

American Journal of Networks and Communications
2015; 4(3-1): 12-15

Published online January 16, 2015 (http://www.sciencepublishinggroup.com/j/ajnc)

doi: 10.11648/j.ajnc.s.2015040301.13

ISSN: 2326-893X (Print); ISSN: 2326-8964 (Online)

An adaptive algorithm to prevent SQL injection

Ashish John, Ajay Agarwal, Manish Bhardwaj

Department of Computer science and Engineering, SRM University, NCR Campus, Modinagar, Ghaziabad, India.

Email address:
ashishjohn@live.com (A. John), ajay.aagar@gmail.com (A. Agarwal), aapkaapna13@gmail.com (M. Bhardwaj)

To cite this article:
Ashish John, Ajay Agarwal, Manish Bhardwaj. An Adaptive Algorithm to Prevent SQL Injection. American Journal of Networks and

Communications. Special Issue: Ad Hoc Networks. Vol. 4, No. 3-1, 2015, pp. 12-15. doi: 10.11648/j.ajnc.s.2015040301.13

Abstract: SQL Injection attacks are one of the top most threats for application written for the web. SQL Injection is a type of

attack in which the attacker uses SQL commands to gain access or make changes to data. It allows attacker to obtain

unauthorized access to the database to change the intended queries. In the web environment, end user privacy is one of the

most controversial legal issues. Using SQL Injection, an attacker can leak confidential information such as credit card no. ATM

Pin, User Credentials etc from the web applications or even corrupts the database. An unauthorized access to this much of

confidential data by an attacker can threat to user confidentiality. In this paper, we had surveyed existing techniques against

SQL Injection and analyzed their advantages and disadvantages and proposed a novel and effective solution to avoid attacks on

login phase.

Keywords: SQLIA, Parse Tree Validation, Code Conversion, Static Query

1. Introduction

The Internet has just entered the middle Ages. The simple

security model of the Stone Age still works for single hosts

and LANs. But it no longer works for WANs in general and

Internet in particular [1]. The lack of adequate knowledge

and understanding of software and security engineering leads

to security vulnerabilities, e.g. by inappropriate programming,

getting even worse under deadline pressure and rush to

market issues. Some solution may be effective today, but as

technology changes, new risks and challenges appear.

Moreover, different solutions must be combined to be

effective against different types of attacks and the security of

the system must be constantly monitored. A database-driven

Web application commonly has four tiers namely

presentation tier, logic tier, application server and data tier.

The presentation tier is the topmost level of the application.

It displays information related to such services as browsing

merchandise, purchasing, and shopping cart contents, and it

communicates with other tiers by outputting results to the

browser/client tier and all other tiers in the network.

The logic tier is pulled out from the presentation tier, and

as its own layer, it controls an application’s functionality by

performing detailed processing.

An application server in an n-tier architecture is a server

that hosts an application programming interface (API) to

expose business logic and business processes for use by

applications.

The data tier consists of database servers. Here,

information is stored and retrieved. This tier keeps data

independent from application servers or business logic.

Giving data its own tier also improves scalability and

performance.

Figure 1. Database driven web application

The back-end database often contains confidential and

sensitive information such security numbers, credit card

number, financial data, medical data. Typically the web user

supplies information, such as a username and password and

web applications receive user request and interact with the

back-end database and returned relevant data to the user[2].

Some of the commonly performed web attacks are: Injection

attacks, XSS Attack, CSRF Attack, Security

Misconfiguration etc. According to OWASP (Open Web

Application Security Project) Injection attack is at the first

 American Journal of Networks and Communications 2015; 4(3-1): 12-15 13

place of the top 10 web attacks that are executed in 2013[3].

SQL injection is a method for exploiting web applications

that use client-supplied data in SQL queries. SQL Injection

refers to the technique of inserting SQL meta-characters and

commands into Web-based input fields in order to manipulate

the execution of the back-end SQL queries[4]. The SQLIA

occurs when an intruder changes the structure of the query by

inserting any SQL commands. This paper proposes a very

simple and effective method to detect SQL Injection Attacks

which uses the combination of Parse Tree Validation

Technique and Code Conversion Method. The rest of the

paper is organized in the form of different sections. Section 2

describes the SQLIA and its categories. Section 3 discusses

the related work. Section 4 explains the proposed method to

detect and prevent SQLIAs. Section 5 describes the results

with some discussion. Section 6 concludes this paper.

2. SQL Injection

SQL injection is a technique (like other web attack

mechanisms) to attack data driven applications. The attacker

takes the advantage of poorly filtered or not correctly

escaped characters embedded in SQL statements into parsing

variable data from user input. The attacker inject arbitrary

data, most often a database query, into a string that’s

eventually executed by the database through a web

application (e.g. a login form).

2.1. SQL Injection Method

Here are some methods through which SQL statements are

injected into vulnerable systems

� Injected through user input.

� Injection through cookie fields contain attack strings..

� Injection through Server Variables.

� Second-Order Injection where hidden statements to be

executed at another time by another function.

2.2. Recent SQL Injection Attacks in NEWS

2.2.1. Russian Hackers Amass Over a Billion Internet

Passwords

By NICOLE PERLROTH and DAVID GELLES - AUG. 5,

2014

A Russian crime ring has amassed the largest known

collection of stolen Internet credentials, including 1.2 billion

user name and password combinations and more than 500

million email addresses, security researchers say.

The records, discovered by Hold Security, a firm in

Milwaukee, include confidential material gathered from

420,000 websites, including household names, and small

Internet sites. Hold Security has a history of uncovering

significant hacks, including the theft last year of tens of

millions of records from Adobe Systems.

2.2.2. “NASDAQ is owned.” Five Men Charged in Largest

Financial Hack Ever

By Dan Goodin - July 26 2013

Five Eastern European men have been charged with

operating a global hacking operation that infiltrated some of

the world's biggest financial institutions, pilfered data for

more than 160 million credit cards, and created hundreds of

millions of dollars in losses.

2.2.3. SQL Injection Used in the Largest Data Security

Breach in U.S. History to Date

Posted on August 20, 2009 by acunetix

Three men, responsible for the largest data security breach

in U.S. history, stole 130 million credit and debit card

numbers from five leading companies. They took advantage

of a coding error, and allegedly used a SQL injection attack

to compromise a web application, which was used as the

starting point to help them bypass company network firewalls

and gain access over companies’ networks.

2.3. SQLIA Types

There are various types of SQL Injection available. Some

them that are highly user are described and explained here

with there SQL codes and explanation.

2.3.1. Tautologies Attack

Purpose :

� Identify injectable parameters

� Bypass authentication

� Extract data

In logic, a tautology is a formula which is true in every

possible interpretation. In a tautology-based attack the code

is injected using the conditional OR operator such that the

query always evaluates to TRUE. Tautology-based SQL

injection attacks are usually bypass user authentication and

extract data by inserting a tautology in the WHERE clause of

a SQL query. The query transform the original condition into

a tautology, causes all the rows in the database table are open

to an unauthorized user. A typical SQL tautology has the

form "or <comparison expression>", where the comparison

expression uses one or more relational operators to compare

operands and generate an always true condition.

Eg.:

Attacker’s Input:

User ID: abcd

Password: anything’ or ‘1’=‘1

Backend Process:

Select * from table where userid=‘abcd’ and

pass=‘anything’ or ‘1’=‘1’;

2.3.2. Piggy-Backed Queries / Statement Injection Attack

Purpose :

� Extract data

� Modify dataset

� Execute remote commands

� Denial of service

This type of attack is different than others because the

hacker inject additional queries to the original query, as a

result the database receives multiple SQL queries. The first

query is valid and executed normally, the subsequent queries

are the injected queries, which are executed in addition to the

14 Ashish John et al.: An Adaptive Algorithm to Prevent SQL Injection

first. Due to misconfiguration a system is vulnerable to

piggy-backed queries and allows multiple statements in one

query.

Attacker’s Input:

User ID: abcd

Password: ’ ; drop table details --

Backend Process:

Select * from table where userid=‘abcd’ and pass=‘’;drop

table details -- ;

2.3.3. Union Query

Purpose :

� Bypassing authentication

� Extract data

This type of attack can be done by inserting a UNION

query into a vulnerable parameter which returns a dataset that

is the union of the result of the original first query and the

results of the injected query. The SQL UNION operator

combines the results of two or more queries and makes a

result set which includes fetched rows from the participating

queries in the UNION.

Basic rules for combining two or more queries using

UNION :

1) Number of columns and order of columns of all queries

must be same.

2) The data types of the columns on involving table in

each query should be same or compatible.

3) Usually returned column names are taken from the first

query.

By default the UNION behalves like UNION

[DISTINCT] , i.e. eliminated the duplicate rows; however,

using ALL keyword with UNION returns all rows, including

duplicates. The attacker who try to use this method must

have solid knowledge of DB schema.

Attacker’s Input:

User ID: ’ union select * from details--

Password: abcd

Backend Process:

Select * from table where userid=‘’ union select * from

details -- and pass=‘abcd’;

2.3.4. Illegal/Logically Incorrect Queries

Purpose :

� Identify injectable parameters

� Identify database

� Extract data

In this type of injection an attacker is try gather

information about the type and structure of the back-end

database of a Web application. The attack is considered as

preliminary step for further attacks. If an incorrect query is

sent to a database, some application servers returns the

default error message and the attacker takes the advantage of

this weakness. They inject code in vulnerable or injectable

parameters which creates syntax, type conversion, or logical

error. Through type error one can identify the data types of

certain columns. Logical error often expose the names of

tables and columns.

Attacker’s Input:

date: 29a/10/2014

Generated Error:

PLS-00306: wrong number or types of arguments in call to

‘DETAILS'

ORA-06550: line 1, column 7:

*from this error attacker receives table name (details) and

database (oracle) being used.

2.3.5. Stored Procedures

Purpose :

� Privilege escalation

� Denial of service

� Execute remote commands

A stored procedure is a subroutine available to applications

that access a relational database system. Extensive or

complex processing that requires execution of several SQL

statements is moved into stored procedures, and all

applications call the procedures. One can use nested stored

procedures by executing one stored procedure from within

another. Stored procedures type of SQL injection try to

execute store procedures present in the database. Most of the

database have standard set of procedures (apart from user

defined procedures) that extend the functionality of the

database and allow for interaction with the operating system.

The attacker initially try to find the database type with other

injection method like illegal/logically incorrect queries. Once

an attacker determine which databases is used in backend

then he try to execute various procedures through injected

code. As the stored procedure are written by developers,

therefore these procedures does not make the database

vulnerable to SQL injection attacks. Stored procedures can be

vulnerable to execute remote commands, privilege escalation,

buffer overflows, and even provide administrative access to

the operating system. If an attacker injects ';SHUTDOWN; --

into either the User ID or Password fields then it will

generate the following SQL code :

Attacker’s Input:

User ID: abcd

Password: ’ ;SHUTDOWN;--

Backend Process:

Select * from table where userid=‘abcd’ and pass=‘’;

SHUTDOWN;--

3. Related Work

3.1. Parse Tree Validation Technique [5]

The technique is based on comparing, at run time, the

parse tree of the SQL statement before inclusion of user input

with that resulting after inclusion of input.

3.2. Code Conversion Method [6]

1. Converting User input to code like ASCII, binary, hexa

etc.

2. Searching the availability of converted input in Data

table and returns valid Userid and Password.

 American Journal of Networks and Communications 2015; 4(3-1): 12-15 15

4. Proposed Method

The proposed method consists of the best features of both

parse tree validation technique and code conversion method.

In this method we parse the user input and check whether its

vulnerable, if there is any chance of vulnerability present

then code conversion will be applied over that input. In this

way, we can detect and prevent SQL Injection using a single

code. Below is the algorithm for the proposed method:

For web pages that saves data to the database:

� Take the input text.

� Apply Parse Tree Validation Technique.

� Check if Vulnerable(ie if tree size mismatch)

1. If vulnerable

2. Apply code conversion (say, ascii to binary)

3. Counter =1

4. If not vulnerable

5. Counter =0

� Save to database

� Exit

For web pages that only retrieves from the database:

� Check the value of counter

1. If counter = 0

2. If counter = 1

� Apply reverse code conversion(say, binary to ascii)

� Display the text

� Exit

From the value of counter we can come to know whether

the user input is converted or not.

5. Result and Discussion

After the implementation of various types of SQL injection

Attacks the results received showed how important and

crucial data is received by modifying the query. This loss of

data causes loose to a company in millions. We had

implemented various attacks in order to get an in depth

knowledge of how these attacks work. Then the results are

obtained after implementing the attacks. After studying and

implementing some of the available methods we had come to

the below mentioned result:

� Code Conversion to each and every user input is more

time consuming as well as the database size will also

increase.

� Parse tree validation technique will raise false alarm

even if legitimate user is having blank space in his/her

input.

Since available methods are not sufficient on their own to

stop SQL injection attacks so in the present scenario more

than one method is used so as to ensure higher security level.

6. Conclusion and Future Work

By conducting a comprehensive survey on existing

techniques, we have realized that many SQL injection

countermeasures have their limitations. Understanding and

identifying the working mechanisms, as well as advantages

and disadvantages of current techniques will benefit the work

in this area. We will try to combine the available SQL

injection prevention methods to get a higher level of security.

Besides the text field, SQL Injection attacks can be

performed through cookies or through server variables. As

this work is a part of my M. Tech. thesis work, our future

work will be preventing SQLI attacks that are being

performed by any other mean.

References

[1] Oppliger, R., "Internet security enters the Middle Ages,"
Computer , vol.28, no.10, pp.100,101, Oct 1995 doi:
10.1109/2.467613

[2] http://www.w3resource.com/sql/sql-injection/sql-injection.php

[3] www.owasp.org

[4] W.G.J. Halfond, A. Orso, “AMNESIA: analysis and
monitoring for Neutralizing SQL-injection attacks,” 20th
IEEE/ACM International Conference on Automated Software
Engineering, Long Beach, CA, USA, 2005, pp. 174–183.

[5] Michele Spagnuolo,Politecnico di Milano,Milan "Using Parse
Tree Validation to Prevent SQL Injection Attacks"

[6] Indrani Balasundaram, E. Ramaraj "An Efficient Technique
for Detection and Prevention of SQL Injection Attack using
ASCII Based String Matching" International Conference on
Communication Technology and System Design 2011 © 2011
Published by Elsevier Ltd. Selection and/or peer-review under
responsibility of ICCTSD 2011

[7] Shruti Bangre, Alka Jaiswal "SQL Injection Detection and
Prevention Using Input Filter Technique" International Journal
of Recent Technology and Engineering (IJRTE) ISSN: 2277-
3878, Volume-1, Issue-2, June 2012

[8] Jaskanwal Minhas and Raman Kumar "Blocking of SQL
Injection Attacks by Comparing Static and Dynamic Queries"
I. J. Computer Network and Information Security, 2013, 2, 1-9
Published Online February 2013 in MECS (http://www.mecs-
press.org/) DOI: 10.5815/ijcnis.2013.02.01

[9] W. Halfond, J. Viegas, and A. Orso. A Classification of SQL-
Injection Attacks and Countermeasures. Proceedings of the
IEEE International Symposium on Secure Software
Engineering (ISSSE), 2006.

[10] "A Survey of SQL Injection Defense Mechanisms By Kasra
Amirtahmasebi", Seyed Reza Jalalinia and Saghar Khadem,
Chalmers University of Technology, Sweden Presented at:
Institute of Electrical and Electronics Engineers in 2009

[11] William G.J. Halfond, Jeremy Viegas, and Alessandro Orso "A
Classification of SQL Injection Attacks and Countermeasures”.

