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Abstract: The main aim of this paper is to implement the combine effect of linearity and nonlinearity in optical fiber that 

generate a stable, undistorted pulse called “soliton”. Analysis of  first, second and third order soliton pulse propagation are 

done by modifying the nonlinear Schrodinger equation (NLSE).Further we have found that power requirement for 

transmitting fundamental order soliton, second order and third order are 83.3mW, 333.3mW and  750mW respectively. In 

which power of 83.3mW is appropriate for soliton pulse to maintain least loss during the propagation in optical fiber. 
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1. Introduction 

With the advance of the information technology and the 

explosive growth of the graphics driven World Wide Web, 

the demand for high bit rate communication systems has 

been raised exponentially, hence optical fiber has become 

the essential way for communication.  Optical fiber refers 

to the medium and the technology associated with the 

transmission of information as light pulses. 

When the information carrying light pulse transmits 

through an optical fiber, they suffer from attenuation; 

temporal broadening and they have interacted with each 

other through nonlinear effect in the fiber. These effects 

tend to distort the signals resulting in the loss of 

information. Propagation in optical fiber is postulated by 

the nonlinear Schrödinger equation. The approximate 

solution of NLSE is obtained by considering the linear and 

non linear operation separately. When we combine both 

linear and nonlinear operations together we get such a pulse 

that travels throughout the fiber undistorted, this pulse is 

called soliton. Optical solitons are pulses of light which are 

considered the natural mode of an optical fiber. Solitons are 

able to propagate for long distance in optical fiber, because 

it can maintain its shapes when propagating through fiber. 

Solitons are a special type of optical pulses that can 

propagate through an optical fiber undistorted for tens to 

thousands of km. 

 

2. Propagation of Pulse in Nonlinear 

Regime 

The basic nonlinear Schrödinger equation is [1] 
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Here γ=Nonlinear coefficient. 
When we induce the nonlinear characteristics, then the 

pulse starts compress. And in the linear regime pulse is 

affected by dispersion so we merged these two principals 

together and get such pulse which is not affected by any 

distorted region. This is the main principle which is being 

used throughout this research [2]. 

2.1 Fundamental Soliton 

The pulse evolution is governed by the nonlinear 

Schrodinger equation (1). The parameters β1 and β2 are the 

first and second order dispersion respectively. Physically, 

β1=1/Vg, where vg is group velocity associated with the 

pulse and β2 is called group velocity dispersion (GVD) 

parameter and γ is the nonlinear parameter. To get the 

solution of soliton propagation from the equation (1) it is 

transformed to normalized form, introducing some new 

parameters. For simplicity, we take, α=0, and normalizing 

parameter [2]  
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Here ζ is the normalized distance which is normalized 

with respect to dispersion length Ld and г is the time 

normalized with respect to pulse width. Since we have 

assumed that loss is neglected in nonlinear Schrödinger 

equation in terms of normalized parameter and it can be 

written with the help of equation (2) 
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Where S=sgn (β2) =+1 or -1 

The parameter N represents the order of soliton and is 

defined by [2], 
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P0= peak power, T0= pulse width  
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For anomalous dispersion β2<0, sgn (β2) = -1, for 

fundamental soliton  

N=1                                         (7) 

Putting the value of equation (6) & (7) in the equation (5) 

We have 

2
2

2
0

2

du i d u
i u u

d dξ τ
+ + =                      (8) 

Let Assume [2],  
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Where V (г) is the amplitude and Φ (ζ, г) is phase term 

of the pulse. 

Now phase can be represented as 

( , ) kφ ξ τ ξ δτ= − +                             (10) 

Here k is the phase constant normalized distance; 

represent normalized time and δ represent the frequency 

shift. 

Since we are assuming that there is no frequency shift in 

propagation so δ =0, and putting this value in equation (10) 

we get 

( , ) kφ ξ τ ξ= −                                       (11) 

And the amplitude of the pulse is governed by the 

equation, 

2
2

2
2 ( )

d V
V k V

dτ
= −                                (12) 

Now multiplying 2
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 On both sides of the equation (12) 

and then integrating we have 
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Equation (13) can be written as 

22 ( ).2I V k V dV= −∫                         (15) 

Now putting the value of equation (14) in equation (15) 

We get 

2

24 ( )
dV

V k V dV
dτ

  = − 
 

∫                    (16) 

In integrating equation (16) 
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Here C=constant 

Applying the boundary conditions to obtain the value of 

Constant, C  
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Putting the value of equation (18) in equation (17) 

We get C=0. 

Now putting the value of C in the equation (17) will 

modified to 
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Now applying the normalization condition, 
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V=1 at τ =0 and slope of the pulse 
 ��

�� 
� 0at peak 

Applying normalizing condition in equation (17) 

0 2 .1 1k=> = −           k=1/2                (20) 

Putting the values of k from the equation (20) inside 

equation (17), 
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 Taking square root on both sides 
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On integrating both sides, 
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So we get the solution  
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Putting the value of k from the equation (20) in equation 

(11) we get 

1
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Now combining the amplitude function and phase 

function from an equation (22) and equation (23) and 

putting this value in equation (9) it become 
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Where ζ is the normalized distance, г is the normalized 

time. 

2.2. Parameter for Fundamental Soliton Pulse 

The equation (24) is the solution of fundamental soliton. 

Which is  
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Now putting normalize distance ζ=Z/Ld in equation (25) 

we get  
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Now substituting the value of dispersion length Ld= 

T0
2
/abs (β2), Pulse width T0=10 ps/km, normalized time T= 

(t- β1 z)/ (T0), anomalous dispersion, β2=-20ɬ10
-3

(Ps
2
)/m 

nonlinear coefficient γ = 2.4ɬ10
-3

 (Wm)
 (-1)

 and the group 

velocity vg=2ɬ10
8
m/s in the expression of input pulse 

power [2], P0 is  
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By calculating we get input peak pulse power for soliton 

pulse,  P0=83.3 mW  

3D plot of combining all the first order pulses at different 

distance is shown in figure(1) . 

 

Figure 1. 3D representation of first order soliton pulse 

In which it is shown that the fundamental soliton pulse 

maintain its shape and power throughout the fiber. 

3. Higher Order Soliton 

The higher order soliton is really nonlinear superposition 

of N fundamental soliton. Higher order solitons are solitons 

with higher energy. More specifically, the energy of a 

higher order soliton is the square of an integer number 

times higher than a fundamental soliton. Higher order 

solitons do not have a fixed pulse shape like fundamental 

soliton. But they gain their shape periodically. The order of 

the soliton is described by the parameter N. 

3.1 Second Order Soliton 

For the second order soliton we have to take N=2.The 

equation of propagation for second order soliton pulses 

inside the optical fiber become [3] 
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Now substituting the value of Pulse width T0=1ps, 

normalized time T= (t- β1 z)/(T0), group velocity dispersion 

parameter β2 = -20ɬ10
-3

(Ps
2
)/m, 
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Nonlinear coefficient γ = 2.4ɬ10 
-3

(Wm)
 (-1)

, group 

velocity, vg=2ɬ10
8
m/s, first order group velocity dispersion, 

β1 =1/vg; in the expression of input pulse power [2] for 

second order P0 is 
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We get P0=333.3mW. 

1. The Position of  all the second order soliton pulses 

at different distance(Z=0km, 10km, 20km, 30km, and 100 

km) is shown in figure(2). 

 

Figure 2. Second order pulses at distances Z=0km, 10km, 20km, 

30km,100 km 

It is observed that pulse at z=0km have peak power 4mW, 

further increasing distance; at z=10km, power=3. 33mW; at 

z=20km, power=1. 93mW; at z=300km power=0. 81mW, 

and at z=100km, power=0. 303mW. Pulses get distorted so 

pulses power gets decrease. 

2. 3D representation of second order pulses is shown 

in figure (3) in which it clearly represents the power loss 

during transmission throughout the optical fiber. 

 

Figure 3. 3D representations of second order soliton pulse 

3.2 Third Order Soliton 

Solution for a third order soliton [3]:  

Order of soliton N=3; 
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Now substituting the value of Pulse width T0=1ps, 

normalized time T= (t- β1 z)/(T0), group velocity dispersion 

parameter β2 = -20ɬ10
-3

(Ps
2
)/m, nonlinear coefficient γ = 

2.4ɬ10 
-3

(Wm)
 (-1)

 ,group velocity vg=2ɬ10
8
m/s, first order 

group velocity dispersion β1 =1/vg; in the expression of 

input pulse power[2] for third order, P0 is 

Pulse power 
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So we get P0=750mW. 

3D representations of all third order pulse are shown in 

figure (4) in which pulse power decrease rapidly as 

compared to a second orderly soliton. 

 

Figure 4. 3D representations of third order soliton pulse  

4. Conclusions 

Since the propagation of pulse in optical fiber in linear 

regime is broadening i.e. loss of power. So to overcome this 

sort of losses we create a situation in which pulse travels 

inside the fiber without broadening, and the pulse is called 

fundamental soliton (N=1). So when we are transmitting 

the fundamental order soliton, a power of 83.3mW is 

required for a particular value of the different fiber 

-5 -4 -3 -2 -1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

TIME (ms)

P
O

W
E

R
 (

m
W

)

SECOND ORDER SOLITON PULSE

 

 

N=2, z=0km,z=10km,z=20km,z=30km,z=100km

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-10

-5

0

5

0

0.5

1

1.5

2

2.5

3

3.5

4
 

SECOND ORDER SOLITON PULSE

DISTANCE (km)

TIME (ms)

 

P
O

W
E

R
 (

m
W

)

N=2

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04-10

0

10

0

2

4

6

8

10

12  
THIRD ORDER 3D SOLITON PULSE

DISTANCE (km)

 

TIME (ms)

P
O

W
E

R
 (

m
W

)

N=3



10 Chakresh kumar et al.: Dynamics of Soliton Pulse Inside Optical Fiber 

 

 

parameter, then this power exactly nullifies the effect of 

compression and broadening. If we want to transmit a 

second order soliton, a power of 333.3mw and a third order 

power of 750mw are required as compared to fundamental 

order soliton but this power cannot nullify the effect of 

compression and broadening of optical pulses. So we 

conclude that fundamental soliton pulse is good for 

transmitting data or information with the least loss. 
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