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Abstract: In this paper, an artificial intelligent approach based on the clonal selection principle of Artificial Immune System 

(AIS) and local search (LS) is propose to solve Multiobjective engineering design problems. This paper presents an optimal 

design of a linear synchronous motor (LSM) considering two objective functions namely, maximum force and minimum 

saturation and then design of air-cored solenoid with maximum inductance and minimum volume as the objective functions. 

The proposed approach uses Local search, dominance principle and feasibility to identify solutions that deserve to be cloned. 
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1. Introduction 

Computing and engineering have been enriched by the 

introduction of the biological ideas to help developing 

solutions for various problems. [7] 

Artificial Immune Systems (AIS) are computational 

paradigms that belong to the computational intelligence 

family and are inspired by the biological immune system. [5] 

Clonal selection theory was proposed by Burnet (1959). 

The theory is used to explain basic response of adaptive 

immune system to antigenic stimulus. It establishes the idea 

that only those cells capable of recognizing an antigen will 

proliferate while other cells are selected against. Clonal 

selection operates on both B and T cells. B cells, when their 

antibodies bind with an antigen, are activated and 

differentiated into plasma or memory cells. Prior to this 

process, clones of B cells are produced and undergo somatic 

hyper mutation. As a result, diversity is introduced into the B 

cell population. Plasma cells produce antigen-specific 

antibodies that are work against antigen. Memory cells 

remain with the host and promote a rapid secondary 

response. The number of clones for the pool of best 

antibodies depends on the antibody-antibody affinity. These 

best antibodies are selected for a uniform mutation, with 

mutation probability proportional to antibody-antigen 

affinity, according to the ranking scheme, while the 

remaining population undergoes a non-uniform mutation. 

Again, the ranking scheme is used as criterion to reduce the 

population to its original cardinality. [11, 13] 

Local search techniques have been very popular as 

heuristics for hard combinatorial optimization problems. The 

basic idea is to start from an initial solution and to search for 

successive improvements by examining neighboring solutions. 

The local search used in this paper is based on a dynamic 

version of pattern search technique. Pattern search technique is 

a popular paradigm in Direct Search (DS) methods [4]. 

The growth in demand for linear motors is principally 

driven by the replacement of traditional mechanical (ball 

screws, gear trains, cams), hydraulic, or pneumatic linear 

motion systems in manufacturing processes, machining, 

material handling, and positioning with direct 

electromechanical drives. The linear synchronous motor 

(LSM) operates on the same working principle as that of a 

permanent magnet rotary D. C. motor [2, 3]. As in a rotary 

motor there are two parts in a LSM, one is the set of permanent 

magnets and the other is the armature that has conductors 

carrying current. The permanent magnets produce a magnetic 

flux perpendicular to the direction of motion. The flow of 

current is in the direction perpendicular to both the direction of 

the motion and the direction of the magnetic flux. [1] 

This paper intends to present an optimal design of a LSM 

to replace a hydraulic actuator and design air-cored solenoid 
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using hybrid AIS approach. This methodology combined AIS 

with Local Search, AIS find initial Pareto front then Local 

search improve this initial Pareto after that applying mutation 

process. Results show that the combination between AIS and 

LS improve the solution quality of Multiobjective design 

optimizations and explore large area in objectives space.  

The remainder of the paper is organized as follows. In 

Section 2 describe some preliminaries on Multiobjective 

optimization problem (MOP). In Section 3 review the 

artificial immune system. In Section 4 explain a local search 

technique, in section 5 present the proposed approach. 

Experimental results are given and discussed in Section 6. 

Section 7 indicates conclusion. 

2. Preliminaries 

A general Multiobjective optimization problem is 

expressed as follows: [16] 

MOP: 

1 2  ( )  (  ( ) , ( ) , . .., ( ) )

                  . .      

t

kM in F x f x f x f x

s t x S

=
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Where ( 2k ≥ ) objective functions : n

if R R→ , the decision 

(variable) vector 
1 2 ( , ,..., )

t

nx x x x= belongs to the (nonempty) 

feasible region (set) S, which is a subset of the decision 

variable space nR . [10] 

Definition 1 (Pareto optimal solution): 
*x  is said to be a 

Pareto optimal solution of MOP If there exists no other 

feasible x  (i.e., x S∈ ) such that, *( ) ( )j jf x f x≤ for all 

1,2,...,j k=  and *( ) ( )j jf x f x< for at least one objective 

function j
f . [10] 

The terms “dominance” and “Pareto optimality” can be 

mathematically defined for a general problem of 

simultaneously minimizing a k-components vector function 

1 2( ( ), ( ), ..., ( ))kF f x f x f x=  of an n dimensional decision 

variable vector 
1 2  ( , ,..., )nx x x x=  from some universe S (figure 

1). 

 

Figure 1. The concept of Pareto optimality. 

3. Artificial Immune Systems 

The main goal of the immune system is to protect the 

human body from the attack of foreign (harmful) organisms. 

The immune system is capable of distinguishing between the 

normal components of organism and the foreign material that 

can cause us harm (e.g. bacteria). These foreign organisms 

are called antigens (Ag's). The molecules called antibodies 

(Ab's) play the main role on the immune system response. 

The immune response is specific to a certain foreign 

organism (antigen). When an antigen is detected, those 

antibodies that best recognize an antigen will proliferate by 

cloning. This process is called clonal selection principle, the 

new cloned cells undergo high rate of mutation. [6].  

In Natural Immune System (NIS) research, four models of 

the NIS can be found: 

1. The classical view of the immune system is that the 

immune system distinguishes between self and non-

self, using lymphocytes produced in the lymphoid 

organs. These lymphocytes “learn” to bind to antigen. 

[8] 

2. Clonal selection theory, where an active B-Cell 

produces antibodies through a cloning process. The 

produced clones are also mutated. 

3. Danger theory, where the immune system has the 

ability to distinguish between dangerous and non-

dangerous antigen. 

4. Network theory, where it is assumed that B-Cells form 

a network. When a B-Cell responds to an antigen, that 

B-Cell becomes activated and stimulates all other B-

Cells to which it is connected in the network. [12] 

5. Clonal Selection Theory 

One example of a cellular evolution is the development of 

the B cell (and T cell) immune repertoire. B and T cells are 

cells of the adaptive immune response. In contrast to the 

innate immune response, which is always ready to respond to 

whatever intruder, the adaptive immune response matures 

throughout life, is antigen (Ag) specific and long-living. The 

specificity of B cells lies in the variable region of their 

antibodies, each B cell produces antibodies (Ab’s) with one 

particular specificity. [13] 

Ab’s are molecules attached primarily to the surface of B 

cells whose aim is to recognize and bind to Ag’s. Each B cell 

secretes a single type of Ab, which is relatively specific for 

the Ag. By binding to these Ab’s and with a second signal 

from accessory cells, such as the T-helper cell, the Ag 

stimulates the B cell to proliferate (divide) and mature into 

terminal (nondividing) Ab secreting cells, called plasma 

cells. The process of cell division (mitosis) generates a clone, 

i.e., a cell or set of cells that are the progenies of a single cell. 

B cells, in addition to proliferating and differentiating into 

plasma cells, can differentiate into long-lived B memory 

cells. Memory cells circulate through the blood, lymph, and 

tissues and, when exposed to a second antigenic stimulus, 

commence to differentiate into plasma cells capable of 

producing high-affinity Ab’s, preselected for the specific Ag 

that had stimulated the primary response. Figure. 2 depicts 
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the clonal selection principle. [12] 

The main features of the clonal selection theory [2, 10] 

that will be explored in this paper are: 

1) Proliferation and differentiation on stimulation of cells 

with Ag’s. 

2) Generation of new random genetic changes, expressed 

subsequently as diverse Ab patterns, by a form of 

accelerated somatic mutation (a process called affinity 

maturation). 

3) Estimation of newly differentiated lymphocytes 

carrying low-affinity antigenic receptors. 

 

Figure 2. Clonal selection principle. 

4. Local Search 

The local search phase is implemented as a dynamic 

version of pattern search technique. Pattern search technique 

is a popular paradigm in Direct Search (DS) methods. DS 

methods are evolutionary algorithms used to solve 

constrained optimization problems. [4] 

This study examines the importance of a dynamic version 

of pattern search technique to improve the solution quality of 

MOPs. The search procedure looks for the best solution 

“near” in the neighborhood of the current solution by 

repeatedly making small changes to a starting solution. The 

local search is started by loading the Pareto solutions for a 

given MOPs. At iteration t, an iterate 
tx ∈ Pareto is obtaoned, 

where the changes on the values for each dimension 

( 1, 2, ,i n= ⋯ ) can be implemented as 

(1 / )(1 )t Tt R r −∆ = −  

where r is the random number in the range [0, 1]; T is the 

maximum number of iterations; R is the search radius. Let 

ie , ( 1, 2, ,i n= ⋯ ), denote the standard unit basis vectors. 

Successively look at the points .t ix x t e+ = ± ∆ , ( 1, 2, ,i n= ⋯ ), 

until finding x+  for which ( )f x+  dominates ( )
t

f x  for at least 

one objective, If the dominance not satisfied then t
x x+ = . 

Then update the Pareto solutions by non dominated ones and 

the dominated ones are removed. This situation is represented 

in Figure 3. [1]  

 

Figure 3. Mechanism of dynamic pattern search in 
2R . 

5. The Proposed Approach 

 

Figure 4. The proposed algorithm. 



32 Adel M. El-Refaey:  Artificial Immune System Based Local Search for Solving Multi-Objective Design Problems.  

 

The algorithm run with random input to AIS which has 

taken ideas from the clonal selection principle, [17] 

modeling the fact that only the highest affinity antibodies 

will go through local search algorithm then proliferate. 

Antibodies, in this case, are represented by decimal value 

which represent the value of decision variables of the 

problem to be solved. However, not using a population of 

antigens, but only Pareto dominance and feasibility to 

identify solutions that deserve to be cloned. Additionally, 

theproposed approach uses mutation [8] (uniform mutation is 

applied to the clones and non-uniform mutation is applied to 

the “not so good” antibodies). Also using a secondary (or 

external) population that stores the nondominated solutions 

found along the search process. Such secondary population is 

the elitist mechanism most commonly adopted in 

multiobjective optimization, and it allows us to move 

towards the Pareto front [7].  

The algorithm 

The proposed algorithm for solving multiobjective design 

problems using Multiobjective Immune System Algorithm 

(MISA) with Local search is as follow: 

[Step 1] Random Initialization  

[Step 2] Sorting population according to dominance 

[Step 3] Choose the “best” antibodies to be cloned 

(nondominated Antibodies) 

[Step 4] Apply local search for "best" antibodies to find the 

"best of best" Antibodies 

[Step 5] Cloning “the best of best” antibodies 

[Step 6] Appling a uniform mutation to the clones 

[Step 8] Repeat this process from step 2 till reach the 

desired number of antibodies 

6. Numerical Results 

In order to validate the proposed approach, it used to solve 

two engineering design problems. 

6.1. Shape Design of a Linear Synchronous Motor 

A linear motor is an electric motor that has its stator and 

rotor "unrolled" so that instead of producing a torque 

(rotation) it produces a linear force along its length. To 

permit more flexibility of operation and allow short 

headways for high-capacity operation, a design has been 

proposed with very short stator sections. With appropriate 

design, the operation control system (signaling system) can 

be integrated with the power feeding system. [14] 

The task is to design a direct electrical drive actuator as an 

alternative to hydraulic cylinder drive. The force can be 

calculated using the so-called Bli law, which says that the 

force is the product of the flux density, the length of the 

conductors and the current through the conductors. To 

increase the force one needs to either increase the flux 

density, the length of the conductors or the total current. At 

the same time one has to consider the inherent as well as 

external limitations that appear in the form of constraints 

such as: [1, 15] 

a) Heat Constraint: The preliminary calculations for the 

LSM show that approximately 4000W of heat can be 

dissipated out of the motor with the proposed 

arrangement of coils. Considering 4000W as the upper 

limit on the heat dissipation rate. 

b) Radius Constraint: Usually the geometry and the total 

volume available restrict the size of the LSM. This sets 

a limit of the total radius of the LSM consists of the 

magnets, the air gap, back iron in the circuit and the 

conductor slots.  

c) Saturation Constraint: Once the iron is saturated, 

increasing the magnetic field strength is not useful as it 

will not increase the amount flux and hence the force 

will not increase. This sets a limit on how much the 

magnetic field strength can be usefully increased. The 

tooth in the stator has the least cross-sectional area and 

will saturate first. 

d) Demagnetization Constraint: Very high values of the 

armature current will produce a very large opposing 

magnetic field which may demagnetize the magnets 

permanently thus altering the motor performance. This 

is one more limit on the armature current. 

e) Minimum Force Requirement: it is required to produce 

a force greater than that available from any 

commercially available motor, a minimum force 

constraint on this value can be based. 

Mathematical Problem Statement [1] 

Consider the LSM to be a three phase motor with two 

phases conducting at any point in time. The conductors are 

assumed to be copper conductors and the permanent magnets 

to be high density Neodium Iron Boron magnets. The fill 

factor, kfill, the fraction of slot volume occupied by 

conductors, is assumed to be equal to 0.6. Formal derivations 

of the mathematical expressions for the force generated in a 

LSM and the constraints are carried out in [1]. The analysis is 

simplified with the following assumptions. 

Two variables, current, i, through each conductor and the 

number of conductors, ns, in each slot, appear in three 

expressions, namely the force expression, the heat constraint 

expression and the demagnetization constraint expression. In 

all three expressions i and ns appear together as (i*ns). 

Replace these two variables by a single variable named slot 

current, ins, to simplify calculations. 

The air gap flux density is monotonically decreasing with 

the air gap length. There is no advantage of increasing the air 

gap length and hence one would like to keep it as small as 

possible. However, it is always difficult to maintain a very 

small air gap especially in case of the linear motors. Assume 

the air gap length to be equal to 1mm which is the lowest 

allowed in light of manufacturing considerations. 

The back iron on the stator side and the mover side close 

the flux loop as shown in Figure 5. The back iron carries high 

flux and is susceptible to saturation. Choose the back iron 

thickness such that the back iron cross-sectional area is as 

great as the tooth cross sectional area. Thus avoiding the 

tooth saturation, ensured by the saturation constraint, will 

surely eliminate the possibility of the back iron saturation. 
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Figure 5. Cross-section of approximately a one pole pitch long section of a Tubular LSM, not to scale. 

The total length of the LSM consists of many magnetic 

poles each of length p
τ , the pole pitch, which is a design 

parameter. The pole pitch, p
τ , and the number of poles, p, 

are related as: (Total Length = p
τ *p). In a three phase motor 

each pole pitch length consists of three slots and three teeth 

as shown in Figure. 5. The force generated by the LSM, 

given by the Bli law, has no explicit dependency on p
τ  and 

only varies to the extent that B, l or i vary with p
τ . Many 

small magnets or fewer long magnets yield the same flux 

density, B, and also many small width slots or few wider 

slots permit the same current. However, change in p
τ  affects 

the force indirectly, such as an increase in p
τ  results in an 

increase in the back iron thickness to avoid saturation. An 

increase in the back iron thickness, for a fixed radius, means 

reduction in slot height resulting in less current for fixed heat 

or it means thinned magnets resulting in smaller B or both. 

Thus an increase in p
τ  results in a decrease in the force and 

hence one would like to keep p
τ  as small as possible. 

The advantage of reducing p
τ  continues until p

τ  is so 

small that the magnets (whose length must be 2/3 of p
τ  to 

couple the 2 windings which are “on”) become so close to 

each other that flux leaks from magnet to magnet. This does 

not happen until magnet spacing is on the order of twice the 

gap thickness which corresponds to a p
τ  well below the 

25mm allowed in light of manufacturing considerations. 

Since the number of poles has to be an even integer and since 

Total Length = 1.09m, choose p = 40 and 27
p

τ =  mm. [1] 

The relevant design variables are the current in each slot, 

ins, the dimensions of the slot, s
h  and s

t , and the height of 

the magnet, m
h . In the current design there are inherent limits 

on the values of the variables. For example the height of the 

magnet, m
h , and the height of the slot, s

h , are both limited 

by the radius of the motor. The slot thickness s
t  can be as 

large as 1/3rd of the pole pitch. All lengths are in meters (m), 

the slot current ins is expressed in Amperes (A) and the flux 

density is expressed in Tesla (T). The units of the various 

constants in the equations are not shown explicitly. 

Max 1

653.541* * (0.02825 ( / 2))

0.0017

m m s

m

ins h h h
f

h

+ +=
+

 

Min 2

1.3
165.13

0.0017

m
s

m

h
f t

h
= +

+
 

s. t 
5 2

1

1.9*10 * * (0.02825 ( / 2))
4000 0

*

m m s

s s

ins h h h
g

h t

− + += − ≤  

2
3* 0.0266 0m s sg h h t= + − − ≤  

7

3

6.28*10 * ( 0.00105)
1.17 0

( 0.001)

m

m m

ins h
g

h h

− += − ≤
+

 

4 1
15000 0g f= − ≤  

The variables limits are 0 ins≤ < ∞ A, 0 0.009st m≤ ≤ , 

0 0.08sh m≤ ≤  and 0 0.08mh m≤ ≤ . Pareto Front using 

proposed approach is shown in figure 6a. 
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Figure 6a. Pareto Front obtained by using proposed approach. 

 

Figure 6b. Pareto front by combining MACO and Local search [1]. 

6.2. Shape Design of an Air-Cored Solenoid 

A multiobjective shape optimization problem of a coreless 

solenoid of rectangular cross-section b ×c and mean radius a 

is tackled (figure 7). 

 

Figure 7. Cross section of the solenoid and design variables. 

If current is supposed to be uniformly distributed over the 

cross-section, 

given the geometry of the solenoid and the number N of 

turns, the inductance L [µH] can be approximated by the 

following formula: 

2 231.49( / )

9 6( / ) 10( / )

a N b
L

a b c b
=

+ +
 

The multiobjective design problem can be cast in these 

terms: maximize inductance L (a, b, c) and minimize volume 

V (a, b, c) for given length 1
10k =  m and cross section 

6 2

2
10k m−=  of the current carrying wire. Due to constraints, 

two variables only, e.g. a and b, can be considered; finally 

functions L and V become [14] 

Max 
2

1
1 2

1 2

31.49( / 4)

9 6( / ) 5( / )

k
f

a b k k abπ
=

+ +
 

Min 

2 22

1 2 1 2
2 24 4 2

k k k ka b
f

a b

π
π

= + +  

s. t 1 2
1

0
4

k k
g a

bπ
= − <  

The variables limits are 0 0.1a≤ ≤ , 0 0.3b≤ ≤ , 

Pareto Front using proposed approach is shown in figure 8a. 

 

Figure 8a. Pareto Front obtained by using proposed approach. 

 

Figure 8b. Pareto front by combining MACO and Local search [1]. 
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7. Conclusion 

A hybrid multiobjective optimization algorithm based on 

the clonal selection principle and local search have been 

presented. The approach is able to produce results similar or 

better than those generated by other evolutionary algorithms 

and the Pareto optimal Solution more accurate and faster. The 

proposed approach uses an affinity measure to control the 

amount of mutation to be applied to the antibodies. Affinity 

in this case, is defined in terms of nondominance and 

feasibility.  

The proposed approach also uses a very simple mechanism 

to deal with constrained test functions, and results indicate 

that such mechanism, despite its simplicity, is effective in 

practice. 

In the two design problems the proposed approach explore 

large objective space that other evolutionary algorithms. 
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