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Abstract: The interaction between charged particles through quasi-static fields must occur instantaneously; otherwise a vio-

lation of the energy principle would occur. As a consequence, the instantaneous transmission of both energy and information over 

macroscopic distances is feasible by using the quasi-static fields which are predicted by Maxwell’s equations. This finding is 

incompatible with the «relative simultaneity» following from the time transformation postulated by the special theory of rela-

tivity. 
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1. Introduction 

In 1887 Woldemar Voigt [1] postulated the homogeneous 

wave equation to be form-invariant against transformation 

into a moving reference system. This required making New-

ton’s absolute time a function of space with the consequence 

that the propagation velocity of waves as measured by an 

observer became constant, independent of the observer’s ve-

locity. The idea was ignored in acoustics, as it obviously con-

tradicts known facts, but it was taken seriously in case of light 

by Poincaré [2] who multiplied Voigt’s formulae by a constant 

factor in order to symmetrize the transformation with its in-

verse. He named the result after Lorentz. The underlying 

assumption c = const seemed to be supported by the general-

ized relativity principle which Poincaré thought to be a law of 

nature.  

Although Lorentz’s own transformation [3] was different 

from Voigt’s or Poincaré’s, it had in common a curious 

transformation of time which Einstein [4] supposed to hold in 

general, not only in the context of light wave propagation. 

Like Poincaré Einstein cherished the relativity principle and 

derived the «Lorentz Transformation» similarly as Voigt from 

the postulate c = const. As he did not cite anybody, we do not 

know whether he was aware of Voigt’s paper. It is a fact [5], 

however, that he did not use Lorentz’s or Poincaré’s nomen-

clature, but adopted Voigt’s.  

The new relativity of simultaneity as imposed by the Lor-

entz transformation required that energy or information could 

not propagate faster than light; otherwise causality would be 

violated between systems moving at constant velocity relative 

to each other. On the other hand, there are good reasons both 

experimentally and theoretically to assume that it is possible 

to transmit information faster than light [6 - 9]. It is very ob-

vious: Either one admits the validity of the Lorentz transfor-

mation or alternatively the possibility of instantaneous 

transmission of energy. A compromise is hardly possible, as 

both conjectures are not compatible with each other. Since the 

Lorentz transformation has already been refuted in first order 

of v/c by the Sagnac effect [10] and by lacking stellar aberra-

tion in spectroscopic binary systems [11], one is compelled to 

return to the Newtonian concept of absolute time which allows 

a clear definition of simultaneity. 

In this paper we add further evidence for the instantaneous 

transmission of energy between charged particles or current 

loops. Our argument is based on Maxwell’s equations and on 

the requirement of conserving energy in the interaction proc-

ess. In Sec. 2 we reformulate Maxwell’s equations in order to 

clarify that they predict not only wave fields, but also instan-

taneous, quasi-static fields that do not spread at finite velocity. 

It is well known that these fields, which decay rapidly with 

distance from the source, are capable of transmitting energy.  

In the remaining Sections we discuss in detail examples of 

instantaneous energy transfer between charged bodies or 

current loops. 
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2. Quasi-static Fields as Predicted by 

Maxwell’S Equations 

Due to the linearity of Maxwell’s equations the fields may 

be split up into quasi-static, instantaneous contributions, and 

into wave parts , . In case of the 

electric field the instantaneous part consists of the irrotational 

Coulomb field and an induced rotational field . 

The wave fields obey inhomogeneous hyperbolic equations: 

                (1) 

where we have used, e.g.: 

. 

The instantaneous fields appear as sources in (1) and can be 

calculated from a given charge and current distribution: 

  (2) 

The set of equations (1, 2) is entirely equivalent to Max-

well’s equations which may be checked by insertion into the 

first order system [12]. In the present formulation it becomes 

obvious that Maxwell’s theory predicts not only wave prop-

agation at the velocity of light (1), but also instantaneous 

fields as described by the quasi-static integrals (2). A complete 

cancellation of the two kinds of fields is not possible, as was 

pointed out in [13] and is obvious from (1): If the sum , 

e.g., would vanish for a certain interval of time, one would 

have  so that the wave field would vanish eve-

rywhere when the usual boundary condition  is 

imposed. 

Note that the fields (2) are typically dipole fields which 

decay off proportional to . When they are used for energy 

transfer, the range of interaction is much shorter than in case 

of wave fields. In practice they are taken as instantaneous 

anyway in technical applications, but this is not just an ap-

proximation, but follows exactly from (2).  

At this point we will neither discuss whether the formal 

integrals in (2) always exist, nor whether the inhomogeneous 

wave equations (1) do have solutions in general. This matter 

has been dealt with in [14]. Here we will produce an energy 

argument in Sec. 3 which demonstrates independently of the 

subtleties of Maxwell’s equations, that a delayed Coulomb 

interaction between charged particles would lead to a clash 

with the energy principle. Similar considerations apply to the 

magnetic interaction in technical transformers (Sec. 4). 

3. Interaction of two Charges Coupled by 

the Coulomb Field 

Let us consider two positive charges which are placed at a 

distance R. In Fig. 1 charge B is rigidly attached to a heavy 

wall, whereas charge A can be moved by a mechanical force 

along a distance r. When charge A is pushed against B, a force 

must be applied against the repulsive electric force, and a 

certain amount of potential energy is invested. Since charge A 

moves in a conservative potential which does not vary in time, 

the invested work is recovered when the charge returns to its 

initial position. 

 

Figure 1. Interaction of two charges (charge B rigidly attached) 

Next we consider Fig. 2 where charge B is attached to a 

flexible spring. Initially the spring is somewhat compressed 

due to the repulsive force between the charges. 

 

Figure 2. Interaction of two charges (charge B elastically attached) 

When charge A is pushed against B, the spring is com-

pressed even more, and, because of its inertia, charge B will 

oscillate after charge A has returned to its initial position. 

Obviously, energy has been transmitted from A to B through 

the quasi-static electric field. The oscillation energy must have 

been supplied by the mechanical force acting on charge A. 

This is easily explained: Charge A was moving in a conser-

vative potential which was, however, not constant in time, 

since charge B was yielding to the increased force due to its 

elastic fixture. If one carries out the exact calculation assum-

ing that the charges were coupled by the Coulomb force 

                       (3) 

one finds, of course, that the energy appearing in the oscilla-

tion of charge B was exactly supplied by the mechanical force 

which moved charge A. 

In this seemingly trivial example we have assumed in (3) 
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that both charges are coupled instantaneously. Let us now 

assume that a time R/c elapses before charge B can “realize” 

that charge A is moving. If the cyclic motion of charge A is 

completed within a short time τ < R/c, charge B cannot react 

during the cycle so that charge A still moves in a constant 

conservative potential like in Fig. 1. The mechanical force 

does not produce any total work during the cycle, but after a 

delay time R/c charge B will start to oscillate. Its energy 

comes out of nothing as a consequence of our assumption that 

the action of charge A on B is delayed. As long as we believe 

in the conservation of energy we must conclude that the cou-

pling is determined by (3), and the energy transfer occurred 

instantaneously. 

One might argue that the acceleration of charge A produced 

a wave containing energy which was transported to B at finite 

velocity. It is, of course, true that the acceleration of charges 

produces waves according to Maxwell’s theory as described 

by (1). This holds, however, in both cases of Fig. 1 and Fig. 2. 

It is entirely independent of charge B being rigidly or elasti-

cally attached to the wall. In both cases the mechanical force 

must supply a small amount of energy which is carried away 

by the wave and must be accounted for in the energy balance. 

The salient point is, however, that the energy balance com-

pleted at charge A during a cycle cannot depend on charge B 

oscillating in the future or not. There must be an instantaneous 

feedback from charge B to charge A in order to balance cor-

rectly the work at charge A with any oscillation energy pro-

duced at charge B. This necessary feedback is provided by the 

Coulomb force (3), or equation (2), in general. 

Furthermore, it should be noted that the wave travels per-

pendicular to the acceleration of charge A and does not reach 

charge B at all, as it is placed in line with the acceleration 

vector. Thus, the production of waves cannot explain the 

missing energy source in case of Fig. 2, when delayed action is 

postulated. 

4. Interaction of two Current Loops 

All the power produced by the electric companies and 

transmitted to the consumers passes several times through 

transformers. In this Section we show that the transmission 

from the primary to the secondary circuits must occur instan-

taneously as described by Maxwell’s equations. 

In principle, a transformer consists of two current loops as 

sketched in Fig. 3.  

 

Figure 3. Interaction of two current loops 

Applying Faraday’s law of induction and the laws of Am-

père and Ohm one has the transformer equations [15]: 

                    (4) 

                (5) 

where  are the self-inductances of the loops and 

is the coupling inductance. When there is no resistive 

load in the secondary circuit ( ), it follows from (5): 

 for alternating currents.  and  are 

out of phase by 180 degrees. From (4) follows then that there 

is a phase difference of 90 degrees between the applied vol-

tage  and the current . The power 

 injected into the primary circuit oscillates forth and 

back so that no energy is deposited into the (ideal) transformer 

on average.  

If the secondary resistance is finite, a phase shift occurs 

which may be calculated by solving the differential equations 

(4) and (5). As a result the time integral  does not 

vanish anymore, but supplies the energy  which is 

dissipated in the secondary circuit. Energy is obviously 

transmitted over the distance between the loops. Since in (4, 5) 

Maxwell’s displacement current was neglected, the coupling 

of the loops was assumed to be instantaneous which holds then 

also for the energy transfer. 

If we would assume that it takes some time for the field 

produced in loop 1 to travel to loop 2, induce a current there 

which in turn produces a magnetic field travelling back to loop 

1, one would have a phase shift of more than 90 degrees be-

tween voltage and current in the primary circuit, even in the 

case of vanishing resistance. The integral  would not 

be zero on average, and energy would be lost in the ideal 

transformer which is supposed to contain only superconduct-

ing loops. As in the previous Section, we must conclude that 

the coupling in a transformer cannot be effected by an elec-

tromagnetic wave, but must be caused by quasi-static instan-

taneous fields, in order to avoid a clash with the energy prin-

ciple. The quasi-static magnetic field can apparently be used 

like the quasi-static electric field to transmit information faster 

than light. 

In industrial transformers the distance between primary and 

secondary circuit is chosen to be very small, but one could 

arrange the two loops of Fig. 3 on a common axis at an ap-

preciable distance to measure the time of transmission. This 

was in fact done by Kholmetskii and co-workers [7]. They 

found experimentally that a “bound” magnetic field as de-

scribed by (2) is spreading at a velocity “highly exceeding the 

velocity of light”. 

5. Conclusion 

In two simple examples it was demonstrated that the cou-

pling of electric charges and currents through quasi-static 

fields must occur instantaneously, in order to maintain the 

conservation of energy. In technical applications this kind of 

coupling is assumed anyway, but it is frequently thought that 
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engineers just use a practical approximation, whereas the 

‘correct’ interaction requires a description in terms of travel-

ling wave fields. Our analysis shows that this is not the case. It 

proves that instantaneous transmission of information over 

macroscopic distances is possible in agreement with Max-

well’s theory and with very recent experiments. The argument 

brought forward in Sec. 3 may also be applied to the me-

chanical force acting between the current loops of Fig.3. It 

could be extended to the gravitational force as well.  

Having demonstrated that in classical electrodynamics en-

ergy would not be conserved, if one assumes exclusively 

delayed interaction by travelling wave fields, we are com-

pelled to conclude that Maxwell’s quasi-static fields (2) are 

real and responsible for instantaneous interaction between 

electrified bodies. This fact is at variance with the relativistic 

postulate c = const from which the Lorentz transformation is 

derived. One can hardly see how this transformation can be 

made compatible with an infinitely fast interaction. It appears 

that Newton’s concept of absolute time is superior to the 

relativistic relative time defined in the Lorentz transformation. 
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