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Abstract: Silver nanoplates have obvious advantages compared with other silver structural nanoparticles due to their wide 

tunability of the local surface plasmon resonance (LSPR) and significant local field enhancement around the sharp corners. 

Nonlinear optical absorption (NLA) and nonlinear optical refraction (NLR) are widely employed to characterize the nonlinear 

optical properties due to their simply testing requirement and comparable valuable results. Z-scan method is widely used in 

optical characterization of nonlinear properties of different materials. Here, a seed-mediated growth method of the silver 

nanoplates with well controlled size and local surface plasmon wavelength is presented. The nanoparticle size increases 

gradually and becomes more uniform distribution as the red-shift of the plasmon resonance wavelength from 650 nm to 950 

nm. In particular, we show the dependence of NLA and NLR of the silver nanoplates on the LSPR. The absolute value of 

effective NLA coefficient increases from 1.38 to 4 cm/GW and that of the NLR index increases as large as 3 times when the 

LSPR wavelength changes from 728 nm to 898 nm, which is attributed to the strong plasmon absorption and local filed 

enhancement of larger size silver nanoplates. These findings have great potentials in the explorations of functional non-linear 

devices. 
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1. Introduction 

Plasmon, which describes collective oscillation of 

electrons on the metal surface, has potential applications in 

plasmon enhanced photoluminescence [1-3], Raman 

scattering [4, 5], and plasmon enhanced light absorption [6-

8]. Aside from the nanoparticle materials, the plasmon 

resonance wavelength is strongly dependent on the physical 

geometrical shape, size and morphology [9-13]. Among the 

metal nanoparticles plasmonic materials, silver is one of the 

best candidates due to its lower optical loss in the visible and 

near infrared ranges. Silver nanoplates have obvious 

advantages compared with other silver structural 

nanoparticles due to their wide tunability of the local surface 

plasmon resonance (LSPR) and significant local field 

enhancement around the sharp corners, which is attributed to 

their higher aspect ratio between the two in-plane dipolar and 

the quadrupolar plasmon modes [14-22]. 

Nonlinear optical absorption (NLA) and nonlinear optical 

refraction (NLR) are widely employed to characterize the 

nonlinear optical properties due to their simply testing 

requirement and comparable valuable results. Z-scan method 

is widely used in optical characterization of nonlinear 

properties of different materials. The nonlinear properties of 

the metal nanoparticles have attracted much attention in 

recent years due to their potential application in biology 
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sensors and many other areas. Huge works focus on the 

nonlinear properties of different composite nanoparticles, 

such as metal nanoparticles with various kinds of geometric 

shape, metal-semiconductor nanocomposite film and many 

other plasmon doped materials [23-33]. 

Here a seed-mediated synthesis method is adopted to 

fabricate silver nanoplates with widely tunable longitude 

LSPR wavelength ranging from 650 nm to 950 nm. A 

systematical investigation on the NLA and NLR dependence 

on the LSPR of the silver nanoplates is displayed. The NLR 

and NLA coefficients of silver nanoplates increase with the 

red-shift of LSPR, which is attributed to the increase of the 

strong plasmon absorption and local filed enhancement 

accompanied with the growing size of silver nanoplates. The 

absolute value of effective NLA coefficient β  increases 

from 1.38 to 4 cm/GW and that of NLR index γ  rises from 

1.4 to 3.71 cm2/GW. These findings have great potentials in 

the explorations of functional non-linear devices. 

2. Experimental 

A two-step seed-mediated growth method was applied to 

synthesize the silver nanoplatelets. In the first step, the 

suspension of seeds was prepared as follows: 147 ml distilled 

water was mixed with 9 ml of sodium citrate (Na3CA) (30 

mmol/ml) under magnetic stirring. Then, 9 ml polyvinyl 

pyrrolidone (MW~40000, 20.3 mg/ml), 0.36 ml hydrogen 

peroxide (30%), 3 ml silver nitrate (AgNO3) (0.85 mg/ml), 

and 1.5 ml sodium borohydride (3.78 mg/ml) were added 

into the solution in sequence. The second step was beginning 

with taking out 10 ml as-prepared silver nanoplate seeds into 

a flask. Then 10 ml of aqueous solution containing L-

ascorbic acid (1.2 mmol/ml) and Na3CA (0.4 mmol/ml) were 

inserted into the seeds under magnetic stirring. Following 

was the injection of AgNO3 solution (0.6 mmol/ml) using a 

syringe pump at a rate of 10 mL/h. The silver nanoplates with 

different LSPR wavelength were pulled out at different times. 

The absorption spectra were measured using a UV-VIS-

NIR spectrophotometer (Varian Cary 5000). The NLA and 

NLR of the samples were measured by Z-scan methods. The 

excitation source was a mode-locked Ti/sapphire pulsed laser 

(Mira 900, Coherent) with pulse width approximately 150 fs 

and a repetition rate of 76 MHz. The optical length of the 

sample is 1 mm. 

3. Results and Discussion 

Figure 1 shows the absorption spectra of the silver 

nanoplates with different sizes. They are characterized by the 

linear absorption spectra during the growth of the silver 

nanoplates at different times. There are two in-plane dipolar 

and quadrupolar plasmon modes of silver nanoplates. The 

dipolar resonance is extremely sensitive to the height and 

edge length of the silver nanoplates (the peak from 650 to 

950 nm). The quadrupolar resonance is weaker and also 

presents smaller red-shift compared to the dipole resonance. 

A third plasmon resonance around 330 nm without shifting, 

which is contributed to the out-of-plane excitation, is also 

observed. The LSPR linearly red-shift and the intensity 

increased as the growth time goes by. While the full width at 

half maximum decreases with the growth time, which 

indicates a more uniform size of silver nanoplates as the 

growth time. The inserts of figure 1 present the two typical 

SEM images of the silver nanoplate with LSPR 650 and 950 

nm, respectively. We can observe that the silver nanoplates 

with LSPR 950 nm display larger edge length and more 

uniform size distribution. 

 

Figure 1. The absorption spectra of the silver nanoplates with different 

growth time. The insert presents the SEM images of the silver nanoplates 
with LSPR 650 nm and 950 nm, respectively. The ruler bar is 200 nm. 

 

Figure 2. Normalized open aperture transmittance OPT  (a) and close 

aperture CL OPT T curves (b) at the corresponding resonance wavelength of 

silver nanoplates with different sizes. The curves are shifted vertically for 
clarity. 

Figure 2a shows the normalized open aperture Z-scan 

response of the silver nanoplates in water suspensions at 

corresponding longitude resonance wavelength varied from 

728 nm to 898 nm. When the light intensity I  is saturated, 

the power-dependent absorption coefficient α  and refractive 

index n of materials could be described as ( ) 0I Iα α β= +

and ( ) 0n I n Iγ= + , where 0α  and 0n  are the linear 

absorption coefficient and refractive index, respectively. In 
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the Z-scan theory, the effective NLA coefficient β  and the 

NLR index γ  can be calculated by open aperture 

transmittance OPT  and close aperture transmittance CLT  as 

following relationships: 
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where 0 0eff effq I Lβ=  and 0 0= effkI Lϕ γ∆ , 0I  is the peak 

irradiance at the focus ( 0z = ), 2k π λ=  is the wave vector 

of the laser radiation and z0 is the Rayleigh length of the 

Gaussian incident beam for typical two photon absorption 

(TPA) process. ( )0 01 expeffL Lα α = − −   is the effective 

thickness of the samples, with L being the length of the 

sample. As the sample moved into the focused beam, the 

transmittance is found to increase, which shows an optically 

induce transparency. The saturated absorption (SA) behavior 

is attributed to the strong ground state plasmon bleaching. 

Figure 2b presents the normalized CL OPT T  curves of the 

samples, the saturated phenomenon is also obviously 

observed. And the NLR index γ  can be calculated by using 

the equation (2). 

The third-order NLA coefficient β  and NLR index γ  of 

silver nanoplates are calculated, and the values are plotted as 

a function of excitation wavelength in figure 3. The absolute 

value of effective NLA coefficient β  is increased from 1.38 

to 4 cm/GW (figure 3a). Figure 3b presents the tendency of 

NLR index γ  with different excitation wavelengths. With 

the increase of excitation wavelength from 728 nm to 898 

nm, the absolute value of NLR index γ  rises from 1.4 to 

3.71 cm2/GW. The increase absolute value of the NLR and 

NLA coefficients for different silver nanoplates attributes to 

the strong plasmon absorption and local filed enhancement of 

larger size silver nanoplates. Further studies are constructing 

to extent the LSPR of the samples to find the saturated 

absorption point since their higher aspect ratio between the 

two in-plane dipolar and the quadrupolar plasmon modes. 

 

Figure 3. Third-order NLA coefficient β (a) and NLR index γ (b) of silver nanoplates plotted as a function of the corresponding resonant excitation 

wavelength. 

4. Conclusions 

In conclusion, we adopt a seed-mediated synthesis method 

to fabricate silver nanoplates with widely tunable LSPR 

ranging from 650 nm to 950 nm. Moreover, we give a system 

investigation on the nonlinear absorption and refraction 

spectra dependence on the LSPR of the silver nanoplates. 

The absolute value of effective NLA coefficient β  is 

increased from 1.38 to 4 cm/GW. And the absolute value of 

NLR index γ  rises from 1.4 to 3.71 cm2/GW. These 

findings will have potential applications in the biology 

sensors, solar cells and many other areas. 
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