between the nodes results in a linear system of equations K ⋅ l⊗ � b for the calculation of balanced sizes of circulating 

corpuscle flows. 

2.4. Memory Stimulator 

From a system-theoretical point of view, memory is 

understood to mean the acquisition and maintenance of a state. 

Richard Semon (Member of the Leopoldina) explained the 

memory ability of a neuron population with the formation of a 

memory trace (: engram). The Freiburg scientists M. Bartos 

and Th. Hainmüller [12] support this phenomenon and suspect 

that memory formation in the brain is accompanied by a 

change in synaptic connection strengths between inhibitory 

and excitatory nerve cells (: synaptic plasticity). 

 

Figure 2. Structogram of the topology reduction: The elements of the 

adjacency and reference matrix are accommodated in a linearly ordered set 

F with the relation <. Outside of the 0 elements, the infimum of F and its 
address or indices are determined. Subsequently, the corresponding element 

a of the adjacency matrix A is converted from 1 to 0 and it is determined 

whether the accessibility of the spatial points P to each other has been 

retained. Then there is a solution of the system of equations o ⋅ l⊗ � p for 

the sizes of the corpuscle emissions ?⊗
...� from the space points P1...m. In the 

case of only positively signed solutions, the annulment of a is retained, 

otherwise the return a:0�1 takes place. The element corresponding to the 
return is taken from the set F and the next infimum of F is then determined. 

The topology reduction ends when, after a transfer from a:1�0 the spatial 

points P is no longer accessible to one another or no positively signed 

element can be found in the set of m thicknesses ?⊗. 

In this context, it is of interest how engrams permeate each 

other, how they can self-organize from dysfunctional to 

functional areas of the brain (: plasticity). Neural connections 

only exist temporarily, and the following is of interest: 

What is the transformation between the arousal 

environment and the structure of the nervous system, 
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derived from this the question: 

Who or what determines the coupling weights of the 

synapses, 

closely related question: 

What breakdown processes take place in the nervous 

system? 

Conditional retention and loss of memory content is 

modeled in Figure 3. 

Not every neuron in the population is connected to every 

other neuron via synapses, an adjacency matrix A models the 

concrete topology. In view of Sperry's assumption that 

humans are born with an excess of synaptic connections, the 

adjacency matrix is fully occupied in the initial state, 

excluding a connection with oneself. 

Synapses change their connection strength; the presynaptic 

release of transmitter molecules can vary. Catalysts (: 

enzymes) influence their transfer across the synaptic cleft. 

They are temperature-dependent, their effect in the organism 

is linked to the ambient temperature. The receptors of the 

postsynaptic membrane bind the transferred molecules. 

 

Figure 3. A reference matrix Y results from the Fourier transform of an 

excitation pattern X(j). The program MPS.jar constantly simulates the 

topology reduction of the population. A resulting memory loss can be 

compensated for within limits by a memory simulator. 

For the duration of their connection, sodium channels open 

for the influx of positively charged sodium ions into the 

interior of the postsynaptic neuron. In addition, the 

connection strength of a synapse is related to the frequency 

of its use. In the simulation model [8], a synapse is 

characterized by its transfer speed for transmitter molecules, 

parameterized by the elements v of a speed matrix V, but also 

by the relative frequencies y as elements of a reference 

matrix Y. 

After each influx of NA+ ions, a neuron goes through a 

refractory period - a time interval in which no new 

transmitter molecules can be released. This property takes 

into account a refractory matrix C whose elements c are 

called refractory periods. From a physical point of view, this 

is how a neuron protects itself from energetic exhaustion. 

The simulation model [13] for retention and loss of 

memory content exists in a discrete observation space. All 

components, here the neurons of the population, exist at a 

discrete distance from each other, either directly or only 

indirectly coupled. The distances change with the structuring 

of the population, that means change permanently with the 

problem-oriented removal of direct connections. The 

remaining path lengths between them are the elements s of a 

taximetrics’ path length matrix S. If all neurons were directly 

connected, S would be a Euclidean distance matrix. 

In summary, the simulation model for simulating transient 

activities in a neuron population consists of the following 

Parameter set: 

A (: adjacency matrix for the topology of the neuron 

population), 

C (: refractory matrix for the passive time of the neurons), 

V (: velocity matrix for excitation transfer along a direct 

connection), 

S (: Matrix of taximetrics’ path lengths in the initial state 

ε=0) 

with ε as index for the current reduction step in the model (: 

reduction step). 

Due to the permanent loss of synaptic connections, the 

power of circulating transmitter flows in the population 

changes constantly. In the simulation model, this effect is 

simulated by a permanently changing thickness of circulating 

corpuscle massifs. It is d⊗r s�t� the thickness of a corpuscular 

massif emitted in Pν and immitted by 
µ
P in reduction level ε. 

Neuronal status S: The simulation network for the neuron 

population loses its consistency λ with an increasing number 

ε of reduction steps (: number of direct couplings), and 

accordingly also the ability to reconstruct an initial excitation 

X(j). This is counteracted by the effort required for memory 

training, parameterized by the ability to remember η. Both 

parameters λ and η determine the neuronal status S(ε) of the 

network in the reduction step ε for the simulation of the 

neuron population. u�t� � v�1 7 w�xy�t� 
Consistency rate λ: Ratio of the number of existing direct 

connections to the number potentially possible connections in 

a network. 

Memory rate η : Rate of recognition of patterns from an 

ensemble initial arousal pattern, 0<η<1.0. 

A distinction is made between imprinting and memory. 

The imprinting of a network means the initial excitation 

pattern X(j). It loses significance as a result of the ongoing 

reduction in direct connections between the nodes. The 

imprint that still exists in a reduction stage ε depends on the 

existing ability to remember η. The memory stimulator 
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relativizes the interplay between loss of significance and 

imprinting. Its task is to filter out the smoothing of the initial 

excitation pattern X(j) according to the neuronal status S by 

means of selectors f. A distinction is made between the 

selectors f_U for the area around the embossing and f_K along 

the embossing. 

 

Figure 4. Architecture of a memory stimulator. A sequence of binary 

selectors f, developed from the correction factors π related to the neuronal 

state S, is multiplied by the normalized elements d of the corpuscle matrix D, 

resulting in the elements x'' of a secondary excitation distribution X'' taken in 

the reduction step ε. In detail, fj_K denotes a selector along the excitation 

contour and fj_U in the vicinity. 

Multiplying z⊗%�t�	by the correction factor 4%�t�  gives the 

element .′′s�t�r
of the secondary excitation distribution X‘‘(j) 

- the output from the memory stimulator (Figure 4). 

.{{s�t� �r 4s�t� ∙ z⊗s�t�rr � |4 ∙ z⊗}s
�t�r ∈ �′′�j� 

The correlation r�X�j�; X{{�j� describes the quality of the 

memory stimulator. 

3. Example 

In order to clarify properties, the following explanations 

use both the planar representation of locations as a 2-tuple 

(j1,j2) and (k1,k2) in 1…11 and a linear representation as a 1-

tuple (j) in the following explanation and (k) given in 1…121. 

A neuron population (Figure 5) is to be modeled and 

simulated by a network with a volatile topology. The discrete 

distance between the neurons is measured as d, their coupling 

intensities are simulated by the relative reference frequencies y. 

 

Figure 5. Isometric reconstruction: Simulation of the reconstruction 

X‘‘(j)=X‘‘(j1…N) from the initial excitation X(j) based on remaining direct 

connections with the connection strength y. 

Figure 5 shows a section of a neuron population in which 

the initial excitation pattern X(j) is entered and subsequently 

smoothed out by the abolition of synaptic connections to 

X''(j). The effect of such a smoothing can be determined by 

the dedicated distribution of the transmitter densities on the 

membrane surfaces of the neurons as well as the local flux 

density of transmitter currents between the neurons. This 

process is modeled by the volatile network described above, 

where the corpuscle density in the nodes of the network 

corresponds to the transmitter density in the population and 

the flux density of circulating corpuscle currents corresponds 

to the flux density of transmitter molecules. If there is 

consistency λ of the fleeting network, these densities are used 

as indicators for the characterization of memory retention of 

X(j), parameterized by the memory depth η. It is plausible 

that the memory retention for one and the same excitation 

pattern in η is pronounced differently. 

Figure 6 shows a discrete excitation pattern in a planar 

X(j1,j2) and linear representation over N=121 spatial points, 

including the planar 2-dim. A(k1,k2) and linear 1-dim. 

Spectral distribution A(k) as a Fourier transform of X. 
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Figure 6. Planar and linear excitation distribution and the corresponding 

spectral distribution. 

X{�j� ≡ ���
, �1� � 	*2
$AJ�/
, /1�K; ��
, �1�& 
Inverse transformation Under 1≤k≤121 with -

0.10≤A(k)≤0.2, the spectral distribution A(k) (Figure 6) is 

inverse transformed into the excitation pattern X(j) by means 

of Fourier inverse transformation without significant blurring 

of the contour (Figure 6). In this regard, there is still a 

correlation of 0.9 if the spectral frequency is narrowed to 

7≤k≤110 and the amplitudes of the spectral function are 

discriminated in -0.10≤A(k)→A'(k)≤0.18. On a planar level, 

Figure 7 shows the reduced spectral distribution A‘(k1,k2) 

and its re-transform X{�j� � *2
�A′�/
, /1�; ��
, �/1�
. 

 

 

Figure 7. Reconstruction �{��� � *2
�0′�/�; �
	from the reduced spectral 

distribution A'(k). 

Band limitation and amplitude discrimination of the 

spectral distribution minimize the energy required to 

reconstruct an excitation pattern. It is more difficult to 

reconstruct topologically smooth excitation patterns in a 

network with volatile topology. It is characterized by a loss 

of direct connections, which corresponds to the loss of 

synaptic contact points in a population of neurons. 

3.1. Simulation of Reconstruction Without a Memory 

Stimulator 

The neuron population to be simulated drives a transmitter 

flow with a speed of 1cm/s, the refractory period of a neuron 

is c=10 s. The development of the population is to be 

simulated in a fleeting topology. The transit times of the 

corpuscles from node to node in the network correspond to 

those from neuron to neuron in the population. The 

reconstruction of a registered excitation pattern shows a 

greater smoothing, the more synaptic contact points have 

been damaged in the meantime. The increasing reduction 

ε:=+1 of direct connections in the network increases both the 

transit times between the nodes and the thicknesses of 

transferred corpuscle massifs. 

 

Figure 8. Resulting thicknesses of circulating corpuscle massifs with the loss of 

direct connections. The thickness of circulating corpuscle massifs plausibly 

increases with the progressive loss of direct connections - but not proportionally, 

shown for the reduction intervals in � ∈ 10: ∙ �0�10�100
	4üT	. � 1,2,… ,5. 
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Without a memory stimulator, the correlation between the 

excitation pattern X(j) and its reconstruction X''(j) falls to 

less than 15% with the removal of a single direct connection 

and falls to -5% with the removal of further connections 

(Figure 9). Without loss compensation, the volatile network 

would therefore no longer be able to reconstruct the entered 

excitation pattern X(j). 

 

Figure 9. Correlation between initial and rudimentary excitation pattern 

without compensation for connection removals in the network. 

In a network with an volatile and a memory stimulator, 

there are the following possibilities for a reconstruction of 

X(j) by the stimulator, albeit only approximately: 

1) isometric reconstruction of the excitation patterns X(j) 

and X''(j), indicated by the distribution of corpuscle 

densities over N spatial points P of the network; 

2) Reconstruction of all vorticity strengths of the corpuscular 

flows circulating between the nodes of the network. 

3.2. Isometric Reconstruction of the Excitation Pattern X(j) 

Due to consistency λ and memory η, the stochastic 

distribution of the correlation coefficients r(X(j);X‘‘(j)) 

develops more and more differently as direct connections are 

progressively removed. The volatile network, parameterized 

with c=10 s and v=1m/s, reaches its balance limit after 

ε=527,621 reduction steps. Figure 9 shows the course of the 

correlation coefficients ρ up to the reduction step ε=10
5
 for 

different values η. The partial decrease of ρ for 0.8<η<1,0 to 

the local value 0.8 (Figure 10) at the point ε=10
3
 is an 

exceptional situation, due to the stochastic character of the 

memory stimulator. 

The curves shown in Figure 10 correspond to the statistical 

average over 24 sample sets of N=121 random numbers each. 

In detail, Figure 10 shows the fluctuation range of the 

distribution of the correlation coefficients r over 24 sample 

sets in the event of a loss of approx. 10
3
 direct connections 

depending on η . 
Up to a loss of approx. 1.000 direct connections (Figure 11) 

an almost complete reconstruction of the initial excitation 

pattern takes place under η=0.9. Increasing loss of 

connections as well as declining memory η reduce this 

possibility. For example, a correlation coefficient greater 

than r=0.9 with reduced memory η=0,8 requires 13.750 

direct connections to remain, which excludes exceeding 

ε=300 reduction steps. A higher-order correlation coefficient 

below a minimum requirement for memory ability η cannot 

be achieved with an isometric reconstruction of the excitation 

pattern X(j) and X''(j) using a memory stimulator, for 

example for η=0.5 (Figure 10). 

 

Figure 10. Fluctuation range of the correlation between X''(j) and X(j) with 

loss compensation by a memory stimulator, simulated for different memory 

abilities η. 

 

Figure 11. Variation range of the correlation ρ in ε=10,000 (consistency 

rate λ=0.935) between X''(j) and X(j) over 24 samples for different memory 

abilities η=1.0(,0.9; 0.8 and 0.5). 

Up to a loss of approx. 1.000 direct connections (Figure 11) 

an almost complete reconstruction of the initial excitation 

pattern takes place under η=0.9. Increasing loss of 

connections as well as declining memory η reduce this 

possibility. For example, a correlation coefficient greater 

than r=0,9 with reduced memory η=0,8 requires 13.750 

direct connections to remain, which excludes exceeding 

ε=300 reduction steps. A higher-order correlation coefficient 

below a minimum requirement for memory ability η cannot 

be achieved with an isometric reconstruction of the excitation 

pattern X(j) and X''(j) using a memory stimulator, for 

example for η=0.5 (Figure 10). 

3.3. Reconstruction of the Vorticity of Circulating 

Corpuscular Flows 

An alternative to the isometric reconstruction of the 
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excitation patterns is the reconstruction of the patterns on the 

basis of vortex strengths that interact with each other. 

Each node in ����1�  carries a corpuscular charge caused by 

the circulating corpuscular massif. In detail, zs�t�r
 is the 

corpuscle massif transferred in the reduction step ε from Pν to 
µ
P over the taxametric distance Cs�t�r

. For ε:=+1, the 

distributions of the corpuscle massif lose more and more 

their resemblance to the initial excitation pattern X(j), which 

can at best be compensated for (within limits) by the memory 

stimulator. 

Due to the unequal distribution of taxametric distances s 

between the spatial points P in ����1� , it is advisable to 

transfer them to the vertices of N unit vectors in an 

orthogonal action space �√1 . In it, each of the N nodes is at 

the vertex of a unit vector e. Since all unit vectors are 

perpendicular to each other, there is an identical distance √2 

between them. The size of zs�t�r
 has to be adapted to this 

distance, realized by multiplying 
⊗z s�t�r

 with the metric 

calculus �s�t�r
. 

If in the reduction step ε a point in space P carries a 

corpuscle massif as charge ρ at time τ , then this charge 

should have been distributed to the neighboring points in 

space P' at a subsequent time τ'. Such a process consumes 

energy and its orientation is described as a vector flow. 

Vector flows from all points P in space form a vector field. 

Thus, the components of the vector field represent a force 

field at every point in space and in every spatial direction. 

Force is converted energy along a dedicated path. Assuming 

that in the reduction step ε the spatial point Pν has 

a corpuscular charge Yν, equivalent to its energy input in ε, 

then a portion ∆Yν is transferred to 
i
P along a path ∆xi. The 

required force to be applied is ∆ F�� ��|�� [14]. 

�h�s ≅ ∆��∆:� � ∆ F�� ��|��  
The large number of spatial points accommodated in �√1  

requires an extensive variety of paths along which kinetic 

energy is converted. It is plausible that a large number of 

forces act against each other - a "mixed situation" which the 

Jacobian matrix ������ orders [9]. Its elements are denoted by ∆ F��
, taken at time τ in the reduction step ε. 

������ � �
�∆ �

∆ �
1∆ �
h∆ �
s∆ �
�

∆ �1
∆ �11∆ �1h∆ �1s∆ �1�

∆ �h
∆ �h1∆ �hh∆ �hs∆ �h�

∆ �s
∆ �s1∆ �sh∆ �ss∆ �s�

∆ ��
∆ ��1∆ ��h∆ ��s∆ ��� �
�

 

From the signed difference ��������" 7 ������ � ∆������ , 

multiplied with the elements by the signature matrix 

u� � NC�M,h,sN� ��,�����
 

under C�M,h,s � � 0 ∀�/ � 8� ∨ �/ � �� ∨ 8 � ���/ 7 8���/ 7 �� CBlC!  

für ��/ 7 .� � �a1	4üT	/ Z .0	4üT	/ � .71	4üT	/ � . 

the vortex strengths w of the N space points P result in �√1 . 

The elements sg corresponds to the permutation symbol 

according to Tullio Levi-Civita (Levi-Civita symbol [15]). 

The components of the rotor of a flux vector ���|���� �∑ �r��  r�r;
 	 in R
m
 are the vorticity O
�	s�, . . . , Os2
�	s�, Os¡
�	s�, … , O��	s� , oriented in the 

direction of the unit vectors e1…n-1,n +1… m. 

TB!J ���|���� K � ¢ OM�	s� M�
£M;
M¤s¥

 

Figure 12 shows the planar X''(j1,j2) and linear X''(j) 

reconstruction of the initial excitation pattern X (Figure 6), 

projected into a volatile with memory stimulator, next to it 

the reconstruction of X over 121 vortex strengths w in linear 

representation w(j) with j=1…121. Below λ=1.0 (: 

consistency), the excitation pattern X is completely 

reconstructed due to the exclusion of lesion-related losses. 

If the consistency is reduced to (only) λ=0.935, which 

corresponds to a removal of 1060 direct connections in the 

network and simulates a moderate age-related loss of 

synaptic contact points, the ratios change significantly. 

Figure 13 shows the consequences for different memory 

depths η with isometric and rotation-based reconstruction 

X''(j) of X(j). 

λ=1,0 

 

Figure 12. Initial excitation pattern X in a planar X(j1,j2) representation and 

as an ordered sequence X(j) of excitation elements, on the right the ordered 

distribution of the vortex strengths w(j) over all N nodes. 

With decreasing memory depth η the ability of the 

population to reconstruct, simulated by the memory 

stimulator of the volatile network, generally evaporates. This 

drop is measured by the correlation coefficient r(X(j);X''(j)) 

[11]. 

If X''(j) is the result of an isometric reconstruction of X(j), 

then in the reduction step ε=1,000 for 0.8<η<1,0 the partial 

drop in the correlation coefficient r ends at 0.9 (Figure 10). 

From the reduction step ε=10.000 on isometric reconstruction 

with a memory depth of (only) η=0,9 no correlation r>0.9 

can be established. From ε=60.500, this also applies to the 

(maximum) memory depth η=1,0. If, on the other hand, X''(j) 
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is the reconstruction of X(j) on the basis of circulating 

corpuscular flows, such a limitation does not exist. 

Figure 13 illustrates the development of vortex strengths in 

the nodes of the network. Assuming a fully coupled topology, 

the strongly emphasized curve reflects the conditions at a 

consistency rate of λ=1,0, identical for all(!) memory depths 

η. Decreasing consistency rates λ also form here for different 

memory depths η a smoothing of the reconstruction X''(j) 

compared to X(j), now caused by a differentiated flow field 

that swirls around each node, referred to as vortex strength w. 

 

Figure 13. Distribution of vorticity w in the network of 121 nodes. 

It provides information about which Consequence the 

removal of direct connections between the nodes takes place. 

To a certain extent, information about whether a 

reconstruction of the initial excitation pattern is still possible 

or not. A complete reconstruction for all memory depths η is 

also given for the parameter set λ=1.0 given in Figure 13. 

Even with a decreasing consistency rate λ and decreasing 

memory depth η, this ability based on a reconstruction of X(j) 

using vortex strengths stands out compared to the isometric 

reconstruction. 

4. Conclusion 

Isometric reconstructions and reconstructions based on 

vortex strengths of initial excitation patterns of a neuron 

population were compared. The prerequisite is that the 

interactions between the neurons of the population 

correspond to one and the same discrete functional 

transformation through the coefficients. On the basis of a 

functional transformation, different classes of excitation 

patterns, acoustic, optical, etc., can be related to one another. 

With regard to the reconstruction of the excitation pattern, 

the correlation coefficient r(X(j);X''(j)) is used as a quality 

criterion. In isometric reconstruction, the congruence of the 

density distribution of transmitter molecules on the 

membrane surfaces of the neurons is important. On the other 

hand, if the correlation coefficient is based on the distribution 

of vortex strengths in the population, triggered by location-

variable changes in the direction and intensity of the 

transmitter flows between the neurons, an alternative 

situation exists. 

In principle, the ability of a neuron population to 

reconstruct depends on its consistency, but also depends, last 

but not least, on an existing, lost or poorly acquired memory 

ability. With reference to the previous explanations, the 

curves in Figures 10 and 3-9 favor the assumption that the 

memory ability of a neuron population on the basis of vortex 

strengths, the expression of which is characterized by the 

direction of transmitter flows of different densities, is 

superior to the memory ability through isometric 

reconstruction seems to be. Under this condition, the 

assumption of engrams for the storage of memory contents 

proves to be close to reality, the penetration of which also 

provides information processing. 

From the point of view of systems theory, the 

extracorporeal evaluation of engrams on the basis of evoked 

potentials would be a starting point for the non-invasive 

perception of pre-diagnostic symptoms of neurodegenerative 

diseases [16]. 

Acknowledgements 

Think former colleague at the TU Dresden, Mr. Dipl.-Inf. 

Wagner and Mr. Dipl.-Inf. Mr. Lehmann, thank you very 

much for your commitment in creating the simulation 

program for an volatile topology. Last but not least, I would 

like to thank my wife for her patience and tolerance in 

dealing with the subject. 

 

References 

[1] Hubel, D. H.; Wiesel, T. N.: Receptive field of single neurons 
in the cat’s Striate Cortex. J. Physiol. (1959) 148, S. 589. 

[2] Semon, R.: Mnemic Psychology. London: GEORGE ALLEN 
& UNWIND LTD. 1923. 

[3] Gerstner, W.; Kistler, W. et al.: Neuronal dynamics: from 
single neurons to networks and models of cognition. 
Cambridge: Cambridge University Press, 2014. 

[4] Nötzel, M.; Hermann, A. et al.: Measuring physical properties 
of living neurons: a novel Approach to study 
neurodegeneration. Klinik und Poliklinik für Neurologie 
Dresden, 2021. 

[5] Sperry R. W.: Cerebral organization and behavior. Science 133 
(1961), S. 1749–1757. 

[6] Morbus Alzheimer – Mitochondrien in Zellen blockiert Nach 
einer Mitteilung der Albert-Ludwigs-Universität Freiburg 
Aus: Fortschritte Neurologie Psychiatrie 2014. 

[7] Ozansoy, M; Başak, A.: A Tauopathies: A Distinct Class of 
Neurodegenerative Diseases. Walter de Gruyter GmbH, 2007.  

[8] Eva-Maria und Eckhard Mandelkow: 2013 Khalid Iqbal 
Lifetime Achievement Award. Alzheimer's Association 
International Conference (AAIC 2013) Boston (USA). 



16 Rainer Willi Schulze:  Volatile Network as a Simple Memory Model  

 

[9] Debnath, L; Bhatta, D: Integral transforms and their 
applications. Chapman & Hall/CRC, 2007 ISBN 1584885750; 
9781584885757. 

[10] Jitsev, E.: On the self-organization of a hierarchical memory 
for compositional object representation in the visual cortex. 
Publication Server of Goethe University Frankfurt am Main, 
2011. 

[11] Jockel, S.: Crossmodally Learning and Prediction of 
Autobiographical Episodic Experiences using a Sparse 
Distributed Memory. Staats- und Universitätsbibliothek 
Hamburg Carl von Ossietzky, 2009. 

[12] Hainmueller, T.; Bartos M.: The hippocampus converts 
dynamic entorhinal inputs into stable spatial maps Institute for 
Physiology I, University of Freiburg, Medical Faculty, 
Freiburg. 

[13] Wagner, Th.; Lehmann, M.: Analyse und Synthese Massiv 
Paralleler Systeme Technische Universität Dresden, Fakultät 
Informatik. 2007. 

[14] Dallmann, H.; Elster K.-H.: Einführung in die Höhere 
Mathematik 3. Friedrich Vieweg & Sohn 
Braunschweig/Wiesbaden, 1983. ISBN 3-528-03586-2. 

[15] Riley, K. F.; Hobson, M. P. et al.: Mathematical Methods for 
Physics and Engineering. Cambridge University Press ISBN 
978-0-521-86153-3. 

[16] Haußmann, R.; Bauer, M. et al.: Prädikation von 
Neurodegenration in der multidimensionalen 
Demenzdiagnostik. Klinik und Poliklinik für Psychiatrie und 
Psychotherapie Dresden, Klinik und Poliklinik für Psychiatrie 
und Psychotherapie Dresden, 2020. 

 


