
 

American Journal of Neural Networks and Applications 
2016; 2(1): 1-5 

http://www.sciencepublishinggroup.com/j/ajnna 

doi: 10.11648/j.ajnna.20160201.11 

ISSN: 2469-7400(Print); ISSN: 2469-7419(Online) 

 

Convergence of Online Gradient Method for Pi-sigma 
Neural Networks with Inner-penalty Terms 

Kh. Sh. Mohamed
1, 2

, Xiong Yan
3
, Y. Sh. Mohammed

4, 5
, Abd-Elmoniem A. Elzain

5, 6
,  

Habtamu Z. A.
2
, Abdrhaman M. Adam

2
 

1Mathematical Department, College of Science, Dalanj University, Dalanj, Sudan 
2School of Mathematical Sciences, Dalian University of Technology, Dalian, China 
3School of Science, Liaoning University of Science & Technology, Anshan, China 
4Physics Department, College of Education, Dalanj University, Dalanj, Sudan 
5Department of Physics, College of Science & Art, Qassim University, Oklat Al- Skoor, Saudi Arabia 
6Department Department of Physics, University of Kassala, Kassala, Sudan 

Email address: 

khshm7@yahoo.com (Kh. Sh. Mohamed), xy-zhxw@163.com (Xiong Yan), yshm@yahoo.com (Y. Sh. Mohammed), 

Abdelmoniem1@yahoo.com (Abd-Elmoniem A. E.), habtamuz@mail.dlut.edu.cn(Habtamu Z. A),  

abdelrhaman013@yahoo.com(A. M. Adam) 

To cite this article: 
Kh. Sh. Mohamed, Xiong Yan, Y. Sh. Mohammed, Abd-Elmoniem A. Elzain, Habtamu Z. A., Abdrhaman M. Adam. Convergence of Online 

Gradient Method for Pi-sigma Neural Networks with Inner-penalty Terms. American Journal of Neural Networks and Applications.  

Vol. 2, No. 1, 2016, pp. 1-5. doi: 10.11648/j.ajnna.20160201.11 

Received: March 14, 2016; Accepted: March 30, 2016; Published: May 10, 2016 

 

Abstract: This paper investigates an online gradient method with inner- penalty for a novel feed forward network it is called 

pi-sigma network. This network utilizes product cells as the output units to indirectly incorporate the capabilities of higher-

order networks while using a fewer number of weights and processing units. Penalty term methods have been widely used to 

improve the generalization performance of feed forward neural networks and to control the magnitude of the network weights. 

The monotonicity of the error function and weight boundedness with inner- penalty term and both weak and strong 

convergence theorems in the training iteration are proved. 
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1. Introduction 

A novel higher order feedforward polynomial neural 

network is known to provide inherently more powerful 

mapping abilities than traditional feed forward neural 

network called the pi-sigma network (PSN) [2]. This network 

utilizes product cells as the output units to indirectly 

incorporate the capabilities of higher-order networks while 

using a fewer number of weights and processing units. The 

neural networks consisting of the PSN modules has been 

used effectively in pattern classification and approximation 

problems [1, 4, 10, 11].There are two ways of training to 

updating weight: The first approach, batch (offline) 

training[18],the weights are modified after each training 

pattern is presented to the network. Second approach, online 

training, the weights updating immediately after each training 

sample is fed see [13]. The penalty term is often introduced 

into the network training algorithms has been widely used so 

as to control the magnitude of the weights and to improve the 

generalization performance of the network [6, 8], here the 

generalization performance refers to the capacity of a neural 

network to give correct outputs for untrained data. Specially 

cause, in the second approach the training weights updating 

become very large and over-fitting tends to occur, by adding 

the penalty term in into the cost function, when use second 

approach has been successfully application see [3, 7, 12, 14], 

which acts as a brute-force to drive unnecessary weights to 

zero and to prevent the weights from taking too large in the 

training process. In the work area of penalty term at the same 

of the inner-penalty term (IP), which have worked to reduce 

the magnitude of the network weights with efficiency 
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improve the generalization performance of the network [5, 9, 

17]. In this paper, we prove the (strong and weak) 

convergence of the online gradient with inner penalty and the 

monotonicity of the error function and the weight sequence 

are uniformly bounded during the training procedure with 

inner-penalty. 

The rest of this paper is organized as follows. The neural 

network structure and the online gradient method with inner-

penalty are described in Section 2. The preliminary lemmas 

are disruption in Section 3. The convergence results are 

presented and the rigorous proofs of the main results are 

provided in Section 4. Finally, in Section 5 we conclusions 

this study. 

2. PSN-��Algorithm 

PSN is a higher order feed forward polynomial neural 

network consisting of a single hidden layer. The hidden layer 

has summing units where as the output layer has product 

units. PSN, which has a three-layer network consisting 

of � input units, � summation units, and 1 product layers. 

Let �� � ���	, ��� … , ��
�� � ���1 � � � �� the weight 

vectors connecting the input and summing units, and write � � ��	� , ��� , … , ��� � � ��
 . We have included a special 

input unit �� ,  corresponding to the biases ��� ,  with fixed 

value-1. The structure of PSN is shown in Figure 1. 

 

Figure 1. PSN structure with a single output 

Where�� � ��	� , … , ���	� , ���� � �
 and ��� � �1. Assume g: � ! � is a given activation function. For an input �� � ��, 

the output of the network is 

" � g�∏ ��$ · �����$&	                                       (1) 

The network supplied with a given set of training samples '�� , (�)�&	* + �� , � . The error function with a inner 

penalty given by 

-���                                                                                                
� 12 0�(� � g�1��$ · ������

�

$&	

*

�&	
2 32 0 0��� · ����

�

�&	

*

�&	
 

� ∑ g5�∏ ��$ · �����$&	*�&	 2 6
� ∑ ∑ ��� · ������&	*�&	              (2) 

Where 3 7 0  is a inner penalty coefficient and g5�9� �

	
� �(� � g�9���The gradient function is given by 

-:;��� � ∑ <g5=�∏ ��$ · ���� ∏ ��$ · ξ���$&	$?�
�$&	 2 3�ωA · ξ��*�&	 B��   (3)

 Given an initial weight �C, the online method with inner 

penalty updates them iteratively by the form

 
��DE	 �  ��D 2 ∆��D,    G � 0,1, ….                                (4) 

∆��D � <g5=�∏ ��$D · ���� ∏ ��$D · ξ�� 2 3���D · ξ��B�$&	$?�
�$&	 ��(5) 

Where H 7 0  is the learning rate in the G9I  training 

cycle.We denote byJ·J  the usual Euclidean norm and the 

corresponding derived matrix norm and the following 

Assumption is imposed throughout this paper. 
Assumption 1. 

Kg5�9�K, Kg5=�9�K , Kg5==�9�K � L	 , M9 � �, 1,1 � N � O            
Assumption 2. 

P��P&K��D · ��K R L	, 1 � � � �, 1 � N � OG � 0,1, … 

Assumption 3. 

The learning rateH and penalty parameter 3are chosen to 

satisfy the condition: 0 � H � 1/�3LT 2 L� 

Assumption 4. '��D)D&C,	,U are contained in bounded closed region Θ + ��� , and there are exist points in set ΘC � '� �Θ|-:��� � 0).
 

3. Preliminary Lemmas 

The next lemma present the montonicity of the sequence '-���). It is essential for the proof of weakly convergence of 

PSN with penalty, presented in the following Theorems. For 

sake of  description, we denote 

X�,�D �  ∆��DE	 � ∆��D                                (6) 

Y�DE	 � ∏ ��$DE	 · ����$&	                              (7) 

Z�,�DE	 � ∏ ��$DE	 · ���        �$&	$?�                      (8) 

1 � N � O, 1 � [ � �, G � 0,1, U 

To begin with, first we present a few lemmas as 

preparation to prove Theorems 

Lemma 1.Let Assumption 1~2 are valid, there hold 

�[�PY�DE	 � Y�DP � L� ∑ J∆��DJ��&	                (9) 

�[[�PZ�,�DE	 � Z�,�D P � LT� ∑ J∆��DJ��&	           (10) 

Proof .By Assumption 2and Cauchy- Schwartz inequality, 

we have 

KY�DE	 � Y�DK � \1��$DE	 · ��
��	

$&	
�\ K���DE	 � ��D���K 
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2 \1��$DE	 ∙ ������

$&	
���D ∙ ���\ ����	DE	 − ���	D ���       

+ ⋯ + \1��$D ∙ ����

]&�
\ K��	DE	 − �	D���K           

≤ L	��	P��P 0J∆��DJ�

�&	
≤ L	� 0J∆��DJ�

�&	
           

≤ L� ∑ J∆��DJ��&	                                               (11) 

where L� = L	� ,    1 ≤ N ≤ O,    1 ≤ � ≤ � ,    G = 0,1, ⋯ . 

Similarly, we get 

PZ�,�DE	 − Z�,�D P ≤ LT� ∑ J∆��DJ��&	              (12) 

Here, LT� = L	��	. This is completes the proof. 

Lemma 2.Suppose Assumptions 1~3 are satisfied, and the 

weight sequence'��D)D&C,	,⋯is generated by (4) ~ (5), then 

-���DE	� − -���D� 

≤ − ^	
_ − 3 − L` − La − Lbc ∑ J∆d�DJ���&	            (13) 

Proof. Applying Taylor’s formula to extend g5�Y�DE	� at �Y�D�, we have 

g5�Y�DE	� − g5�Y�D� = gj′ ^YNGc ^Z�,NG c �N 0���G+1 − ��G��

�=1
 

+ 12 g′′�9	��Y�DE	 − Y�D��
 

+ 	
� ∑ �∏ 9�� $&	$?�g,�h

����gDE	 − ��gD ����hDE	 − ��hD ��������g,�h&	�g?�h
(14) 

where 9	, 9� ∈ ℝ  are on the line segment between Y�DE	 and Y�D . After dealing with (14) by accumulation g5�Y�DE	�  for 1 ≤ N ≤ O,  we obtain from (2), (4), (5) and 

Taylor’s formula we obtain 

-���DE	� − -���D� = 0[g5�Y�DE	� − g5�Y�D�]
*

�&	
 

       + 32 0 0[���DE	 ∙ ���� − ���D ∙ ����
�

�&	

*

�&	
] 

       = 0[g5=�Y�D��Z�,�D ���
*

�&	
+ 3���D ∙ �����]�∆��D� 

       +3 0 0�∆��D ∙ ����
�

�&	

*

�&	
+ ℑ	 + ℑ� + ℑ`+ℑa 

= − 	
_ ∑ J∆��DJ���&	  + ℑ	 + ℑ� + ℑ`+ℑa         (15)

 

where 

|ℑ	| ≤ 	
_ ∑ �∆��D� ∙ ∑ �X�,�D ���&	*�&	                                            (16) 

|ℑ�| ≤ 	
� ∑ g′′�9	��Y�DE	 − Y�D��*�&	                                     (17) 

|ℑ`| ≤ 	
� ∑ g′�Y�D�j5&	 ∑ �∏ 9�� $&	$?�g,�h

��∆��gD ∙ ∆��hD ��������g,�h&	�g?�h
(18) 

|ℑa| ≤ 6
� ∑ ∑ �∆��D ∙ ������&	*�&	                                              (19)

 

By Assumption 1, (4) ~ (5), Lemma 1and the mean value 

theorem gives 

PX�,�D P = Pg5=�Y�DE	�Z�,�DE	 − g5=�Y�D�Z�,�D PP��P 

            +3J��DE	 − ��DJP��P�
 

            ≤ Pg5==�9	��Y�DE	 − Y�D��Z�,�DE	���P 

           +Pg5=�Y�D��Z�,�DE	 − Z�,�D �P + 3J��DE	 − ��DJP��P�
 

≤ �L�L	�E	 + LT�L	� + 3L	�� ∑ J∆��DJ���&	          (20)

 
Thus with (16) gives 

             |ℑ	| ≤ 	
_ ∑ P∆��D ∙ X�,�D P��&	   

≤ L` ∑ J∆��DJ���&	                                         (21)

 
Here, L` = L�L	�E	 + LT�L	� + 3L	� + 1. By (4), (9) in 

Lemma 1 and Cauchy- Schwartz inequality, we have 

|ℑ�| ≤ 12 L	KY�DE	 − Y�DK�
 

≤ �	
� L�� + λL`�L	 ∑ J∆��DJ���&	   

≤ La ∑ J∆��DJ���&	                                      (22)
 

where La = 	
� L	L�� + 3L	� .  It follows from Assumption 

1~2, (2) and Taylor’s formula, we obtain 

            |ℑ`| ≤ 12 L	�E	 0 0 P∆��gD ∙ ∆��hD P
�

�g,�h&	�g?�h

*

�&	
                  

≤ 12 L	�E	O�� − 1� 0 0P∆��gD ∙ ∆��hD P
�

�&	

*

�&	
 

≤ Lb ∑ J∆��DJ���&	                                           (23) 

where Lb = 	
� L	�E	O�� − 1�.  By Assumption (2) and (4) 

leads 

|ℑa| ≤ λP��P� 0J∆��DJ�
�

�&	
≤ 12 λL	� 0J∆��DJ�

�

�&	
 

≤ λLT ∑ J∆��DJ���&	                                            (24) 
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whereLT = 	
� L	�. Collate (20) ~(24) into (15) gives 

-���DE	� − -���D�   
≤ −�	

_ − 3 − L` − La − Lb� ∑ J∆d�DJ���&	             (25) 

This is completes the proof. 

Lemma 3.Suppose that F: ℝo → ℝ  is continuous and 

differentiable on a compact set pq ⊂ ℝo  and that Θ =rs ∈ pq|∇ℎ(s) = 0u  has only finite number of point. If a 

sequence 'sD)D&	v ∈ pq  satisfies then limD→vJsDE	 −sDJ = 0, limD→vJ∇ℎ(sD)J = 0. Then there exists a point s∗ ∈ Θ such that limD→vsD =  s∗. 
Proof. This result is basically the same as Theorem 14.1.5 

in [16], and the detailed proof is thus omitted. 

4. Convergence Theorems 

Now, we can elucidate and proofs the convergence 

theorems, which we needed 

Theorem 1.(Monotonicity):  Let Assumption 1~3 are valid 

and the weight sequence'��D)D&C,	,⋯be generated by (4) ~ 

(5),then 

-(��DE	) − -(��D) , G = 0,1, ⋯                      (26) 

Proof. Let 

L =  L` + La + Lb                                          (27) 

By Assumption 3,which satisfies 

0 < H < 	6{TE{                                                          (28) 

Thus with (28) and Lemma 2, we have 

-(��DE	) − -(��D) ≤ −(	_ − 3LT − L) ∑ J∆��DJ���&	   

≤ 0                                                    (29) 

This completes the proof of the Theorem 1. 

Theorem 2. (Boundednss): Suppose that Assumption of 

Theorem 1 are valid, the weight sequence '��D)D&C,	,⋯ be 

generated by (4) ~ (5) are uniformly bounded. 

Proof. By Assumption 1, and Theorem 1, we have 

-(��D) − -(��D�	) ≤ ⋯ ≤ -(��C) 

= ∑ g5(*�&	 Y�C) + 6� ∑ ∑ (��C ∙ ��)���&	*�&	 ≤ |           (30) 

and 

| = OL	(1 + 6� ∑ J��CJ���&	 )                                        (31) 

From (2), (30) gives 

3(��D  ∙ ��)� ≤ 2-(��D) ≤ 2|   , N = 1,2, … , O         (32) 

By (4) ~ (5), we have 

��D = ��C − H ∑ ∑ [g�= (Y�})Z�,�} + 3(��} ∙ ��)��&	 ]��D�	}&	  (33) 

Let the second part of above equation be ��	D , Denote ℝ	 = ~���'�	, ��, . . , �*) ⊂ ℝ�  and ℝ� = ℝ	�  be the 

orthogonal complement space of ℝ	.  Denote the second part 

of (33) by �$	D , obviously ��	D ∈ ℝ	  . we divide ��C  into ��C = ��	C + ���C , where ��	C ∈ ℝ	  and ���C ∈ ℝ� . Then ��D = (��	C + ��	D ) ⊕ ���C = ���	D ⊕ ���C . Applying this to 

(33) we have 

|�}| ≔ |���	D ∙ �}| = K��D ∙ ��K ≤ ���6 ,      9 = 1,2, . . , � (34) 

Suppose 'ξ]g , ξ]h , . . , ξ]�)([} ∈ '1, … , O), 9 = 1,2, … , �)  is a 

base of the space ℝ	. There are �} ∈ ℝ (9 = 1,2, … , �) such 

that ���	D = �	ξ]g + ⋯ + ��ξ]� . Then (�	ξ]g + ⋯ + ��ξ]�) ∙ξ]� = d� , t = 1, … . , T. we get 

���g ∙⋮��g
��g⋮���

…   ⋮…    
��� ∙⋮��� ∙

��g⋮��� � ��	⋮��� = ��	⋮��
�                     (35) 

Is a base, the coefficient determinant equal to zero, and the 

system of the linear equations has a unique solution. Assume 

that the coefficient determinant equals to. Then the solution 

is as follows 

� = ���g⋮��g
∙  ��g    ⋮���

…⋮…
����g ∙⋮����g ∙

��g⋮���
��⋮��

����g ∙⋮����g ∙
��g⋮���

…⋮…
��g ∙⋮��g

��g    ⋮��� � 
Then the solution is as follows 

�} = � ∙ p�	                                                       (36) 

Let the maximum absolute value of all the sub-determinant 

with rank (� − 1) of the coefficient determinant is p=, then |�}| ≤ |p=| ∙ |p�	| ∙ ∑ |�}|�}&C . By (34) we have |�}| ≤ |p=| ∙
|p�	| ∙ � ∙ ���6 . 9 = 1,2, … , �. Denote |� = max	 } �P��gP  , 

then 

                 J���	D J = P�	��g + ⋯ + �����P 

≤ |p= ∙ p�	| ∙ |� ∙ �� ∙ ���6                        (37) 

That is ���	D  are bounded uniformly bounded. So from (29), 

we know ��D  are uniformly bounded. In all, we 

get '��D)D&C,	,⋯ are uniformly bounded, i.e., there exist a 

bounded closed region D ⊂ ℝ� such that '��D) ⊂ p. 

Theorem 3. (Weak convergence): Suppose that Assumption 

1~3 are valid and the weight sequence '��D)D&C,	,⋯ be 

generated by (4) ~ (5), then 

limD→vP-:;(��D)P = 0,                                        (38) 

Furthermore, if Assumption  4  is also valid,  we have the 

strong convergence: There exists �∗ ∈ ΘC  such that 

limD→v��D = ��∗                                                 (39) 
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Proof .By (28) and setting ¢ > 0 such that ¢ = 	
_ − 3LT −

L, we have 

-���DE	� ≤ -���D� − ¢ ∑ J∆��DJ���&	   

≤ ⋯ ≤ -���C� − ¢ ∑ ∑ J∆��DJ���&	D$&C               (40) 

Since -���DE	� > 0 for any G = 0,1, ⋯ . We set G → ∞ 

∑ ∑ J∆��DJ���&	D$&C ≤ ¤�:;¥�
¦ < ∞                       (41) 

Combining (3) ~ (5), immediately gives the weak 

convergence result: 

limD→vP-:;���D�P = 0, G = 0,1, ⋯               (42) 

Next we prove the strong convergence it follows from 

(4)~(5) and (42) that leads 

limD→vJ∆��DJ = 0,    0 ≤ � ≤ �               (43) 

Note that the error function -��D�  defined in (2) is 

continuously differentiable. By (43), Assumptions 4 and 

Lemma 3, immediately get the desired result. This completes 

the proof. 

5. Conclusion 

Through our study of this paper, the monotoncity of the 

error function -��D�in formula (2) and the weight sequence 

boundedness '��D)D&C,	,⋯ via formula (4) ~ (5) for the online 

gradient method with inner-penalty are presented, under 

those condition both weakly and strongly convergence 

theorems are proved. 
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