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Abstract: Single-mode fibers have reached a critical point in terms of optical communication capacity. Space division 

multiplexing (SDM) is one of the most promising candidates for increasing optical fiber capacity. SDM allows the propagation of 

multiple spatial channels where the paths could be multiple cores in a multi-core fiber (MCF). The transmission performance of 

MCFs is impaired by a non-unitary effect known as Core Dependent Loss (CDL). Multiple-input multiple-output (MIMO) 

technology is an effective solution to improve the transmission performance of MCFs. However, it can increase the system cost. 

Several techniques, such as core scrambling and Space-Time (ST) coding, have been proposed to mitigate CDL. This paper 

focuses on the analysis of the MCF transmission performance of different schemes. Our analysis concerns the derivation of an 

upper bound of the error probability by applying Maximum Likelihood (ML) and Zero-Forcing (ZF) decoders at the receiver. We 

also evaluate the performance of both core scrambling and ST coding systems. We prove that the ZF decoder offers similar 

performance to the ML decoder and confirm this with simulation results. Finally, to consider the cost factor of applying MIMO 

techniques, low complexity solution is proposed by combining core scrambling and ST codes using the sub-optimal ZF decoder 

and show performance close to the Gaussian channel. 
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1. Introduction 

Optical fiber communication systems have undergone 

several evolutions over the last few decades. All the degrees 

of freedom that single-mode fiber (SMF) can offer have been 

deployed, such as wavelength, amplitude, phase and 

polarization. The currently deployed SMF cannot keep up 

with the exponential increase in Internet demand. Space 

Division Multiplexing (SDM) is the most promising solution 

to increase the transmission capacity of optical fiber. In this 

system, capacity is multiplied by the number of spatial paths 

where each path carries independent data streams. SDM is 

provided by multi-mode fibers (MMF), which use more than 

one linear polarization (LP) mode in a single core, or by 

multi-core fibers (MCF), where each core carries a single 

mode or a few modes in the same cladding [1]. In this work, 

we are interested in evaluating the performance of MCFs. 

The addition of a new multiplexing capacity introduces a 

critical challenge, namely crosstalk between neighboring 

cores. The effects of crosstalk come from adjacent cores, 

where several studies have been carried out to evaluate the 

factors that influence the crosstalk level [2-4]. A model for 

the temporal variation of crosstalk has been proposed using 

coupled-mode theory (CMT) and a stationary Brownian 

motion for the phase shifts introduced at each central point 

between the phase-matching points [5]. However, in our 

study, we apply the coupled-power theory (CPT), which 

provides the mean value of the crosstalk over time, allowing 

fast and accurate estimation of the crosstalk, as done by M. 

Koshiba et al. [6]. In addition, core misalignment has been 

considered a second factor affecting the performance of the 

MCF transmission system. The loss due to misalignment is 

caused by in-line components such as connectors and 

fan-{In/Out} devices [7]. 

The different crosstalk and misalignment losses in each core 
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induce a Core Dependent Loss (CDL) [8], which is a 

non-unitary effect limiting the transmission capacity. CDL has 

an effect similar to Polarization Dependent Loss (PDL) on the 

polarization multiplexing (PolMux) system and Mode 

Dependent Loss (MDL) on MMF, which causes performance 

degradation. A statistical study on the MDL model and its effects 

on MMF have been carried out in several works [9, 10]. Here, 

we focus on CDL, which has different properties from MDL and 

is based on the channel model of MCF. In our previous work [8], 

inspired by the work done in [10], we have derived a theoretical 

MCF channel model that takes into account the CDL effect. In 

the present paper, we apply this theoretical model to analyze the 

transmission performance of the MCF. 

MCF can be divided into a weak-coupled fiber and a 

strong-coupled fiber. The privilege of the weak-coupled fiber is 

the ability to avoid using full MIMO processing at the receiver 

side. However, even for the weak-coupled regime, full MIMO 

processing provides transmission performance enhancement. 

For example, in [11], the authors demonstrated that full MIMO 

processing improves the range by 8% in weak-coupled MCFs. 

Therefore, in this work, we consider MIMO processing for both 

weak-coupled and strong-coupled regimes. 

The system performance can be enhanced by applying the 

core scrambling technique that reduces the CDL by 

averaging the losses over the different cores [8]. Yet, the 

CDL level is not completely removed. Therefore, inspired by 

the works done on the PDL and MDL mitigation over 

PolMux and MMF systems, respectively, we propose in this 

paper Space-Time (ST) coding to mitigate the CDL in MCF 

systems. We show that ST codes can completely mitigate the 

CDL. In addition, we study the performance of an uncoded 

system with and without core scrambling and ST codes. We 

derive an upper bound of the error probability, taking into 

account the Maximum Likelihood (ML) and Zero-Forcing 

(ZF) decoding schemes. We prove analytically and show by 

simulations that ML and ZF have a similar Gaussian behavior 

using core scrambling in the transmission system. Moreover, 

to make ST coding solutions applicable to a larger number of 

cores, low complexity decoding solution is required. We 

propose a combination of core scrambling and ST coding; 

this technique significantly reduces the decoding complexity 

using the sub-optimal ZF decoder and achieves performance 

close to the optimal ML decoder. 

The remainder of this paper is organized as follow. In 

Section 2, we describe the SDM transmission system and 

specify the main channel impairments coming from the 

crosstalk and the misalignment loss. In Section 3 we derive 

the upper bound error probability of the uncoded system for 

ML and ZF detection schemes. We devote Section 4 to 

introduce core scrambling strategy to mitigate the CDL and 

illustrate the benefit brought by using the core scrambling. In 

Section 5, we show that ML and ZF have similar 

performance thanks to core scrambling. In Section 6, we 

analyze the coded MCF transmission system based on ST 

coding scheme. First, we show that ST completely mitigates 

the CDL considering ML decoder at the receiver side. Then, 

we relate ZF decoding performance to the Orthogonal Defect 

Factor (ODF) of coded system. Section 7 is dedicated to 

proposing low complex solutions by combining core 

scrambling and ST coding over MCF system. Finally, Section 

8 concludes the paper. 

 

Figure 1. Transverse Misalignment. 

2. Multi-Core Fiber System Model 

The existence of cores in the same cladding allows the 

transfer of energy between the cores, causing linear crosstalk, 

which can be estimated based on the CPT. The average 

crosstalk between core 	�  and �  (���,� ) is estimated by 

Eq.(1) and Eq. (2) for homogeneous and heterogeneous cores, 

respectively [6]. 	 and ∆	 are the propagation constant and 

the difference between the two cores. ��,�  is the coupling 

coefficient.	� is the correlation length between the bending 

and twisting effects on the fiber [6]. 
 and Λ are respectively 

the fiber length and the core pitch. 

���,� =	 ����� ����� 
                (1) 

���,� =	 ��������� 
                  (2) 

Further, the imperfection of the optical fiber at the splicing 

points, the connectors, and the Fan-{In/Out} devices along the 

transmission link induces different misalignment losses in each 

core such as transverse, longitudinal, and angular misalignment 

[12, 13]. In [14], the authors showed that the transverse 

misalignment loss (�), as shown in Figure 1, has the most 

significant impact on the propagating losses. Therefore, we 

assume that the transverse misalignment is the only source 

affecting the propagating signal, which is defined as [13]: � = exp	(− !"�)               (3) 

where !" is the fiber transverse displacement in the $ and % 

directions, and   depends on the fiber mode fields radius 

before and after the splicing [13]. 

 

Figure 2. MCF transmission scheme. 
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In this work, we consider an MCF transmission with a 

linear propagation regime. In fact, one of the privileges of 

MCF deployment is to avoid entering the non-linearity while 

increasing the capacity of the transmission system. Moreover, 

we assume a complete mitigation of the dispersion effect by 

applying a time domain equalizer (TDE) or a frequency 

domain equalizer (FDE) as well-known techniques for 

compensating the differential mode group delay (DMGD) 

[15-17]. Considering an MCF system with &  cores, each 

allows the propagation of the fundamental mode with a single 

polarization to focus on the CDL effect. As shown in Figure 2, 

the signal received from the linear MIMO channel over the 

duration of the � symbols can be given by: Y(×* = H(×(X(×* + N(×*            (4) 

where H is represented as [10]: H = 	√ℓ	∏ (T�(H3*)�M�)5�67           (5) 

with X(×*  and Y(×* are the emitted and the received vectors, 

respectively, where � = &  for the ST coded system and � = 1  for the uncoded system. H is the equivalent MCF 

channel matrix, which is a concatenation of 9 fiber sections. (H3*)� represent the square crosstalk channel matrices. As an 

example, the crosstalk channel matrix for 7-core MCF is 

represented as: 

H:; =	 <��7 ��7,�	⋯ 	��7,>���,7 	⋱			 						���,>⋮ 																⋱ 					⋮��>,7 ��>,�		⋯ ��>A             (6) 

where ��B = 1 − ∑ ���.��E� . 

The different misalignment losses are defined by diagonal 

matrices F� with different loss values at each core 

(diag(�7,...,	�()) [8]. As presented in [13], we assume that the 

misalignment loss values are random Gaussian variables of 

zero mean and standard deviation equal to the percentage of 

the core radius (GH,I=%!J , where !J  is the core radius), in 

order to validate Eq.(3). ��  is a diagonal matrix with 

uniformly distributed random phase inputs exp(KLJ) where LJ ∈ 	 [0, 2Q] that represent modal noise due to random changes 

of the phase constants induced by strain, temperature variation 

[10, 18]. ℓ = (∑ STUTVW  is a normalization factor used to 

compensate for link loss such that Tr(HHX) = & (with Tr(.) 

representing the trace of a matrix operator and YX  is the 

conjugate transpose of Y ), ZB are the eigenvalues of the 

channel matrix Y  [10]. Finally, [  is an additive white 

Gaussian noise matrix with i.i.d. inputs of mean zero and 

variance [\. In a previous work [8], we modeled the MCF 

channel using the singular value decomposition as: Y = ]^_X                   (7) 

where ]  and _X are random unit matrices and ^  is the 

diagonal matrix of singular values where each element has a 

lognormal distribution which is a function of the core 

parameters and the level of misalignment. Furthermore, the 

CDL is defined as the ratio between the maximum eigenvalue 

(max{ZB}) and the minimum eigenvalue (min{ZB}) of YYX  

in dB (CDL = 10.`ab7\(c), where c = max{ZB}/min{ZB}). 

3. MCF Transmission Performance 

Analysis 

In this section, we analyze the ML and ZF detection 

performance over uncoded MCF transmission systems 

impaired by the CDL. 

3.1. Maximum Likelihood Detection 

The ML decoder provides the optimal data at the receiver 

side. The emitted vector X estimation should satisfy the ML 

criteria based on minimizing the Euclidean distance as follow: �def = argmin3∈m ||Y − HX||�          (8) 

where m  is the set of all possible transmitted vector of 

symbols. Furthermore, the pairwise error probability (PEP) to 

detect X�  given that X7  has been transmitted is written as 

[19]: PrpX7 → X�|Hr = Pr	pXs = X�|X7, Hr       (9) 

PrpX7 → X�|Hr = t u||v:w||x�yz {          (10) 

where X∆= X� − X7. To obtain an upper bound of the error 

probability, the PEP is averaged over all the channel 

realizations. The previous equation can be presented as: 

PrpX7 → X�|Hr = t |};~(v:w:w�v�)�yz �       (11) 

Replacing the matrix H  by the corresponding channel 

model in (7), then, applying the permutation property of the 

trace. With the fact that U is a unitary matrix, Eq. (11) is 

rewritten as: 

PrpX7 → X�|Hr = t |}ℓ	;~(���:w:w��)�yz �    (12) 

Ω is a diagonal matrix with eigenvalues elements ZB . At 

high SNR, the closest neighbors where the distance between 

them is equal to ��B�  (the minimum distance of the 

corresponding t�F  constellation) dominate the error 

probability. An upper bound can be expressed as [19]: 

�� 	≤ [�B�t |}ℓ	;~(���3w3w��)�yz �        (13) 

where [�B�  is the kissing number (number of closest 

neighbors). Moreover, for all the words differences in the 

closest neighbors set has X∆X∆X = ��B��  as proven in [20]. 

Lastly, by developing the trace(.) we obtain: 

�� 	≤ [�B�t |}ℓ"�T�� �z� ∑ ∑ ZB|�B,�|��B �     (14) 

where �\ is the SNR, an upper bound of the above expression 
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can be obtained by substituting each ℓZB  by the minimum 

over the maximum. In this case, the V factor is removed by 

applying the unitary property of V. 

�� 	≤ [�B�t |}"�T�� �z� ���	pSTr���	pSTr�       (15) 

One substitutes max{ZB} by the practical Z��H , the one that 

dominates the upper bound on the error probability, which is 

obtained by applying the maximum level of the confidence 

interval. Thus, the upper bound can be rewritten as: 

�� 	≲ [�B��3 �t |}"�T�� �zS��� ���       (16) 

where X = min{ZB}. In [8], we proved that the eigenvalues ZB 	have lognormal distribution (ZB= �Bexp(�) where �B  is the 

crosstalk level and � ∼ �(�, G)). Moreover, the eigenvalue 

in each core has very low standard deviation (G ≪ 1), thus the 

lognormal distribution can be assumed as normal distribution 

based on [21]. Lastly, since ZBare independent, the CDF of � 

is given as 1 − (1 − ¡ST($))(  where ¡ST($) is the CDF of 

random variable � (see Appendix. A). So, the PDF of � is 

obtained as: 

¢3($) = 	 (£√�¤ ¥erfc ¨H©ª£√�«¬(©7 ­©¨�®¯√�°«�     (17) 

As shown in Appendix. B, we derive Eq. (15) to obtain an 

upper bound error probability as: 

�� ≲	9±­©²�T�� 	�³°� ­©¤£�´�T�� µz²���           (18) 

where 9± = 9 ¤£√�(. 

3.2. Zero-Forcing Detection 

The sub-optimal ZF decoder is the simplest linear decoder. 

The received signal Y is multiplied by the channel 

pseudo-inverse ¶·¸ = HX(HXH)©7 to remove the crosstalk 

in all the channels. The post-detection SNR of the ZF 

detection is expressed as [22, 23]: � = �z¹v�vºTT®W                (19) 

where �\ is the normalized received SNR. Given the optical 

channel matrix H in (7): [HXH]©7 = ℓ©7VΩ©7VX            (20) 

by substituting in Eq. (19): 

� = 	 �zℓ∑ ST®W|»T¼|�UTVW               (21) 

Thus, the bit error probability with the ZF decoder is given 

by ½	t(x	� where ½ and 	 depend on the constellation 

(¾ − t�F) [22] that can be expressed as: 

�� ≤ �¹½	t¿x	�Àº             (22) 

�� ≤ � Á½	t u} ℓ��z∑ ST®W|»T¼|�T {Â          (23) 

The expression is simplified to obtain an upper bound of 

the error probability as: 

� = ℓ��z∑ ST®W|»T¼|�UTVW > ��z���	pSTr���	pSTr           (24) 

with the same methodology as the previous section by 

substituting max{ZB} by the practical Z��H and X = min{ZB}, 

the upper bound error probability of the ZF detection is 

obtained by: 

�� ≲ ½	�3 Á	t u} ��zS��� �{Â            (25) 

We notice that we end up with almost the same expression 

as the ML decoder. Thus, we develop the expectation with 

the same method as the previous section, which leads to: 

�� ≲ F	­© ¯��³°� �Q} £��(� 	­© �Ä�	erfc |7�}Å���     (26) 

with F = (	�£√�¤,  = (	�zS��� and ½ = (�¤£�. 

3.3. Simulation Results 

In order to validate the expressions obtained in (18) and 

(26), we present the transmission system performance of 

both ML and ZF detection through numerical simulations 

and compare them to the theoretical upper bounds. In 

Figure 3, we plot the bit error rate (BER) versus the signal 

to noise ratio SNR= �Å/[\, the simulation set up is based 

on the 7-core heterogeneous MCF structure (7-core 

Hetero-MCF) with three different type of cores (Black, Blue 

and Red) as shown in Figure 4. The core radius and 

refractive indices are !J  and �\ , respectively. ∆  is the 

relative refractive index differences between the core and 

1st cladding. A 16 − t�F  modulation is used at the 

transmitter side, and 100��  fiber link with no 

amplification consists of 300 fiber sections (9	 = 	300) 

with 7%!J  misalignment level. The considered link 

parameters result in a moderate CDL level equal to 4dB. In 

Figure 3(a), we show the performance of the ML decoder. 

We notice that the error probability upper bound obtained in 

Eq.(18) is tight at low SNR and almost exact at high SNR, 

with an SNR penalty equal to 2.5dB at BER = 10©Ë 

compared to the Gaussian channel (CDL = zero). Also, in 

Figure 3(b), we plot the performance of the ZF decoder, the 

error probability upper bound is in agreement with the ZF 

performance with more SNR penalty equal to 4dB at BER = 10©Ë  compared to the Gaussian channel and 1.5dB 

different compared to the ML performance. 

In this section, we derived an analytical upper bound 

error probability to predict the MCF transmission 

performance based on system setup. In the following 

sections, we show that ML and ZF decoders can have 

similar performances by applying the core scrambling in 

the transmission link. 
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A. ML decoder 

 

B. ZF decoder 

Figure 3. Simulation and theoretical upper bound error probability for 7-core 

MCF: A. ML decoder and B. ZF decoder, with 7%!J misalignment level. 

 

Figure 4. 7-core Hetero-MCF and the core structure parameter. 

4. MCF System Model with Core 

Scrambling 

It is important to keep the CDL value as low as possible in the 

transmission link to obtain a performance close to the AWGN 

channel. In the MCF link, each core is affected by different 

losses caused by different crosstalk and the level of 

misalignment. In Figure 5, we plot the average misalignment 

loss (��ÌÍ) of each core type (core 1, core 2 and core 3), as 

mentioned in Figure 4, for several levels of offset ({0-10}%	!J) 
and fiber sections 9 � 300 . We notice that each core is 

affected by different losses with the same level of offset. In [8], 

it is reported that scrambling improves MCF system 

performance by reducing the CDL level. The function of core 

scrambling is illustrated in Figure 6. Assuming that MCFs 

have three different cores (black, red, and blue), we send three 

messages in each core (Î7, Î�, and ÎÏ). Then the scrambler is 

installed after 9ÐJÑ  section, and the signals are randomly or 

deterministically permuted and transmitted through the 

different cores. In this case, the signals are affected by the 

average losses induced by all cores. 

 

Figure 5. The average losses versus the transverse offset (%) for three types 

of cores with fiber section number = 300. 

 

Figure 6. Core scrambling concept. 

 

Figure 7. MCF transmission system with core scrambling. 

The MCF transmission systems with installing the core 

scrambling as shown in Figure 7 can be expressed as: 

Y()* � H()(X()* - N()*	            (27) 

where the MCF channel matrix H is expressed as: 



 American Journal of Optics and Photonics 2021; 9(3): 39-50 44 

 

H = 	√ℓ	∏ (T�(H3*)�M�P�)5�67          (28) P�  are the permutation matrices which represent the 

scramblers when � is multiple of the scrambling period 9ÐJÑ  

and identity matrices in other cases. 

In Figures 8(a) and (b), we simulate 10Ò  channel 

realizations of the 7-core Hetero-MCF configuration with 

transverse offset equal to 7%!J  and 9 = 300. We set 9ÐJÑ  

to be equal to 50, which corresponds to 6 core scramblers 

representing the optimal CDL reduction provided by 

deterministic scramblers, as proved in [8]. We plot the PDF of 

the singular values of the channel matrix for both cases with 

and without scrambling. In Figure 8(a), we notice three 

distributions that illustrate that the signals are affected by three 

different losses corresponding to the types of cores existing in 

the MCF as mention previously. In Figure 8(b), we can 

observe the effect of the scrambling since all the cores follow 

single distribution after averaging the losses, which causes 

less CDL level. Besides, this observation helps to derive a 

simple upper bound error probability in the following section. 

 

Figure 8. The PDF of the singular values without and with core scrambling. Transverse offset = 7%	!J and fiber section number = 300, 9ÐJÑ= 50. 

5. Performance Analysis of MCF System 

with Core Scrambling 

Through deriving an upper bound on error probability, in 

this section we proves analytically that the ML and the ZF 

decoders have similar performance after applying core 

scrambling in the transmission link. 

5.1. Maximum Likelihood Detection 

We begin our analysis by deriving an upper bound error 

probability of ML decoder with core scrambling. With the 

same methodology as Section 3, we start by Eq.(15) where 

both min{ZB} and max{ZB} are defined: 

�� 	≤ [�B�t |}"�T�� �z� ���	pSTr���	pSTr�       (29) 

Here, we take the privilege of the scrambling where all the 

cores have the same distribution as shown in Figure 8(b) and 

develop the last expression in a simpler method. The PDF of 

the minpZBr is defined in Eq. (17) (� = minpZBr). The CDF 

of max{ZB} is defined as ¡ST($)(. So, the PDF of Ô = max{ZB} 

is given as (see Appendix. A): 

¢Õ(%) = 	 (�U®�£√�¤ ¥1 + erfc ¨I©ª£√�«¬(©7 ­©¨Ö®¯√�°«�  (30) 

given that G has a minimal value allows assuming that the 

PDF of Ô is also normally distributed. 

Further, the mean values of � and Ô are given by [24]: �[�] = � + G�(              (31) �[Ô] = � − G�(              (32) 

where �(  is defined as: 

�J = × Ø ""Ù ¡S(Ø)�ØÚ©Ú           (33) 

¡ST(Ø) is the CDF of the eigenvalues. In [24], it has been 

shown that �(  can be approximated by �(~x2log	(&) which 

depends on the number of cores & in the MCF. 

From the previous results, we can define c = 	maxpZBr/	minpZBras lognormally distributed with �ß = �[Ô] − �[�]. 
Thus, the upper bound can be obtained when substituting the 

CDL by its mean 	 7ªà: 
�� 	≲ [�B�táâ��B�� �\2	c ã 

≲ [�B�t |}"�T�� �z�	ªà �              (34) 

From the last expression, we observe that the MCF channel 

with scrambling is similar to the Gaussian performance with 

an SNR reduction equal to �ß. This optical MIMO channel is 

entirely different from the wireless MIMO channel, which 

follows the Rayleigh model. 
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5.2. Zero-Forcing Detection 

In the case of the ZF decoder, the bit error probability is 

given as: 

�� ≲ � Á½	t u} ℓ��z∑ ST®W|»T¼|�T {Â          (35) 

which can be simplified by using the inequality: 

ℓ��z∑ ST®W|»T¼|�UTVW > ��z���	{ST}���	{ST}            (36) 

Then, we can directly substitute the ratio between min{ZB} 
and max	{ZB} by the CDL (ä) to obtain an upper bound error 

probability as follow: 

�� 	≲ ½	�ß åt áâ		�\	c ãæ 
≲ ½	t u}�	�z�	ªà{                (37) 

We notice that the upper bound on the error probability of 

ML and ZF have the same expression (Eq.(34) and Eq.(37)) 

thanks to the core scrambling. 

5.3. Simulation Results of the Scrambling 

First, to illustrate the performance enhancement of the 

scrambling, in Figure 9 we plot the BER versus the SNR. We 

consider 16 − t�F modulation with ML or ZF decoder at the 

receiver side with the same fiber link parameter mentioned 

previously for core scrambling. We observe that using core 

scramblers in the transmission link decreases the SNR penalty 

to 0.5dB instead of 2.5dB for ZF decoder and instead of 4dB for 

ML decoder without scrambling at BER 10©Ë . Second, in 

Figure 9 we validate the ML and ZF upper bound expressions in 

(34) and (37). We notice that ML and ZF detection have similar 

performance with CDL = 1.8dB. This observation confirms our 

prediction through the derived expressions. Moreover, the 

upper bound on the error probability of ML and ZF detection 

show close estimation of the MCF system performance with 

core scrambling, since the different between the simulation and 

the upper bound is equal to 0.3dB at BER = 10©Ë. 

 

Figure 9. Simulation and theoretical upper bound of ML and ZF detection 

with core scrambling for 7-core Hetero-MCF, CDL= 1.8dB. 

In conclusion, core scrambling is very efficient in reducing 

the CDL in an MCF transmission system. Averaging the losses 

allows all the spatial channels to follow a single distribution. 

The core scrambling gives the advantage to apply a 

sub-optimal ZF decoder offering very low complexity and 

similar performance as the ML decoder. The next sections will 

address the ability to reduce the remaining gap loss caused by 

CDL and enhance system performance. 

6. Space-Time Coding for CDL 

Mitigation 

In this section, we investigate the performance of 

Space-Time (ST) coding on MCF transmission systems, as 

shown in Figure 10. An analytical expression and simulation 

results are obtained to understand the performance 

enhancement of ST codes over MCF transmission systems. 

6.1. ST System Model 

In the study by E.-M. Amhoud [25], ST codes were applied 

experimentally to mitigate both the PDL in the two 

polarizations on PolMux systems and the MDL in several 

modes on MDM systems. ST coding technique is originally 

designed for wireless MIMO communications [26]. Here, we 

send multiple copies of independent ¾ − t�F  symbols in 

several cores at different time slots. At the receiver side, we 

can detect these copies and enhance data estimation since it 

will experience independent MCF channels. 

 

Figure 10. Space-Time coded MCF transmission system. 

We consider Space-Time Block Codes (STBC) category 

where linear combinations of ¾ − t�F  symbols are created 

before sending them on & cores and � time slots. We apply a 

threaded algebraic space-time (TAST) code, which is known for 

the following properties: (i) placing each data symbol on a 

different core at each time slot while maintaining a minimum 

decoding delay, (ii) it has the same spectral efficiency as a 

spatially multiplexed system, and (iii) uniform average energy is 

transmitted per core [27]. We introduce the 7 × 7  TAST 

codeword matrix for 7-core Hetero-MCF as shown in Eq.(38). 

Each çB  is a vector of 7 symbols where è ∈ [1: 7]  andL	 =	exp(KQ/12) . ¢ℓ(çB) 	= 	∑ $�(êℓ©7ë)�©7>�67 , where ℓ ∈[1, … ,7] with ê = exp(K2Q/7) and ë = exp(KQ/18). L and 
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ë are calculated to ensure the full rate of the codeword [26]. In 

each codeword, we send F symbols on � � & time slots where F � &�; in the case of 7 × 7 TAST code F = 	49	symbols, 

which means that the maximum rate is achieved and equal to 7 

symbols/channel use. Moreover, the coding matrix does not 

increase the energy of the transmitted symbols after the encoding, 

which satisfies the linear regime of fiber optics [10]. At the 

receiver side, the original symbols are estimated using ML 

detection to obtain the optimal performance. 

�* = 7√>

ïð
ððð
ððð
ðð
ñ ¢7(ç7) 							φóô¢�(ç>)			φõô¢Ï(çö) φÄô¢Ë(çÒ)					φ÷ô¢Ò(çË) φ�ô¢ö(çÏ) φWô¢>(ç�)φWô¢7(ç�) ¢�(ç7)									φóô¢Ï(ç>) φõô¢Ë(çö)					φÄô¢Ò(çÒ) φ÷ô¢ö(çË) φ�ô¢>(çÏ)φ�ô¢7(çÏ) φWô¢�(ç�)							¢Ï(ç7) 				φóô¢Ë(ç>)								φõô¢Ò(çö) φÄô¢ö(çÒ) φ÷ô¢>(çË)φ÷ô¢7(çË) φ�ô¢�(çÏ)					φWô¢Ï(ç�) 		¢Ë(ç7)												φóô¢Ò(ç>) φõô¢ö(çö) φÄô¢>(çÒ)φÄô¢7(çÒ) φ÷ô¢�(çË)				φ�ô¢Ï(çÏ) φWô¢Ë(ç�)										¢Ò(ç7) φóô¢ö(ç>) φõô¢>(çö)φõô1(çö) φÄô¢�(çÒ)						φ÷ô¢Ï(çË) φ�ô¢Ë(çÏ)						φWô¢Ò(ç�) 	¢ö(ç7) 				φóô¢>(ç>)φWô¢7(ç>) φ�ô¢�(çö)						φ÷ô¢Ï(çÒ) φÄô¢Ë(çË)										φõô¢Ò(çÏ) φóô¢ö(ç�) ¢>(ç7) øù

ùùù
ùùù
ùù
ú
                (38) 

In the case of STBC, a column-wise vectorized form of 

Eq.(4) is used, which contains the generator matrix of the ST 

codes as follow: Ye×7 = vec(Y) = vec(HX + N)        (39) 

Ye×7 = üH 0 00 ⋱ 00 0 Hý vec(X) + vec(N)      (40) 

= He×eG�*Se,7 + N(×* = Y��Se,7	 + N                (41) 

where G�* is the generator matrix of the ST code in [27]. Îe,7 	= 	 [ç7, … , çe]*  is the vector of transmitted modulated 

symbols. 

6.2. ST System Model 

6.2.1. ML Decoder 

In this part, we analyze the performance of the optimal ML 

decoder on the coded MCF transmission system impaired by 

the CDL. In this case, we observe the effect of ST codes on the 

BER performance. First, the ML detection criteria of the 

coded system are given as follows: �def = ½!b�è�3∈m ||Ye,7 	− Y��Xe,7||�    (42) 

where m	is the set of all possible transmitted codewords. 

Starting from Eq.(10) which describes the pairwise error 

probability (PEP) of detecting ��	given that �7 has been 

transmitted: 

PrpX7 → X�|Hr = t u||v:w||x�yz {           (43) 

PrpX7 → X�|Hr = t |};~(v:w:w�v�)�yz �       (44) 

After replacing the matrix H by the corresponding channel 

model in Eq.(7) and applying the permutation property of the 

trace, Eq.(44) is given as: 

�� 	≲ [�B�t |}ℓ"�T�� �z� ∑ ∑ ZB|�B,�|��B �       (45) 

Having orthogonal closest neighbors	ZB, the double sum 

can be separated so that the expression can be rewritten as 

[20]: 

�� 	≲ [�B�t |}ℓ"�T�� �z� ∑ ZB ∑ |�B,�|��B �     (46) 

In the case of & × &  TAST coded system, there are [�B� = &�[�B�(t�F)  codewords at minimum distance ��B� 	which has been proven in [20]. As a simple example, 

we apply 4 − t�F constellation ([�B�(t�F) = 2), each 

codeword has [�B�(t�F) = 49 × 2 closest neighbors at 

minimum distance ��B� . ℓ can be substituted by its value uℓ = (∑ STUTVW { and the summation of squared elements of the 

unitary matrix _  is equal to 1. Thus, the upper bound 

expression in Eq.(46) is given as: 

�� 	≲ &�[�B�t |}"�T�� �z�	 �          (47) 

From the previous expression, the CDL can be mitigated 

by the orthogonality between the nearest neighbors. 

Moreover, it shows that when the closest neighbors are the 

dominant term in PEP analysis, TAST codes mitigate the 

CDL and obtain &  Gaussian parallel channels. The last 

expression shows that MCF system with TAST code is 

similar to the Gaussian channel. 

6.2.2. ZF Decoder 

In order to obtain an upper bound expression for the ZF 

decoder over the MCF transmission system, we can describe 

the coded MCF channel model as given in [20]: H± ≜ diag(H,… , H)Φ             (48) 

where Φ	is the global F × 	F unitary matrix [20]. 

Then, the post-detection SNR can be rewritten as: 
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� � �z
¹v�vºTT

®W                (49) 

Hence, H±XH± � ΦXdiag�HXH,… , HXH	#Φ, we obtain: 

¿H±vH±À©7 �	1ℓ	ΦXdiag�VXΩ©7V,… , VXΩ©7V	#Φ 

�	 7ℓ 	ψvdiag�Ω©7, … , Ω©7	#ψ (50) 

Where ψ ≜ diag�V, … , V#Φ  is a unitary matrix. Thus, 

Eq.(49) can be expressed as: 

� � 	 �zℓ
∑ S�U�VW ∑ ST®WUTVW              (51) 

The previous equation is described as the ratio between the 

harmonic and the arithmetic means of the ZB. Besides, we 

notice the effect of TAST code by averaging the _ from the 

post-detection SNR equation. 

In fact, this ratio in Eq.(51) can be simplify by the 

orthogonality defect factor (ODF) of H± which is defined as 

the product of the norms of its columns over its determinant 

[20]: 

	¿H±À ≜ ∏ ||
±T||UTVW|v±| � 1           (52) 

when the ODF is equal to one, it means that the channel H± 

is orthogonal as [20]: 

|H±| � ℓ(|H|(|Φ| � xℓ(� 	|Λ|�/�|V|( �	xℓ�� 	∏ ZB(/���67  (53) 

From Eq.(52) and Eq.(53), the authors in [20] proved that 

the ODF of H± for & ) & TAST code is given by: 

	 � ¨∑ ST/(UTVW «
U��

∏ ST
U�UTVW

              (54) 

which can be expressed as the 
(�
� th power of the ratio 

between the arithmetic and the geometric means of ZB. The 

bit error probability with the ZF decoder is given by: 

�� � �¹½	t¿x	�Àº 
� �
 Á½	t u} ℓ�	�z

∑ S�U�VW ∑ ST®WUTVW {Â          (55) 

We can substitute the ratio in last expression by the ODF 

as mentioned in Eq.(52), so Eq.(55) can be rewritten as: 

�� 	≲ �
 �½	t |}��z

 ��             (56) 

One can use the maximum of the ODF to give a simple 

upper bound of the ZF coded system: 

�� 	≲ ½	t u} ��z

���{              (57) 

From the last expression, we note that ZF performance 

depends on the ODF for the coded system. Hence, the ZF 

decoder has an optimal performance when the ODF is equal 

to 1 through the orthogonality of the channel matrix. 

6.3. Simulation Results 

We simulate the 7 ) 7 TAST code performance for the 

7-core Hetero-MCF with applying ML and ZF decoders. In 

Figure 11, we plot the BER as a function of the SNR for 

the coding scheme, where we consider 300 fiber sections 

(K = 300) with GH,I � 7%!J  and 100��  fiber length. 

The uncoded system with ZF and ML decoders have SNR 

penalty equal to 3dB and 4dB, respectively, at BER = 10©Ë. However, we observe that the CDL is completely 

mitigated using the ML decoder since the performance is 

the same as the Gaussian channel (CDL = zero). On the 

other hand, we notice that the ZF decoder performs worse 

than the ML decoder, mainly from the orthogonality 

between the nearest neighbor in the TAST codewords as 

explained in Eq.(57). 

Regarding the TAST code performance efficiency by 

completely mitigating the CDL, the decoding complexity 

of the ML decoder is very large compared to the ZF 

decoder. In Table 1, we illustrate the complexity of the ML 

and ZF decoders for F ) 	F	MIMO systems as shown in 

works done by E. Awwad et al. and O. Damen et al. [28, 

29] and in particular the numerical application for the 

7-core MCF. In the ML decoder case, we consider the 

complexity estimation of the sphere decoder. Noticeably, 

implementing the ML decoder for full-rate TAST codes in 

MCF systems with a large number of cores will become 

very costly and require very high computational effort. 

Therefore, for the next section, we propose a solution 

where we can apply the ZF decoder at the receiver side 

and achieve performance close to the ML decoder and the 

Gaussian channel. 

Table 1. Comparison of the complexities using ML and ZF decoders, q is the 

number of QAM symbols [28]. 

 ZF ML 

F )F MIMO 
e÷�Ïe�©e

e   � ¾e  

7 ) 7TAST (F � 49) 2547  2.6 ) 10�  

 

Figure 11. 7 ) 7  TAST code performance for 7-core Hetero-MCF, 

misalignment level (GH,I=	7%!J). 
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7. Low Complex Detection with ZF 

In this part, we investigate the performance of TAST code 

combined with core scrambling, aiming to reduce the 

decoding complexity. The received signal for the coded 

system is given in Eq. (38) where the singular values follow 

the same distribution as shown in Figure 8(b). In order to 

investigate the performance of TAST codes with scrambling, 

we simulate the 7 ) 7 TAST code with core scrambling for 

7-core Hetero-MCF transmission system as shown in Figure 

12. In this scheme, we set the transverse offset to be equal to 

7%!J  with 9 � 300 and use 6 scramblers in the fiber link, 

corresponding to CDL = 1.8dB. Then, we apply the 

sub-optimal ZF decoder at the receiver side. In Figure 13, we 

plot the BER performance and we notice the coding gain 

provided by the TAST code combined with core scrambling 

while applying the sub-optimal ZF decoder (dashed line), the 

system performance with TAST code and core scrambling is 

enhanced by 1.2dB compared to the uncoded system after 

applying scrambling with ML decoder. In addition, the 

system performance has only SNR penalty equal to 0.1dB 

compared to the Gaussian channel and the optimal solution 

(7 ) 7 TAST with ML decoder) at BER = 10©Ë. 

 

Figure 12. Space-Time coded MCF transmission system with core 

scrambling. 

 

Figure 13. BER performance of 7-core Hetero-MCF with 7 ) 7 TAST code 

and core scrambling, with misalignment level GH,I=	7%!J corresponding to 

CDL = 1.8dB. 

To explain the previous observation, we need to return to 

the upper bound on the error probability expression obtained 

for the ZF decoder in Eq. (57). We proved that the ZF error 

probability is a function of the ODF where in the case of 

ODF = 1, the channel model is orthogonal and the ZF 

performs optimally. Thus, Figure 14 shows the CDF of the 

ODF (	) for the 7-core Hetero-MCF channel model with and 

without core scrambling. We observe that the system without 

core scrambling has an orthogonal defect factor that is 70% 

of the time equal to 4. In contrast, the MCF system with core 

scrambling has an ODF with less than 1.5 during 70% of 

the time which makes the ZF near to the optimal performance 

so close to the ML decoder and Gaussian channel. 

 

Figure 14. CDF of the ODF for 7 ) 7  TAST with and without core 
scrambling. 

8. Conclusion 

In this paper, we analyzed the performance of the 

transmission system of MCFs impaired by CDL under ML 

and ZF detection. We established a narrow upper bound on 

the error probability for both decoders with and without the 

application of core scrambling. Therefore, we have proved 

that ZF and ML have the same upper bound error probability 

due to the scrambling effect. Since this upper bound is close 

to the Gaussian channel error performance with SNR reduced 

by the value of the CDL, it follows that both ML and ZF 

detection transforms the MCF into parallel �  Gaussian 

channels with SNR reduced by the CDL. Then, we proved 

that TAST codes could completely mitigate the CDL by 

applying the ML decoder. Further, we showed that we could 

reduce the decoder complexity of ST coded schemes by 

applying the sub-optimal ZF decoder with TAST codes and 

core scrambling. The obtained results show considerable 

system enhancement with 3.5dB SNR gain compare to the 

uncoded system and performance very close to the Gaussian 

channel. Moreover, this solution is practical since it allows 

applying the ZF decoder at the DSP decoding part, which 

provides a lower coherent receiver cost. In the future, we can 

analyze the MCF transmission performance after considering 

the polarization effects such as the PDL. Also, we aim to 

validate the proposed solution experimentally. 
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Appendix 

Appendix A. The PDF of the Maximum and Minimum of 

Normal Distribution 

The PDF of the maximum and minimum of normal 

distribution. 

We drive the PDF of ] � max{�}  and _ � min{�} 
where X is normal distribution with mean � and standard 

deviation G 

The normal distribution has a CDF: 

¡�$# � 7
� ¥1 + erfc ¨H©ª£√�«¬          (58) 

Assuming ¶��$# is the CDF of ]  which is equal to �¡�$##�	where � is the number of sample of independent 

and identically distributed random variables. Also, ¶��$# is 

the CDF of _ which is equal to 1 − �1 − ¡�$##� 

The PDF is obtained by taking the derivative of the CDF. 

In this case, the PDF of ¶��$# = �	¡�$#�©7¢�$#, which is 

given as: 

¢��$# �	 �
��®�£√�¤ ¥1 + erfc ¨H©ª£√�«¬

�©7 ­©¨�®¯√�°«
�
   (59) 

And the PDF of ¶��$#= �	�1 − ¡�$##�©7¢�$#,, knowing 

that erfc�$# � 1 − erf�$# is: 

¢��$# �	 �
£√�¤ ¥erfc ¨H©ª£√�«¬

�©7 ­©¨�®¯√�°«
�
      (60) 

Appendix B. Upper Bound on Error Probability ML 

Decoder 

Upper Bound on Error Probability ML decoder. 

Here we drive the upper bound in Eq.(16). We substitute 

Eq.(17) in (16) and applying the Chernoff upper bound: 

�� ≲ 9× ­©
´�T�� µz�²��� HÚ

\ ¥erfc ¨H©ª£√�«¬
(©7 ­©¨�®¯√�°«

�
�$ (61) 

with 9 � (y�T�
£�√�¤ . However, erfc�Ø# can be upper bounded 

by ­©Ù/� . Then, by completing the square after the 

multiplication of the three exponential terms, Eq.(16) is 

expressed as: 

�� ≲ 9� ­©
"�T�� �z�S��� H

Ú
\

	­©�(©7#uH©ª√�£{
�
	­©uH©ª√�£{

�
�$ 

≲ 9� ­©(u
H©ª
√�£{

�©"�T�� �z�S���
Ú
\

	�$ 

≲ 9­ ¯�
�³°� 	 �Q}£��

�( ­
�
Ä�	­!¢� |7�}Å

���          (62) 

where  � ("�T�� �z
S���  and ½ � (

�¤£�. 
The previous equation can be simplified by upper bounded 

the erfc(.) to exponential. Also, one can replace � by the Z�B�  since it represents the mean value of the minimum 

eigenvalues. So, the upper bound can be rewritten as: 

�� ≲	9±	­
²�T��
�³°� 	­©¤£�	´�T�� µz�²���            (63) 

where 9± � ¤£
√�(.. 
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