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Abstract: The proposed architecture of a binary artificial neural network is inspired by the structure and function of the 

major parts of the brain. Consequently it is divided into an input module that resemble the sensory (stimuli) area and an output 

module similar to the motor (responses) area. These two modules are single layer feed forward neural networks and have fixed 

weights to transform input patterns into a simple code and then to convert this code back to output patterns. All possible input 

and output patterns are stored in the weights of these two modules. Each output pattern can be produced by a single neuron of 

the output module asserted high. Similarly each input pattern produces a single input module neuron at binary 1. The training 

of this neural network is confined to connecting one output neuron of the input module at binary 1 that represents a code for 

the input pattern and one input neuron of the output module that produces the desired associated output pattern. Thus fast and 

accurate association between input and output pattern pairs can be achieved. These connections can be implemented by a 

crossbar switch. This crossbar switch acts similar to the thalamus in the brain which is considered to be a relay center. The role 

of the crossbar switch is generalized to an electric field in the gap between input and output modules and it is postulated that 

this field may be considered as a bridge between the brain and mental states. The input module encoder is preceded by the 

extended input circuit which ensures that the inverse of the input matrix exists and at the same time to make the derivation of 

this inverse of any order a simple task. This circuit mimics the processing function of the region in the brain that process input 

signals before sending them to the sensory region. Some applications of this neural network are: logical relations, mathematical 

operations, as a memory device and for pattern association. The number of input neurons can be increased (increased 

dimensionality) by multiplexing those inputs and using latches and multi-input AND gates. It is concluded that by emulating 

the major structures of the brain using artificial neural networks the performance of these networks can be enhanced greatly by 

increasing their speed, increasing their memory capacities and by performing a wide range of applications. 

Keywords: Architecture, Modular, Pattern Association, Mathematical Operations 

 

1. Introduction 

In designing the architecture of the present binary neural 

network an attempt is made to emulate the major parts of the 

brain and their interconnections. This approach may help us 

to improve the performance of artificial neural networks and 

at the same time enhances our understanding of the functions 

of the various parts of the brain. One obvious feature of the 

brain is the division or separation between the areas of 

sensory and motor functions. This feature is implemented by 

introducing two modules: input and output modules. It is 

known as well that the input signals are processed for the 

extraction of information at the sensory area before sending 

them to be executed in the motor area. The circuit used in the 

present architecture that performs similar function is the 

extended-input circuit which precedes the input module. If 

this neural network has n input neurons (n bits) then the 

extended-input circuit has 2
n
 output neurons. The great 

number of connections of this circuit may explain partially 

the reason behind the complexity of the brain. Due to the 

tremendous achievements of the human mind it is natural to 

deduce that this complexity is not redundant or superfluous 

but must have necessary functions. We may understand this 

partially from the Extended-Input circuit [1, 2] discussed in 
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the next section. It is found, in order that the inverse of the 

extended input matrix to exist and thus we may obtain a 

unique output, the number of the original input neurons must 

be increased to match the total number of input states that the 

original input neurons may assume. Consequently the 

number of these original inputs must be extended by adding 

extra inputs derived from the original inputs by nonlinear 

digital gates. Thus the total number of input neurons and 

their connecting weights increase exponentially with the 

increase of the number of original inputs as will be shown in 

the next section. Complexity in this case is due to a 

mathematical necessity. 

Another feature of biological neural networks is that they 

contain two types of synapses: excitatory and inhibitory. This 

fact was found automatically to be the case in the neural 

network of the input module connected to the output of the 

extended input circuit where all the deduced non-zero 

weights of this module assume only two values, namely +1 

and -1. 

The association of input stimuli with output responses of 

biological neural networks are one of their most important 

functions. There are several artificial neural networks that 

perform similar task [3] by associating input and output 

patterns such as the Bidirectional Associative Memory 

(BAM) [4, 5]. These networks need to be trained in order to 

learn these associations by adjusting their synaptic weights. 

However the nervous systems of many organisms contain 

parts, such as the retina, [6] which are already wired before 

the organism gains any experience from its environment. 

This feature is emulated in the design of the input and output 

modules which contain fixed weights for any input and 

output pattern association. These weights are deduced 

directly from all possible input stimuli and output responses. 

They represent a priori knowledge before choosing specific 

input and corresponding output patterns. The concept of a 

priori knowledge was applied to space and time by 

Emmanuel Kant: space as the totality of all possible locations 

and time as all possible moments past, present and the future. 

Similarly the input and output modules hold information 

about all possible input and output patterns. 

Moreover the speed by which biological neural networks 

make these associations rules out the possibility of adjusting 

the values of the vast number of connections between all the 

neurons in a fraction of a second for example in order to 

recognise a face. In the network proposed in this article a 

crossbar switch is used which connects only one output 

neuron of the input module to one input neuron of the output 

module for each pair of input-output pattern association. The 

crossbar switch mimics the function of the thalamus in the 

brain which is considered to be a relay center. Thus the 

learning process consists mainly in finding only one 

connection between these two modules, a feature that 

enhances greatly the speed of the learning process. The 

activation of one and only one output neuron of the input 

module for each input pattern is reminiscent of the famous 

“grandmother neuron” discovered in some experiments on 

the brain. This approach eliminates the need for the 

iterative computations of the weights of all connections 

between all neurons of the whole neural network. The 

weights of the input and output modules are deduced 

directly for all possible input and output patterns. The 

one-to-one connection between input and output modules 

by a crossbar switch is not the only possible method for 

such connections although it may be the most efficient one 

for transmitting a stimulus to a specific target such as a 

muscle for example. A different possibility for such 

communication is investigated and found to hint to some 

of the features of mental states. 

2. The Extended Input Circuit 

The extended input circuit is the foundation of the 

architecture of the proposed binary neural network and it is 

shown in Figure 1 below [1, 2]. This circuit extends the 

number of the original input neurons n to match the total 

number of all possible states 2
n
 that these original inputs 

may assume. The extension of the dimensionality of the 

input space in order to achieve linearly separable patterns 

was first proposed by Cover [7]. These added neurons are 

connected to the original input neurons in such a way as to 

ensure the existence of the inverse of the extended input 

matrix and at the same time to make its derivation a simple 

task for any order or size of the extended input matrix. The 

extended input matrix, not only uses all possible 

combinations of the original inputs but also uses all 

possible input states 2
n
 which represent all possible 

combinations of 1’s and 0’s used by any input pattern for a 

given number of original input neurons n. Thus the 

extended input matrix is a universal matrix and needs to be 

calculated only once for all applications. It is necessary to 

arrange the extended input neurons according to a simple 

rule [2] in order that the extended input matrix assumes an 

upper triangular matrix form. In the example given in figure 

1 below, the input binary signal is applied to 4 original 

input neurons (at the bottom of Figure 1 below) and are 

incremented by steps of binary 1 from [0000]
T
 to [1111]

T
. 

The extension of the original input neurons by adding all 

their possible combinations emphasises the need to consider 

input signal not only by individual neurons but also to 

consider the coincidence or simultaneous activation of 

different groups of them. This is a form of input signal 

processing. 
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Figure 1. The extended input circuit. At the bottom are shown 4 original input neurons (X1 the least significant bit to X4 the most significant bit) and a constant 

input of binary 1. The extended input neurons, in this case 16 neurons, are shown at the top. 

3. Input Module 

This neural network is a single layer feed forward neural 

network. It converts the output of the previous extended input 

circuit (top of Figure 1) into a simple format or code to make 

minimum connections to the output module discussed next. It 

consists of a single layer feed forward neural network with 

linear adders that sum its weighted inputs. The function of 

the input module is to convert each of its input states into a 

signal with one and only one output neuron at binary 1 while 

all the rest are at binary 0. This is a kind of an encoder that 

converts input patterns into this simple code or format. It 

represents the minimum form of representing for any input 

pattern. It also uses minimum amount of energy expenditure 

for firing its output neurons.  

If the output module uses the same signal format and 

converts its input signal back to the associated pattern then 

we need to make only one single connection from the one 

active output neuron of the input module (at binary 1) to one 

input neuron of the output module that produces the desired 

associated output pattern if a binary 1 is applied to it while all 

the other neurons are at binary 0. For the encoder output 

neurons we may choose only the first output neuron equals 1 

and all the rest 0 for the first original input state [0000]
T
, only 

the second output neuron equals 1 and all the rest 0 for the 

second input state [1000]
T
 and so on. Thus the output matrix 

of this input module becomes the identity matrix I, where 

each column of this matrix represents a state (or a vector) 

while the rows of each column represent the output neurons 

(top is least significant bit LSB): 

Y = W X                                            (1) 

where W represents the weight matrix and X is the input 

matrix of this module and Y is its output matrix. Since Y = I 

then we get: 

W = X
-1

                                 (2) 

For 4 original input neurons with states steadily increasing 

from [0000]
T
 to [1111]

T
 with increments of binary 1 the 

number of the extended output nodes is 2
4
. The extended 

input matrix and its inverse are given below [1, 2]: 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0

X =

0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

 
 
 
 
 
 
 
 
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 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        (3) 

1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 1 1
X−

+ − − + − + + − − + + − + − − +
+ − − + − + + −

+ − − + − + + −
+ − − +

+ − − + − + + −
+ − − +

+ − − +
+ −

=
+ − − 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 + − + + − 
 + − − +
 

+ − − + 
 + −
 

+ − − + 
 + −
 
 + −
 + 

        (4) 

In this case and according to Eq. (2) every entry of the 

inverse matrix X
-1

 represents the weight wi j between the 

output neuron i of the input module and its input neuron j. 

Thus all the weights are fixed weights and can be determined 

simultaneously without any calculations or iterations during 

the learning processes. Moreover all the nonzero weights are 

either +1 or -1. This is similar to the excitatory and inhibitory 

biological synapses. 
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Figure 2. The architecture of the proposed extended-input binary neural network. The crossbar switch between input and output modules is the only circuit 

that needs to be trained for associating specific patterns at the original inputs (top of figure) and the output of the whole neural network (bottom of figure). 

Feedback with delay time D from output to the original input is added for some applications discussed below. 

The rules by which we may deduce the inverse of the 

extended input matrix are as follows [1, 2]: 

1. The extended input matrix and its inverse are both 

upper triangular matrices [8]. 

2. The extended input matrix and its inverse are 

symmetrical with respect to the diagonal perpendicular 

to the main diagonal (from lower left to upper right).  

3. The sum of nonzero entries in each column of the 

inverse matrix except the first column equals zero. The 

sum of nonzero entries in each row of the inverse 

matrix except the last row equals zero. 

4. Every zero entry of the extended input matrix has a 

corresponding zero entry of its inverse and every entry 

equals 1 of the extended input matrix has a 

corresponding entry of its inverse with absolute 

magnitude of 1. 

5. All entries of the main diagonal and every parallel 

diagonal above it of the inverse matrix have the same 

sign. 

4. Output Module 

This module is also a binary single layer feed forward 

neural network with output neurons as linear adders for 

weighted sum of its inputs. It is separated from the input 

module by a crossbar switch as shown in figure 2 above. It 

performs the opposite function of the encoder. Its input states 

may have only one neuron at binary 1 while all the rest are at 

0 for each output patterns. Its output states are the desired 

patterns associated with the input patterns at the original 

inputs of the whole neural network. The input module 

converts an input pattern into a simple format or code and the 

output module converts back this simple format to the 

associated pattern or decode it according to the relation: 

Y’ = W’ X’                              (5) 

Here X’ is the input matrix of the output module. If we 

choose only the first input neuron of the output module at 

binary 1 to produce first output pattern, only the second 

neuron at binary 1 to produce the second pattern and so on, 

then the input matrix of the output module becomes the 

identity matrix: X’ = I and we get: 

W’ = Y’                               (6) 

The weight matrix is the same as the output matrix (each 

column is a vector or an output pattern). Thus all the nonzero 

weights of this output subnet have values of 1. The 

implementation of this subnet is very simple due to the equal 

values of all its weights. 

In the example used above the output module has 4 output 

neurons similar to the original inputs and 16 input neurons. 

Thus for only the first input neuron of output module at 1 we 

get output pattern [0000]
T
, only the second neuron at 1 we 

get output pattern [1000]
T
, only the third neuron at 1 we get 

output pattern [0100]
T
, … and so on up to [1111]

T
. Here the 

top entry in each column is the least significant bit. Thus the 

weight matrix of the output module is a 4x16 matrix. All the 

weights are fixed and have no need to be adjusted by any 

learning process. To set one input neuron of the output 

module at binary 1 we connect it directly to the output 

neuron of the input module which is at binary 1. This is 

achieved by a crossbar switch discussed in the next section. 

For some applications discussed later we use feedback as 

shown in Figure 2 above. Consequently in these cases the 

number of output neurons must equal the number of the 

original inputs. Moreover each output neuron must be fed 

back to its corresponding neuron of the original input: least 
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significant bit (LSB) to LSB, second bit to second bit up to 

the most significant bit (MSB) to MSB. 

5. Interfacing Crossbar Switch and 

Training 

The training of the present neural network is confined to 

the process of finding the proper direct connection between 

one output neuron of the input module which represents a 

specific input pattern to one input neuron of the output 

module that produces an associated output pattern. This may 

be achieved by a crossbar switch that can connect any of 

these neurons. The semiconductor crossbar switches uses 

simple transistors as switches that can be turned on and off 

very fast to make these connections. In the example used 

above one end of the crossbar switch connects to one of the 

16 output neurons of the input module and the other end to 

one of the 16 input neurons of the output module by choosing 

the proper transistor to switch on. Consequently the 

conducting path between these two modules transfers the 

high output of binary 1 between these two neurons. For some 

of the applications discussed below we require that the output 

neurons of the input module and the input neurons of the 

output module to be arranged in two parallel rows with 

increasing numerical values. Each pair of neurons facing 

each other represent the same pattern or binary number: first 

pair for original input and output patterns [0000]
T
 (let us 

label both of them as neurons 0), second pair for pattern 

[1000]
T
 (neurons 1), third pair for pattern [0100]

T
 (neurons 2), 

and so on. We may arrange the inputs of the transistors of the 

crossbar switch in a table with rows representing output 

neurons of the input module and columns representing input 

neurons of output module. The transistor at the intersection 

of a row say x and a column say y will make a connection 

between an output neuron x of the input module 

corresponding to this row and an input neuron y of the output 

module corresponding to this column. For example the input 

of transistor (6, 9) (row 6 and column 9) will connect neurons 

representing binary input 5 and binary output 8, that make 

the pattern association 5→8 (we start counting from 0. This 

notation will be explained later.). 

The use of one single connection between input and output 

modules using crossbar switch makes training for the 

association between any two patterns simple, fast and 

accurate. This may explain the extremely fast response in 

recognising a pattern (such as a face for example) by human 

biological neural networks provided that they contain similar 

architecture. It is well known that in the brain there are layers 

or sheets of parallel neuronal axons in each layer and these 

axons in adjacent layers run perpendicular to each other. This 

is similar to the lines used in crossbar switches [9]. 

The connections between input and output modules 

through the crossbar switch are not “hard-wired” but can 

easily be changed. The response of the network for a given 

stimulus is not inevitable but may be decided by a designer. 

The two parallel rows of output neurons of the input 

module and the input neurons of the output module and the 

connections between them resemble the double helix and the 

bases crossing them from one strand to the other in a DNA 

macromolecule. The sequence of these bases connecting 

these two parallel backbone strands is the fundamental 

structure for life. Similarly the proper connections between 

the two rows of neurons of input and output modules of the 

present architecture of the artificial neural network contain 

the desired information and knowledge. However, as we have 

seen that the number of the neurons of input and output 

modules and the connections between them for n original 

inputs is 2
n
. For n=30 we get a number of connections in the 

order of 10
9
. The DNA macromolecules has similarly large 

number of bases of the same order of magnitude yet a great 

progress has been made in understanding many of its 

functions and tremendous benefits have been gained from 

this knowledge. Similarly the emulation of small part of the 

complexity of the brain using artificial neural networks will 

help to improve our knowledge of some of its functions and 

provides some useful application (see below). 

6. The Brain and the Mind 

There has been recently a renewed interest in the study of 

the relation between the brain and the mind [10, 11]. There is a 

common denominator between the brain and the mind despite 

the vast differences between them. It has been shown in the 

introduction that the brain has an area which receives input 

stimuli from sensors and a separate adjacent motor area for 

output responses. Similarly mental states require inputs and 

outputs as well. A tenet of causal theory states that to be in a 

particular mental state is to be in a state which is apt to be 

caused by certain stimuli and apt to cause certain behaviour or 

response [12]. Therefore both brains and mental states require 

input and output components. Thus in designing the 

architecture of an artificial neural network that aspires to 

mimic the brain and hopefully to display some of the features 

of the mind as well one may realize that the component of the 

architecture that needs to be supplemented or replaced must be 

the crossbar switch that interconnects input and output 

modules which are common to both the brain and the mind. 

This device has direct, concrete and one-to-one connections 

between these modules. The physical activities of the body are 

local (for example certain muscle is targeted for response) 

while mental processes tend to be global and diffuse (we feel 

hunger or joy in general not at a specific location). One may 

conclude that while the brain is behind physical activities, the 

mind on the other hand must utilize a different mechanism that 

mediates input stimuli and output responses yet is not as direct 

or local as the crossbar switch. Therefore one may postulate 

that in the same space separating input and output modules 

there must be another mechanism by which active output 

neurons of the input module can excite several input neurons 

of the output module at once. It is a well known fact that any 

electric charge will result in an associated electric field which 

in turn may spread and induce electric charges in remote 

regions where this field may reach. An example is a capacitor 
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made of two parallel metallic plates with the space between 

them filled with a dielectric material. If we charge one of these 

two plates with positive charge say, then an electric field will 

be established between these two plates starting from the 

positive charges and terminates with an equal and opposite 

(negative) charge on the other plate. 

The excitation of output neurons of input module due to a 

stimulus will result in the spread of an electric field in the 

narrow gap between this module and output module. This 

field may be capable of exciting one or several input neurons 

of the output module which results in a response but of more 

global character. The stimulus in this case will not be a one-

to-one process since the field is not localized and spread over 

many neurons of the output module but it will be a one-to-

many relation. Also the response time must be much faster 

than the physical link between input and output modules with 

slow action potentials propagating in this link since the 

electrical field travels with the speed of light. Moreover a 

time varying excitation of the output neurons of the input 

module will result in the propagation of electromagnetic 

waves in the gap between input and output modules. These 

waves may be the origin of the well known brain waves 

which are linked to thought and mental processes. By this 

field hypothesis a modification of the materialist theory of 

the mind [13] is introduced in order to bridge the gap (or 

chasm) between the brain and the mind. 

7. Applications 

It is quite obvious that switching a transistor is a much 

faster process compared to loading a register or modifying its 

content. Consequently the present neural network is expected 

to be faster than a corresponding register machine which is 

the prototype of all digital computers. The most direct 

application of this neural network is to reproduce or copy the 

input pattern to the output. This function is displayed in 

biological neural networks due to the spatial close proximity 

of each of the pairs of neurons of the input (sensor) and 

output (motor) modules that represent the same pattern. Thus 

one of the output neurons of the input module can easily 

excite the closest input neuron of the output module which 

represents the same pattern (or binary value). If we use 

feedback as shown in Figure 2 above then this network can 

be used as a dynamic memory device that stores indefinitely 

the same pattern when the input pattern is removed. The 

output pattern will be continuously refreshed and available at 

the outputs of this neural network. The capacity of this 

memory for n original inputs is 2
n
 a much higher capacity 

than some associative memories [5]. To carry further the 

analogy with the DNA macromolecule mentioned above, this 

network may be considered to replicate or transcribe the 

original pattern from the input to the output indefinitely.  

The logical principle (conditional) that corresponds to 

pattern association (without feedback) is: if A then B, where 

A is the input and B is the output of the whole network. 

Consider this circuit first without feedback. It acts as a 

memory device: the address is the input A and the content of 

this memory at this address is the output B. There is no 

special memory space that stores the contents of this memory. 

The crossbar switch is used to select only one output from all 

possible outputs that corresponds to the memorised content 

of the input address. Thus this crossbar switch settings 

contains all the information needed to recall this memory. As 

a collection of switches the crossbar switch resembles the 

thalamus in the brain which acts as a relay center. 

The following notation is used for connecting the crossbar 

switches to associate input and output patterns: the output 

neuron of the input module is represented by a first number 

and the input neuron of the output module is represented by a 

second number with the connection between them 

represented by an arrow. Thus in the case of the above copy 

function the following connections are used: 0→0, 1→1, 

2→2, 3→3,…etc. In this case the transistors along the main 

diagonal of the transistor table of the crossbar switch 

mentioned above will be the only transistors turned on. 

This neural network may also be used to perform addition 

and subtraction. Consider the following operation: 5+3. In 

this case the binary input 5 or [1010] is applied to the original 

inputs (top of Figure 2 above), where the left digit is the LSB. 

The output neuron 5 of the input module will be asserted 

high (1). The crossbar switch 5→5 is set by selecting the 

transistor (6, 6) (6
th
 row and 6

th
 column in transistor table, 

counting 0). The other part of this operation, namely +3 is 

translated as an instruction to activate the transistor at 

location 3 places to the right of the first transistor on the 

same row of the transistor table (6, 9) to represent the 

connection 5→8. Thus an input of binary 5 will result in an 

output of binary 8. Similarly in the operation 5-3 the 

transistor at location in the table three places to the left of 

first transistor is activated (6, 3) on the same row to make the 

connection (5→2): input 5 gives an output 2. 

The multiplication operation uses the same procedures by 

repeated addition. For example 5x3:start by choosing 

transistor at table location (6, 6) as before and shift twice 

horizontally on the same row with each shift equals 5 places 

to location (6, 16) to produce 5→15: input=5 and output=15. 

In general for mxn start by (m+1,m+1) location on transistor 

table and jump on the same row n-1 times with each jump=m 

places to the right. These jumps are achieved by address 

jumps in the memory space of these transistors. 

Periodic functions may be produced similarly. This 

function is similar to rhythmic phenomena such as regular 

heart beat in biological organisms. In this case the above 

series is modified to become: 

A→B^B→C^C→D^D→F^F→A^ A→B....etc. where the 

symbol ^ represents feedback. Thus this series repeats itself 

indefinitely. The variations of the periodic time in these 

phenomena may be achieved by changing the delay time D in 

the feedback loop shown in Figure 2 above. 

A program will be halted automatically if it included a 

final statement as follows: A→B^B→C^C→D^D→F^F→F. 

For example this program may be used to count from 1 up to 

5: 1→2^2→3^3→4^4→5^5→5 provided that a binary 1 is 

applied to the input at the initial state for a brief period of 
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time less than the delay time D. 

In this article only 4 original inputs are used as an 

illustration for the extended input binary neural network. 

This number may be extended to more original inputs (for 

example 16 or more) without much difficulty. However 

another approach may be applied similar to the multiplexing 

techniques used extensively in digital computers. Consider an 

image made up of 4X4 squares. Each square may be black 

(binary 1) or white (binary 0). Apply each row (4 original 

inputs) to the network discussed above at a time. In each time 

one output neuron of the input module is asserted high. 

However in order to identify all 4 rows (16 inputs) as a one 

single pattern or image (one neuron high) latches may be 

used as well as 4-input AND gates. Each time an output 

neuron of the input module is made high by 4 original inputs 

in a row of the image it is latched and remains high at the 

latch’s output even when the original inputs are removed. 

When all of the 4 rows of the image are applied in sequence 

the corresponding 4 outputs of the latches are fed to the 

inputs of a 4-input AND gate. Thus the output of the 4-input 

AND gate becomes high. This is the code for the 4X4 image. 

Thus to extended the 4 original inputs to 16 inputs a layer of 

latches and multi-input AND gates should be inserted 

between the input module and the crossbar switch. 

8. Conclusions 

The proposed architecture of a neural network is inspired by 

the structure and function of the brain. Although it is impossible 

to duplicate (or understand) the great complexity of the brain as 

a whole yet it is very useful and instructive to imitate some of 

the brains structures. Thus the input signal is processed first by 

the extended input circuit then sent to the input module to be 

converted to a simple code. The output module receives this 

simple code after it is properly diverted to its proper inputs by a 

crossbar switch. These two modules have fixed weights that can 

be deduced directly due to the use of the extended input circuit. 

It is shown that the nonzero weights of the input module take 

only two values, +1 and -1, similar to the excitatory and 

inhibitory synapses in biological neural networks. The only two 

values of weights reduce the almost infinite range of continuous 

and unknown weights between input and output neurons usually 

calculated by error criteria such as cost functions and by 

iteration techniques. The direct connection between input and 

output modules using a single connection by the crossbar switch 

for each pair of input and output patterns speeds up the response 

of the network and ensures that the output pattern is produced 

accurately. The capacity of this neural network when used as a 

memory device, (with an original n input neurons), is 2
n
 a much 

greater capacity than other neural networks used for pattern 

association. 

The training process of the present neural network is not a 

process of adjusting the synaptic connections among all 

neuron in the network but rather by turning on and off the 

transistors of the crossbar switch which connects and 

disconnects the output neurons of the input module and the 

input neurons of the output module. Thus the process of 

training becomes much more accurate and faster.  

The present neural network is used in several applications 

such as: pattern association and as a memory device. It can 

also be used to generate periodic functions and also for 

logical and mathematical operations such as conditional logic, 

addition, subtraction and multiplication. 

The number of original inputs (the dimensionality) of this 

neural network may be increased significantly by multiplexing 

the original inputs and using latches and multi-input AND 

gates between input module and the crossbar switch. 

The role of the crossbar switch is generalized by postulating the 

presence of an electric field which mediates between input 

(stimuli) and output (responses) regions of the brain. 

Consequently the brain is viewed as the input and output neural 

networks that transform input stimuli into simple codes and then 

convert back these codes to output responses. The mind on the 

other hand is the global field that selects the response which is 

appropriate to match each of the input stimuli. 
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