

American Journal of Networks and Communications
2019; 8(2): 47-58

http://www.sciencepublishinggroup.com/j/ajnc

doi: 10.11648/j.ajnc.20190802.11

ISSN: 2326-893X (Print); ISSN: 2326-8964 (Online)

Performance Analysis of an Improved Load Balancing
Algorithm in Cloud Computing

Abdulrahman Abdulkarim
1, *

, Ishaq Muhammed
1
, Lele Mohammed

1
, Abbas Babayaro

2

1Department of Computer Science, Faculty of Science, Federal Polytechnic, Bauchi, Nigeria
2Department of Information and Communication Technology, Bauchi State University Gadau, Bauchi, Nigeria

Email address:

*Corresponding author

To cite this article:
Abdulrahman Abdulkarim, Ishaq Muhammed, Lele Mohammed, Abbas Babayaro. Performance Analysis of an Improved Load Balancing

Algorithm in Cloud Computing. American Journal of Networks and Communications. Vol. 8, No. 2, 2019, pp. 47-58.

doi: 10.11648/j.ajnc.20190802.11

Received: May 20, 2019; Accepted: July 31, 2019; Published: August 16, 2019

Abstract: Cloud computing consists of a cluster of computing resources that are delivered over a network, which is

accomplished by utilizing virtualization technologies to consolidate and allocate resources suitable for various different software

applications. Therefore, an efficient task scheduling in the cloud would be required to improve the performance of the cloud. In

this paper, implementation of a model that seeks to improve load balancing algorithm for virtual machine load balancing was

performed using simulations. A method by which average burst time was used as the time quantum for the round robin load

balancing algorithm to achieve more effective time sharing. Results obtained from the simulations along with performance

evaluation carried out shows response time and data center processing time achieved using the improved model is slightly

minimal compared to the other algorithms. This shows more effective load balancing by achieving a better overall throughput.

Keywords: Cloud Computing, Round Robin, Virtual Machine (VM), Load Balancing, Burst Time, Time Quantum,

Response Time

1. Introduction

Cloud Computing is the collection of large number of

resources like hardware and software that are provided by the

cloud providers to the consumers as a service over the internet.

In cloud computing every task requires to be executed by

available resource to achieve minimum waiting time, reduce

makespan and maximum utilization of resources. Considering

the growing importance of cloud, finding new way to improve

cloud services is an area of concern and research focus. The aim

of task scheduling is to assign tasks to available resources such

that the overall time compulsory to execute all tasks is

minimized. Round Robin scheduling Algorithm is one of the

task scheduling algorithm mostly used in cloud computing. The

reason for this is that round robin algorithm employs

time-sharing, giving each job a time slot or quantum thus result

to be less complexity and maintains fairly load balancing [6].

Although, round robin scheduling algorithm is one of the

standard and widely used algorithm in cloud computing, it has

a potential drawback. The performance level of round robin

scheduling on cloud depends on the slice/quantum time [11].

An improved round robin scheduling approach was selected

for VM load balancing on the cloud environment by assigning

slice/time quantum using average burst time [1].

In this paper, performance evaluation would be carried out

based on the simulation results of the Improved Algorithm,

Round Robin load balancing Algorithm, and Throttled

Algorithm in terms of response time, data center processing

time and overall throughput on load balancing in cloud

computing. The remaining parts of this paper are organized as

follows: Section 2 presents some related work and overview

on the related work. Section 3 presents the methodology

where the implementation tools and parameters would be

discussed. Section 4 presents the results obtained and

discussion of results. Finally, Section 5 concludes the paper.

48 Abdulrahman Abdulkarim et al.: Performance Analysis of an Improved Load Balancing Algorithm in Cloud Computing

2. Related Work

Previous work on scheduling algorithms on cloud

computing were reviewed, and some of the important

considerations in performance comparison considered by the

previous work are being identified in this section.

A model that focused to improving the round robin load

balancing algorithm for virtual machine load balancing on

cloud to address the issue of time quantum so as to effectively

utilize the principle of time sharing which may lead to better

resource utilization. The improvement was the addition of a

technique to get a specified time quantum for an effective time

sharing principle, time quantum is set to be equal to the average

of burst time of requests/tasks for context switching [1].

The authors proposed a hybrid algorithm based on Equally

Spread Concurrent Execution and Throttled Algorithms. They

took the advantages of both the algorithms and consider the

average response time and earliest finish time as evaluation

parameters to achieve less processing time and response time.

A simulation was carried out on Cloudsim based on

combining the two algorithms. Parameters considered are the

response time and processing time. From the simulation

results, they found that the proposed hybrid algorithm took

less processing time and response time. But the algorithm

works good when no fault occurs in VM [9].

A method was proposed for load rebalancing on cloud

based on Honeybee Foraging Algorithm and Active clustering

algorithm. By using honeybee foraging algorithm, they would

improve the average execution time and reduction in waiting

time of tasks. Active clustering used for increase in throughput

by utilization of resources. They proposed the integration of

ant colony optimization to initiate the service load distribution

under cloud computing architecture. The pheromone update

mechanism has been proved as an efficient and effective tool

to balance the load. Their modification supports to minimize

the makespan of the cloud computing based services and

portability of servicing, requests also have been converged

using the ant colony optimization technique [2].

This work has proposed a task scheduling algorithm based

on task length and speed of VMs. They have designed a rank

based task scheduler which effectively utilizes resources and

provides high performance. This algorithm has been tested

using CloudSim toolkit with varying lengths of tasks and

varying MIPS (speed) of VMs. The results have shown that

Rank based task scheduler gives high performance than

existing space-shared and time shared task schedulers [4].

A proposed a virtual machine-level load balancing

algorithm based on Throttled algorithm, aims to improve the

average response time and average processing time of the

system in the cloud based on further optimizing the cloud

manager in the load balancing algorithm by adding some

parameters such as the expected completion time of each

resource (VM) with lists of requests coming up. Simulations

was carried out on Cloudsim using 30 cloudlets, 1 datacenter

and 3 VM. Parameters such as the list of workloads of the

system (Cloudlet), the queue list that has been submitted for

each virtual machine, percentage of utilization of virtual

machine, the expected completion time were used. From

simulation results and comparison charts between average

execution time and average response time of Throttled

algorithm and the proposed algorithm, the average execution

time and average response time of the proposed algorithm has

been improved than Throttled algorithm [8].

An approach for scheduling workflow tasks over the available

resources of cloud that minimized the execution time and

execution cost under the given deadline and budget constraint

was developed [10]. In their work, workflow tasks are executed

in order of their priority which is basically computed using

bottom level. The assigned priority is then used to initialize the

Particle Swamp Optimization (PSO). After assigning the priority

the tasks are sorted according to the descending order of bottom

level. The tasks are then sent to different processors according to

their order of execution for completing the workflow application.

Experimented results show that this algorithm has a promising

performance when compared with PSO [10].

This work has proposed a task scheduling technique for

cloud computing. A new strategy of task scheduling is proposed

in view of the aggregate order for allocation of resource to

enhance the algorithm of Min-Min. The main concentration is

on minimizing the aggregate executing time (makespan) of

scheduling of task and expanding the utilization of assets. The

results of their work shows that the proposed approach allows

more versatile assets distribution for free occupations booking

in the distributed computing environment [3].

Also, a work on load balancing in cloud computing

environments using honey bee behavior, the proposed method

achieves good load balancing across virtual machines which

maximizes the throughput. Load is balanced according to the

priorities of tasks so that waiting time of tasks in the queue is

minimal. Compared to other traditional methods, this method

is effective and overall execution time is improved [5].

In a new proposed algorithm which is using benefits of both

Enhanced Max-Min and Max-Min algorithms. There is a

limitation of Max-Min which is sometimes large task is

mapped to the slow resource. This increases the total length of

scheduling [12]. But in proposed algorithm possibility of

scheduling long length tasks to the slow resource is reduced.

The Proposed algorithm is tested by using five workflows

named Maontage50, Montage10, CyberShake30,

CyberShake50, and Inspiral50. One data center, one scheduler

and five virtual machines are used. The software used for this

experiment is Eclipse Java Neon and WorkflowSim1.0.

Results of their evaluations show that proposed algorithm

completes tasks execution with lower makespan and higher

performance as compared to scheduling algorithms Max-Min

and FCFS. Performance of proposed algorithm is around 8

percentages better than Max-Min algorithm and around 27

percentages better than FCFS for 5 virtual machines. Overall

result shows that the proposed algorithm performs better than

Max-Min algorithm when it comes to makespan [12].

Considering a heterogeneous cloud environment with

non-pre-emptive self-governing tasks. proposed algorithm

balances the load in cloud situation dynamically. In this method,

they can dynamically input the data center parameters and user

 American Journal of Networks and Communications 2019; 8(2): 47-58 49

request parameters in the proposed algorithm, Enhanced

Honeybee Inspired load balancing algorithm is a modification

of existing proposed algorithm which stabilities the load based

on the priority of the responsibilities and the resource obligation

by calculating the capacity of virtual machines [13].

Authors in this work proposed two hybrid algorithms,

namely a combination of fuzzy logic and PSO algorithm and a

combination of simulated annealing and PSO algorithm, for

improving task scheduling performance in cloud computing.

A waiting time optimization algorithm based on the PSO

algorithm is used to minimize task waiting time. The

objectives of the two hybrid algorithms are to utilize resources,

optimize performance metrics, minimize makespan, and

achieve good load balancing [14].

A load balancing method based on constraint measure was

presented, the capacity and load of each VM are initially

computed. If the load is larger than the threshold value, then

the load balancing algorithm allocates tasks to the VMs. The

deciding factor of VMs is calculated, and the loads of VMs are

checked by the algorithm. The selection factor for each task is

then calculated, and the task with a better selection factor than

those of others is allocated to the VMs [15].

An overview of related works on various task scheduling

algorithms revealed that there are still lots of improvements

that can be carried out. The major issues being observed on

most proposed task scheduling algorithms are their ability to

achieve better response time, makespan, cost, resource

allocation, and energy consumption. Therefore, this work has

considered the work by [1] and focused to implement the

model in other to carry out a performance analysis of the

model based on other algorithms.

3. Methodology

3.1. Performance Parameters

The performance parameters considered for the implementation

of this work are the response time, data center processing time and

throughput. These parameters would be evaluated based on the

proposed model [1], round robin load balancing algorithm and the

throttled algorithm for performance analysis.

3.1.1. Response Time

The elapsed time between the end of an inquiry or demand

on a computer system and the beginning of a response.

3.1.2. Data Center Processing Time

The exact time taken to complete the execution of a given

task in the data center. The ultimate goal of any scheduling

algorithm is minimizing the processing time.

3.1.3. Throughput

It is the number of task executed in the fixed interval of time.

To improve the performance of the system, throughput should

be high.

3.2. Simulation Setup

In this work, Java Programming Language was used for

implementing the proposed algorithm. CloudAnalyst

developed using CloudSim packages was used on NetBeans

IDE to carry out the simulations.

Simulations were performed on the CloudAnalyst toolkit

being deployed with one data center and varying the number

of virtual machines (VM) and userbase (UB) as adopted by [7]

where the parameter values are as follows:

Table 1. Simulation Parameter values.

Parameter Values

Number of users per UB 10,000

Number of requests per user 6000

VM image size 10,000

VM memory 1024MB

VM bandwidth 1000

Data Centre-Architecture X86

Data Centre-OS Linux

Data Centre-No of machines 5

Data Centre-memory per machines 2048MB

Data Centre-storage per machines 100,000,000MB

Data Centre-available BW per machines 1,000,000

Data Centre-no. of processor per machines 4

Speed of processor 10000

Service Broker Policy Optimise Response Time

Data Centre-VM policy Time Shared

4. Results and Discussion

4.1. Response Time Results

Using six instances to get the expected results, three

simulations were carried out in each instance based on the

improved algorithm, the round robin algorithm by [7], and the

throttled algorithm respectively. The response time at each

instance is presented as follows:

4.1.1. Response Time Results with 5 Virtual Machines and

10 Userbase

The response time of each userbase (UB) obtained using the

round robin algorithm by [7], the improved algorithm and the

throttled algorithm is shown in table 2 below. The chart

representation of the result is shown in figure 1.

Figure 1. Response time result with 5VM and 10UB.

50 Abdulrahman Abdulkarim et al.: Performance Analysis of an Improved Load Balancing Algorithm in Cloud Computing

Table 2. Response time result with 5VM and 10UB.

Userbase
Round Robin Algorithm by [7].

Response time (ms)

Improved Algorithm. Response

time (ms)

Throttled Algorithm. Response

time (ms)

UB1 386.2 384.8 389.4

UB2 386 385 389.2

UB3 386.3 385 389

UB4 386.6 385.1 389.3

UB5 386.5 385.3 389.7

UB6 386.1 385 389.3

UB7 386.4 384.9 388

UB8 386 384.8 388.5

UB9 386.4 385.4 388.2

UB10 386.8 385.4 388.3

4.1.2. Response Time Results with 5 Virtual Machines and 30 Userbase

At this instance, the number of userbase was increased to 30 for the simulations. The response time for each userbase obtained

from the simulations is shown in table 3 along with the chart representation in figure 2.

Figure 2. Response time result with 5VM and 30UB.

Table 3. Response time result with 5VM and 30UB.

Userbase
Round Robin Algorithm by [7]. Response

time (ms)

Improved Algorithm. Response

time (ms)

Throttled Algorithm. Response

time (ms)

UB1 512.7 419.8 550.6

UB2 514.2 420.6 551.3

UB3 513.5 419.8 551

UB4 512.1 420.2 551.7

UB5 514.2 419.6 551.4

UB6 513.9 419 551.1

UB7 512.7 418.8 550.8

UB8 510.2 418.7 550.6

UB9 515.8 420.2 551.3

UB10 514.1 420.2 551.2

UB11 513.4 419.6 550.9

UB12 516.6 420.1 551.7

UB13 514.8 419.2 552.1

UB14 513.4 419.8 552

UB15 516.3 419.9 551.9

UB16 513.9 419.8 551.3

UB17 507.4 418.5 550.7

UB18 512.6 420.2 551.6

UB19 514.6 419.4 551.3

UB20 513.8 420 551.8

UB21 511.7 420.5 551

UB22 513.4 419.4 551.7

UB23 515.7 420.2 551.9

 American Journal of Networks and Communications 2019; 8(2): 47-58 51

Userbase
Round Robin Algorithm by [7]. Response

time (ms)

Improved Algorithm. Response

time (ms)

Throttled Algorithm. Response

time (ms)

UB24 512.4 420.4 551.1

UB25 516.3 420.5 551.8

UB26 514.4 419.1 552.2

UB27 512.3 420.1 551.6

UB28 513 420.5 551.3

UB29 511.2 419.2 550.9

UB30 512.4 419.7 550.7

4.1.3. Response Time Results with 10 Virtual Machines and 30 Userbase

At this instance, the number of virtual machine was increased to 10 for the simulations keeping the number of userbase at 30.

The response time for each userbase obtained from the simulations is shown in table 4 along with the chart representation in

figure 3.

Table 4. Response time result with 10VM and 30UB.

Userbase
Round Robin Algorithm by [7].

Response time (ms)

Improved Algorithm. Response

time (ms)

Throttled Algorithm. Response

time (ms)

UB1 389.2 385.7 392.5

UB2 389.7 385.8 392.7

UB3 389.7 385.6 392.8

UB4 389.8 385.7 392.8

UB5 389.5 386 392.5

UB6 389.6 386.2 392.4

UB7 389.9 386 392.4

UB8 389.4 386.5 392

UB9 390.2 386.6 393.1

UB10 390.4 386.4 393.3

UB11 389.9 386.5 393.6

UB12 390.3 386.4 393.5

UB13 389.7 386.3 393.3

UB14 390.3 386.3 393.4

UB15 390.4 386.4 393.6

UB16 390.2 386.3 393.1

UB17 389.8 386 392.8

UB18 390.1 386.9 393.1

UB19 390.2 386.2 393.3

UB20 390.2 386.3 393.3

UB21 390.3 386.2 393.5

UB22 390.1 386.6 393.1

UB23 390 386.5 393

UB24 390.3 386.4 393.3

UB25 389.9 386.6 393.1

UB26 390.2 386.4 393.4

UB27 390.2 386.5 393.5

UB28 390.3 386.8 393.1

UB29 389.8 386.6 392.6

UB30 390.2 386.7 392.8

Figure 3. Response time result with 10VM and 30UB.

52 Abdulrahman Abdulkarim et al.: Performance Analysis of an Improved Load Balancing Algorithm in Cloud Computing

4.1.4. Response Time Results with 10 Virtual Machines and 40 Userbase

At this instance, the number of userbase was increased to 40 for the simulations keeping the number of virtual machines at 10.

The response time for each userbase obtained from the simulations is shown in table 5 along with the chart representation in

figure 4.

Figure 4. Response time result with 10VM and 40UB.

Table 5. Response time result with 10VM and 40UB.

Userbase
Round Robin Algorithm by [7].

Response time (ms)

Improved Algorithm. Response

time (ms)

Throttled Algorithm. Response

time (ms)

UB1 404.8 387.7 415.3

UB2 404.4 387.4 415.2

UB3 404.6 387.8 415.4

UB4 404.7 387.4 415.3

UB5 404.9 388.3 415.3

UB6 404.7 387.6 415.1

UB7 404.7 387.5 415.4

UB8 405.1 387.1 415.7

UB9 404.6 387.5 415.3

UB10 405.3 387.9 415.8

UB11 405 387.6 415.7

UB12 405.3 387.7 415.7

UB13 405 387.5 415.5

UB14 405.8 387.4 415.8

UB15 405.5 388.2 415.6

UB16 405 387.6 415.3

UB17 404.5 387.6 415.1

UB18 405.1 387.6 415.4

UB19 405.3 387.9 415.7

UB20 405 387.4 415.8

UB21 405.5 388 416.1

UB22 405.8 387.9 415.9

UB23 406.2 388.4 416

UB24 404.8 387.8 415.7

UB25 405.6 387.5 415.8

UB26 405 387.9 415.5

UB27 406.1 387.7 415.6

UB28 405.4 388.1 415.4

UB29 404.7 388.4 415.3

UB30 404.1 388.9 415.1

UB31 405.2 387.3 415.4

UB32 405.5 387.8 415.6

UB33 405.3 388 415.5

UB34 404.9 387.9 415.3

 American Journal of Networks and Communications 2019; 8(2): 47-58 53

Userbase
Round Robin Algorithm by [7].

Response time (ms)

Improved Algorithm. Response

time (ms)

Throttled Algorithm. Response

time (ms)

UB35 405.4 387.6 415.4

UB36 405.4 387.4 415.2

UB37 405.4 388.2 415.2

UB38 405.3 387.7 415.6

UB39 406.3 388.1 415.7

UB40 406 387.8 415.5

4.1.5. Response Time Results with 15 Virtual Machines and 40 Userbase

At this instance, the number of virtual machine was increased to 15 for the simulations keeping the number of userbase at 40.

The response time for each userbase obtained from the simulations is shown in table 6 along with the chart representation in

figure 5.

Figure 5. Response time result with 15VM and 40UB.

Table 6. Response time result with 15VM and 40UB.

Userbase
Round Robin Algorithm by [7].

Response time (ms)

Improved Algorithm. Response

time (ms)

Throttled Algorithm. Response

time (ms)

UB1 386.6 386.1 388.6

UB2 386.9 385.7 388.8

UB3 387.4 386.6 389

UB4 387.3 386 388.9

UB5 387.5 386.6 389.1

UB6 387.1 386.4 388.8

UB7 387.1 385.9 388.6

UB8 386.8 386 388.5

UB9 387.4 386.2 388.9

UB10 387 386.5 388.7

UB11 387.3 386.2 388.4

UB12 387.2 386.6 388.5

UB13 386.9 385.9 388.3

UB14 386.6 386 388.3

UB15 387.7 386.6 389.2

UB16 387.7 386.3 388.9

UB17 387 386.3 388.5

UB18 387 386.4 388.6

UB19 387.1 386.4 388.5

UB20 387.2 386.4 388.6

UB21 387.4 386.6 388.6

UB22 386.9 386.5 388.3

UB23 387.7 386.7 388.8

UB24 387.2 386.5 388.7

UB25 387 386.7 388.5

UB26 387.4 386.5 388.9

UB27 387.6 386.5 388.8

UB28 387.6 386.8 388.9

54 Abdulrahman Abdulkarim et al.: Performance Analysis of an Improved Load Balancing Algorithm in Cloud Computing

Userbase
Round Robin Algorithm by [7].

Response time (ms)

Improved Algorithm. Response

time (ms)

Throttled Algorithm. Response

time (ms)

UB29 387.7 387 389

UB30 387.3 386.5 388.6

UB31 387.3 386.1 388.4

UB32 387 386.3 388.5

UB33 387.3 387 388.7

UB34 387.4 386.8 388.7

UB35 387.1 386.5 388.5

UB36 387.4 386.4 388.5

UB37 387.6 386.5 388.7

UB38 387.5 386.6 388.4

UB39 387.6 386.9 388.8

UB40 387.4 386.3 388.6

4.1.6. Response Time Results with 15 Virtual Machines and 50 Userbase

At this instance, the number of userbase was increased to 50 for the simulations keeping the number of virtual machines at 15.

The response time for each userbase obtained from the simulations is shown in table 7 along with the chart representation in

figure 6.

Table 7. Response time result with 15VM and 50UB.

Userbase
Round Robin Algorithm by [7]

Response time (ms)

Improved Algorithm. Response

time (ms)

Throttled Algorithm. Response

time (ms)

UB1 391.2 386 394.3

UB2 391.4 386.4 394.5

UB3 391.7 386.3 394.7

UB4 391.6 386.4 394.6

UB5 391.4 386.5 394.4

UB6 391.6 386.5 394.7

UB7 391.3 386.3 394.5

UB8 390.9 386.6 394.1

UB9 392 386.4 394.8

UB10 391.2 386.5 394.4

UB11 392.3 387.1 394.5

UB12 391.9 386.2 394.7

UB13 391.8 386.3 394.4

UB14 391.6 386.4 394.2

UB15 392.3 387 394.6

UB16 392.1 386.8 394.4

UB17 391.5 386.9 394.7

UB18 392.1 386.8 394.5

UB19 391.8 386.5 394.1

UB20 391.8 386.6 394.8

UB21 391.7 386.7 394.4

UB22 391.4 386.5 394.3

UB23 392.1 386.9 394.5

UB24 391.4 386.6 394.7

UB25 392.1 386.5 394.6

UB26 392.7 387 394.7

UB27 392.1 386.5 394.5

UB28 391.8 386.5 394.4

UB29 391.6 386.4 394.7

UB30 392.2 386.9 394.5

UB31 391.8 386.3 394.3

UB32 391.3 386.6 394.5

UB33 391.2 386.4 394.7

UB34 391.7 386.5 394.6

UB35 392.2 386.8 394.7

UB36 391.5 386.4 394.6

UB37 392.55 386.8 394.3

UB38 391.9 386.3 394.5

UB39 392.4 386.8 394.3

UB40 392.1 387 394.5

UB41 391.9 386.7 394.7

UB42 392 387.2 394.6

UB43 391.9 386.9 394.4

UB44 391.6 386.5 394.2

 American Journal of Networks and Communications 2019; 8(2): 47-58 55

Userbase
Round Robin Algorithm by [7]

Response time (ms)

Improved Algorithm. Response

time (ms)

Throttled Algorithm. Response

time (ms)

UB45 392.2 387.2 394.9

UB46 391.7 386.8 394.7

UB47 392.2 387.5 394.7

UB48 391.7 386.8 394.6

UB49 392 387 394.8

UB50 391.5 386.7 394.5

Figure 6. Response time result with 15VM and 50UB.

4.1.7. Overall Response Time

The overall response time was obtained for all instances. Table 8 shows the overall response time obtained from the

simulations at each instance.

Table 8. Overall Response Time.

Simulation
Round Robin Algorithm by [7]

Response time (ms)

Improved Algorithm. Response

time (ms)

Throttled Algorithm. Response

time (ms)

S1 386.8 385.4 388.9

S2 513.4 419.8 551.4

S3 389.9 386.3 393

S4 405.2 387.8 415.5

S5 387.3 386.1 388.7

S6 391.8 386.6 394.5

Figure 7. Overall Response Time.

56 Abdulrahman Abdulkarim et al.: Performance Analysis of an Improved Load Balancing Algorithm in Cloud Computing

4.1.8. Data Center Processing Time

The data center processing time was also obtained in all the simulations carried out. The simulations were based on using the

round robin load balancing algorithm by [7], the improved algorithm and the throttled algorithm. Results obtained from the

simulations are shown in table 9 along with a chart representation show in figure 8.

Table 9. Data Center Processing Time.

Simulation
Round Robin Algorithm by [7].

Processing time (ms)

Improved Algorithm. Processing

time (ms)

Throttled Algorithm. Processing

time (ms)

S1 81.9 80.6 83.7

S2 207.9 114.5 247.3

S3 84.6 80.7 87.8

S4 99.8 81.9 110.2

S5 81.5 80.5 83.4

S6 86.1 80.6 88.3

Figure 8. Data Center Processing Time.

4.1.9. Throughput

At the end of every successful simulation, total number of executed request is being displayed. Table 10 shows the number of

requests executed from the simulations performed using the round robin load balancing algorithm by [7], the improved algorithm

and the throttled algorithm.

Table 10. Throughput result.

Simulation
Round Robin Algorithm by [7].

Number of request

Improved Algorithm. Number of

request

Throttled Algorithm. Number of

request

S1 6,000,600 6,000,664 6,000,555

S2 17,998,663 17,999,270 17,997,999

S3 17,999,270 17,999,383 17,999,190

S4 23,999,463 23,999,666 23,999,330

S5 23,999,660 23,999,696 23,999,580

S6 30,000,193 30,000,488 30,000,009

Figure 9 shows the chart representation of the throughput simulations result at each instance respectively.

Figure 9. Throughput.

 American Journal of Networks and Communications 2019; 8(2): 47-58 57

4.2. Discussion

In this work, a total of eighteen simulations were performed.

The simulation is being categorized to six instances according

to varying number of virtual machines and userbases. At each

instance, three simulations were performed each for the round

robin load balancing algorithm by [7], the improved algorithm

and the throttled algorithm to obtain the response time, data

center processing time and the throughput. This section would

discuss the results of the simulations obtained as shown in the

previous section.

4.2.1. Discussion of the Response Time Result

At the first instance, simulations were performed using 5

virtual machines and 10 userbase. The result shows that using

the improved algorithm for the load balancing has achieved

minimal response time for each userbase compared to the

round robin load balancing algorithm by [7] and the throttled

algorithm. The response time for each userbase gotten at the

second instance when the number of userbase was increased

from 10 to 30 also shows that the improved algorithm

achieved the lowest response time when used as the load

balancing algorithm.

At the third instance, the number of virtual machine was

increased from 5 to 10 leaving the number of userbase at 30.

The result obtained also shows that the minimum response

time was achieved for the improved algorithm. When the

number of userbase was increased from 30 to 40 in the fourth

instance, the response time for each userbase obtained from

using the algorithms shows that the improved algorithm has

the lowest response time among the other algorithms.

In each simulation, an overall response time for all the

userbases is being obtained. Table 8 shows the overall

response time obtained at each instance. The results show that

at each instance, using the improved algorithm as the load

balancing algorithm always achieves the response time with

the lowest value. Therefore, it shows that the improve

algorithm would slightly perform better than the round robin

load balancing algorithm by [7] and the throttled algorithm as

a load balancing algorithm in the cloud environment.

4.2.2. Discussion of Data Center Processing Time Result

According to the results obtained from the simulations, it

shows that at every instance, the improved algorithm achieves

the lowest processing time. Therefore, with the series of

simulations carried out, it was found out that using the

improved algorithm for the load balancing would always

achieve a better processing time for the data center compared

to the round robin load balancing algorithm by [7] and the

throttled algorithm.

4.2.3. Throughput

At the end of every completed simulation, the total number

of executed requests are obtained. The result shows the

number of executed requests in all the instances of the

simulations performed. It was observed that more number of

requests are being executed using the improved algorithm for

load balancing in all the instances of the simulations.

5. Conclusion

This paper is an implementation of a model proposed by [1],

where by simulations were performed to implement the

improved algorithm in which a performance evaluation was

carried out based on response time, data center processing

time and overall throughput for the improved algorithm, the

round robin load balancing algorithm by [7] and the throttled

algorithm. From the evaluation carried out and the results

obtained, it shows that the improved algorithm would result to

more effective load balancing by achieving a minimal

response time of user base tasks, minimal data center

processing time, increase overall throughput and therefore

results to better resource utilization on the cloud.

References

[1] Abdulkarim, A., Boukari, S., Muhammed, I., & Ahhmed, F. A.
(2018). An Improved Round Robin Load Balancing Algorithm
in Cloud Computing Using Average Burst Time. International
Journal of Scientific & Engineering Research, Volume 9, Isuue
3, 1495-1502.

[2] Aggarwal, R., & Gupta, L. (2017). Load Balancing in Cloud
Computing. International Journal of Computer Science and
Mobile Computing, Volume 6, Issue 6, 180-186.

[3] Bey, K. B., Benhammadi, F., & Benaissa, R. (2015). Balancing
Heuristic for Independent Task Scheduling in Cloud
Computing. 12th International Symposium on Programming
and Systems, 7-12.

[4] Ettikyala, K., & Latha, Y. N. (2016). Rank Based Efficient Task
Scheduling for Cloud Computing. IEEE International
Conference on Data Mining and Advanced Computing,
343-346.

[5] Krishna, P. V. (2013). Honey Bee Behavior Inspired Load
Balancing of Task in Cloud Computing Environments. Applied
Software Computing, 2292-2303.

[6] Mathew, T., Sekaran, K. C., & Jose, J. (2014). Study and
Analysis of Various Task Scheduling Algorithm in Cloud
Computing Environment. International Conference on
Advances in Computing, 658-664.

[7] Nusrat, P., Amit, A., & Ravi, R. (2014). Round Robin
Approach for VM Load Balancing Algorithm in Cloud
Computing Environment. Internation Journal of Advanced
Research in Computer Science and Software Engineering,
34-39.

[8] Phi, N. X., & Hung, T. C. (2017). Load Balancing Algorithm to
Improve Response Time on Cloud Environment. International
Journal on Cloud Computing: Services and Architecture,
Volume 7, No. 6, 1-12.

[9] Sachdeva, R., & Kakkar, S. (2017). A Novel Approach in
Cloud Computing for Load Balancing Using Composite
Algorithms. International Journal of Advanced Research in
Computer Science and Software Engineering, Volume 7, Issue
2, 51-56.

58 Abdulrahman Abdulkarim et al.: Performance Analysis of an Improved Load Balancing Algorithm in Cloud Computing

[10] Selvarani, S., & Sadhasivam, G. S. (2010). Improved
cost-based algorithm for task scheduling in cloud computing.
Computational Intelligence and computing research, 1-5.

[11] Zannon, N., & Rawshdeh, D. (2015). STASR: A New Task
Scheduling Algorithm for Cloud Environment. Network
Protocols and Algorithms (pp. 81-95). Macrothink Institude.

[12] Rani, P., & Nagpal, P. (2017). Optimized Task Scheduling
Algorithm for Cloud Computing Environment. International
Journal of Emerging Trends & Technology in Computer
Science, Volume 6, Issue 5, 39-47.

[13] George, M. S., Das, K. C. N., & Pushpa, B. R. (2017).
Enhanced honeybee inspired load balancing algorithm for
cloud environment. 2017 International Conference on
Communication and Signal Processing (ICCSP). doi:
10.1109/iccsp.2017.8286670.

[14] Kumar, A. S.; Venkatesan, M. Task scheduling in a cloud
computing environment using HGPSO algorithm. Cluster
Comput. 2018, 1–7.

[15] Wang, S.; Qian, Z.; Yuan, J.; You, I. A DVFS based
energy-e_cient tasks scheduling in a data center. IEEE Access
2017, 5, 13090–13102.

